Droplet Evaporation in the Non-continuum Regime

  • E. J. DavisEmail author


At low pressures, the evaporation rate of a droplet is not adequately described by the equations of continuum mechanics, that is, by mass diffusion and conduction heat transfer. When the mean free path of the evaporated molecules is large compared with the droplet radius, the kinetic theory of gases can be applied to determine the evaporation rate. In this limit, the free-molecule regime, it is assumed that the molecules have a Maxwell-Boltzmann distribution of molecular velocities. In the intermediate regime, the Knudsen regime, molecular collisions distort the Maxwell-Boltzmann distribution and reduce the rate of transport of the molecules leaving and arriving at the droplet surface. This chapter reviews the theory and measurements of droplet evaporation in the free-molecule and Knudsen regimes.


Accommodation coefficients Condensation Evaporation Free-molecule regime Gas phase transport Knudsen regime Non-continnum regime 


  1. 1.
    J. C. Maxwell: Diffusion. In Encyclopedia Britannica, 9th edn., Vol. 7, p. 214 (1878).Google Scholar
  2. 2.
    E. J. Davis, G. Schweiger: The Airborne Microparticle, Springer, Heidelberg (2002).Google Scholar
  3. 3.
    D. C. Taflin, S. H. Zhang, T. Allen, E. J. Davis: Measurement of droplet interfacial phenomena by light-scattering techniques, AIChE J. 34, 1320–1320 (1988).CrossRefGoogle Scholar
  4. 4.
    E. J. Davis: A history and state-of-the-art of accommodation coefficients, Atmos. Res., 82, 561–578 (2006).CrossRefGoogle Scholar
  5. 5.
    P. Davidovits, C. E. Kolb, L. R. Williams, J. T. Jayne, D. R. Worsnop: Mass accommodation and chemical reactions at gas-liquid interfaces, Chem. Rev. 106, 1323–1354 (2006).CrossRefGoogle Scholar
  6. 6.
    P. M. Winkler, A. Vrtala, P. E. Wagner, M. Kulmala, K. E. J. Lehtinen, T. Vesala: Mass and thermal accommodation during gas-liquid condensation of water, Phys. Rev. Lett. 93, 075701-1-075701-4 (2004).Google Scholar
  7. 7.
    P. M. Winkler, A. Vrtala, R. Rudolf, P.E. Wagner, I. Riipinen, T. Vesala, K. E. J. Lehtinen, Y. Viisanen, M. Kulmala: Condensation of water vapor: experimental determination of mass and thermal accommodation coefficients. J. Geophys. Res. D: Atmos. 111, D19202 (2006).Google Scholar
  8. 8.
    M. Zientara, D. Jakubczyk, G. Derkachov, K. Kolwas, M. Kolwas: Determination of mass and thermal accommodation coefficients from evolution of evaporating water droplet, Proc. SPIE 5849, 162–165 (2005).CrossRefGoogle Scholar
  9. 9.
    T. Tsuruta, G. Nagayama: Molecular dynamics studies on the condensation coefficient of water, J. Phys. Chem. B 108, 1736–1743 (2004).CrossRefGoogle Scholar
  10. 10.
    J. Vieceli, M. Roeselova, D. J. Tobias: Accommodation coefficients for water vapor at the air/water interface, Chem. Phys. Lett. 393, 249–255 (2004).CrossRefGoogle Scholar
  11. 11.
    A. Morita, M. Sugiyama, H. Kameda, S. Koda, D. R. Hanson: Mass accommodation coefficient of water: molecular dynamics simulation and revised analysis of droplet train/flow reactor experiment, J. Phys. Chem. B 108, 9111–9120 (2004).CrossRefGoogle Scholar
  12. 12.
    N. A. Fuchs: Über die Verdampfungsgeschwindigkeit Kleiner Tröpfchen in Einer Gasatmosphäre, Phys. Z. Sowjet 6, 225–243 (1934).Google Scholar
  13. 13.
    D. C. Sahni: The effect of a black sphere on the flux distribution in an infinite moderator, J. Nucl. Energy 20, 915–920 (1966).Google Scholar
  14. 14.
    N. A. Fuchs, A. G. Sutugin: Highly Dispersed Aerosols, Ann Arbor Science, Ann Arbor, MI (1970).Google Scholar
  15. 15.
    J. Jeans: The Dynamical Theory of Gases, Dover, New York (1954).zbMATHGoogle Scholar
  16. 16.
    S. K. Loyalka, S. A. Hamoodi, R. V. Tompson: Isothermal condensation on a spherical particle, Phys. Fluids 14, 358–362 (1989).Google Scholar
  17. 17.
    M. M. R. Williams, S. K. Loyalka: Aerosol Science Theory and Practice, Pergamon, Oxford (1991).Google Scholar
  18. 18.
    A. K. Ray, A. J. Lee, H. L. Tilley: Direct measurements of evaporation rates of single droplets at large Knudsen numbers, Langmuir 4, 631–637 (1988).CrossRefGoogle Scholar
  19. 19.
    M. Sitarski, B. Nowakowski: Condensation rate of trace gas vapor on Knudsen aerosols from the solution of the Boltzmann equation, J. Colloid Interface Sci. 72, 113–122 (1979).CrossRefGoogle Scholar
  20. 20.
    H. Grad: On the kinetic theory of rarefied gas, Commun. Pure Appl. Math. 2, 331–407 (1949).Google Scholar
  21. 21.
    X. Qu, E. J. Davis: Droplet evaporation and condensation in the near-continuum regime, J. Aerosol Sci. 32:861–875 (2001).CrossRefGoogle Scholar
  22. 22.
    B. Nowakowski, J. Popielawski: Nonisothermal condensation on spherical aerosol particles from the Grad solution of the Boltzmann equation, J. Colloid Interface Sci. 122, 299–307 (1988).CrossRefGoogle Scholar
  23. 23.
    X. Qu, E. J. Davis, B. D. Swanson: Non-isothermal droplet evaporation and condensation in the near-continuum regime, J. Aerosol Sci. 32:1315–1339 (2001).CrossRefGoogle Scholar
  24. 24.
    E. J. Davis, A. K. Ray: Submicron droplet evaporation in the continuum and non-continuum regimes, J. Aerosol Sci. 9, 411–422 (1978).CrossRefGoogle Scholar
  25. 25.
    W. Li, E. J. Davis: Aerosol evaporation in the transition regime, Aerosol Sci. Technol. 25, 11–21 (1996).CrossRefGoogle Scholar

Copyright information

© Springer US 2011

Authors and Affiliations

  1. 1.Department of Chemical EngineeringUniversity of WashingtonSeattleUSA

Personalised recommendations