Reacting Sprays

  • F. X. TannerEmail author


The classification regimes for premixed and non-premixed combustion processes are discussed in terms of the Damköhler and Karlovitz numbers. Dec’s diesel spray combustion concept is introduced, followed by a short review of chemical kinetics. The ignition process together with appropriate models is then discussed. Subsequently, various combustion models are presented, including mixing-controlled, flamelet and PDF combustion models. The chapter ends with a discussion of pollutant modeling for nitric oxides (NO) and particulates.


Borghi diagram Combustion Chemical reactions Chemical kinetics Damköhler number Flamelets Ignition Karlovitz number Mixing-controlled combustion PDF combustion models Pollution modeling 


  1. 1.
    J. Abraham, F. V. Bracco, and R. D. Reitz. Comparisons of computed and measured premixed charge engine combustion. Combust. Flame, 60:309–322, 1985.CrossRefGoogle Scholar
  2. 2.
    M. Astarita, F. E. Corcione, M. Costa, A. De Maio, and B. M. Vaglieco. Application of the Shell ignition model and comparison with spectroscopic measurements of a high swirl diesel combustion. In Proceedings of the ASME Fall Technical Conference, ICE, Vol. 33–3, pp. 27–34, Oct. 1999.Google Scholar
  3. 3.
    M. J. Bergin, R. P. Hessel, and R. D. Reitz. Optimization of a large diesel engine via spin spray combustion. SAE Paper 2005-01-0916, 2005.Google Scholar
  4. 4.
    H. Bockhorn. Soot Formation in Combustion: Mechanisms and Models. Springer-Verlag, Berlin, 1994.Google Scholar
  5. 5.
    R. Borghi. Chemical reactions calculations in turbulent flows: application to a co-containing turbojet plume. Adv. Geophys., 18(part II):349–365, 1974.Google Scholar
  6. 6.
    R. Borghi. Turbulent combustion modelling. Prog. Energy Combust. Sci., 14:245–292, 1988.CrossRefGoogle Scholar
  7. 7.
    K. N. C. Bray and J. B. Moss. Acta Astronautica, 4:291–304, 1977.CrossRefGoogle Scholar
  8. 8.
    K. N. C. Bray and N. Peters. Laminar flamelets in turbulent flames. In P. A. Libby and F. A. Williams, editors, Turbulent Reacting Flows, Academic, San Diego, 1994, pp. 63–113.Google Scholar
  9. 9.
    R. S. Cant and E. Mastorakos. An Introduction to Turbulent Reacting Flows. Imperial College Press, London, 2008.zbMATHGoogle Scholar
  10. 10.
    M. Chan, S. Das, and R. D. Reitz. Modeling multiple injection and EGR effects on diesel engine emissions. SAE Paper 972864, 1997.Google Scholar
  11. 11.
    C. Chevalier, P. Loussard, U. C. Müller, and J. Warnatz. A detailed low-temperature reaction mechanism of n-heptane auto-ignition. In Second International Symposium, COMODIA, pp. 93–97, Kyoto, Japan, 1990.Google Scholar
  12. 12.
    J. E. Dec. A conceptual model of DI diesel combustion based on laser-sheet imaging. SAE Paper 970873, 1997.Google Scholar
  13. 13.
    J. E. Dec and E. B. Coy. OH radical imaging in a DI diesel engine and the structure of the early diffusion flame. SAE Paper 960831, 1996.Google Scholar
  14. 14.
    B. Dillies, K. Marx, J. Dec, and C. Espey. Diesel engine combustion modeling using the coherent flame model in Kiva II. SAE Paper 930074, 1993.Google Scholar
  15. 15.
    M. Elsden, E. Gutheil, M. Nehse, and J. Warnatz. Auto-ignition modeling in diesel engines. In Proceedings of the 3rd International ICE Conference, Capri, Italy, September 1997.Google Scholar
  16. 16.
    C. P. Fenimore. Formation of nitric oxide in premixed hydrocarbon flames. In Thirteenth Symposium (International) on Combustion, pp. 373–380, The Combustion Institute, Pittsburgh, 1971.Google Scholar
  17. 17.
    R. O. Fox. Computational Models for Turbulent Reacting Flows. Cambridge University Press, Cambridge, 2003.CrossRefGoogle Scholar
  18. 18.
    M. Frenklach, H. Wang, and M. J. Rabinowitz. Optimization and analysis of large chemical kinetics mechanisms using the solution mapping method – combustion of methane. Prog. Energy Combust. Sci., 18:47–73, 1992.CrossRefGoogle Scholar
  19. 19.
    A. Gill. Modellierung der Verbrennung in einem Schichtlade-Motor unter Verwendung detaillierter chemischer Reaktionsmechanismen. Ph.D. thesis, Universität Stuttgart, 1995.Google Scholar
  20. 20.
    I. Glassman. Combustion, 3rd edn. Academic, San Diego, 1996.Google Scholar
  21. 21.
    A. D. Gosman, F. C. Lockwood, and A. P. Salooja. The prediction of cylindrical furnaces gaseous fueled with premixed and diffusion burners. In Seventeenth Symposium (International) on Combustion, pp. 747–760, The Combustion Institute, Pittsburgh, 1979.Google Scholar
  22. 22.
    M. Halstead, L. Kirsh, and C. Quinn. The autoignition of hydrocarbon fuels at high temperatures and pressures – fitting of a mathematical model. Combust. Flame, 30:45–60, 1977.CrossRefGoogle Scholar
  23. 23.
    J.B. Heywood. Internal Combustion Engine Fundamentals. McGraw-Hill, New York, 1988.Google Scholar
  24. 24.
    H. Hiroyasu and T. Kadota. Models for combustion and formation of nitric oxide and soot in direct injection diesel engines. SAE Paper 760129, 1976.Google Scholar
  25. 25.
    J. Inhelder, C. E. Frouzakis, and K. Boulouchos. A discussion of approaches for predicting end–gas autoignition in homogeneous charge engines. LVV Internal Report 93/20, ETHZ, 1993.Google Scholar
  26. 26.
    S.-C. Kong, Z. Han, and R. D. Reitz. The development and application of a diesel ignition and combustion model for multidimensional engine simulation. SAE Paper 950278, 1995.Google Scholar
  27. 27.
    S.-C. Kong and R. D. Reitz. Multidimensional modeling of diesel ignition and combustion using a multistep kinetics model. J. Eng. Gas Turbines Power, 115:781–789, 1993.CrossRefGoogle Scholar
  28. 28.
    K. K. Kuo. Principles of Combustion, 1st edn. Wiley, New York, 1989.Google Scholar
  29. 29.
    P. A. Libby and F. A. Williams. Turbulent Reacting Flows. Springer-Verlag, Berlin, 1980.zbMATHGoogle Scholar
  30. 30.
    P. A. Libby and F. A. Williams. Turbulent Reacting Flows. Academic, San Diego, 1994.zbMATHGoogle Scholar
  31. 31.
    B. F. Magnussen and B. H. Hjertager. On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion. In Sixteenth Symposium (International) on Combustion, pp. 719–729, The Combustion Institute, Pittsburgh, 1976.Google Scholar
  32. 32.
    U. C. Müller. Reduzierte Reaktionsmechanismen für die Zündung von n–Heptan und ISO–Oktan unter motorrelevanten Bedingungen. PhD thesis, RWTH, Aachen, 1993.Google Scholar
  33. 33.
    M. P. Musculus and C. J. Rutland. Coherent flamelet modeling of diesel engine combustion. Combust. Sci. Technol., 104:295–337, 1995.Google Scholar
  34. 34.
    J. Nagle and R. F. Strickland-Constable. Oxidation of carbon between 1000–2000 C. In Proceedings of the Fifth Carbon Conference, vol. 1, pp. 154. Pergammon Press, 1962.Google Scholar
  35. 35.
    N. Peters. Laminar diffusion flamelet models in non-premixed turbulent combustion. Prog. Energy Combust. Sci., 10:319–339, 1984.CrossRefGoogle Scholar
  36. 36.
    N. Peters. Laminar flamelet concepts in turbulent combustion. In Twenty-First Symposium (International) on Combustion, pp. 1231–1250, The Combustion Institute, Pittsburgh, 1986.Google Scholar
  37. 37.
    N. Peters. Turbulent Combustion. Cambridge University Press, Cambridge, 2000.zbMATHCrossRefGoogle Scholar
  38. 38.
    M. J. Pilling, S. H. Robertson, and P. W. Seakins. Elementary radical reactions and autoignition. J. Chem. Soc. Faraday Trans., 91:4179–4188, 1995.CrossRefGoogle Scholar
  39. 39.
    H. Pitsch, H. Barth, and N. Peters. Three-dimensional modeling of NOx and soot formation in DI diesel engines using detailed chemistry based on the interactive flamelet approach. SAE Paper 962057, 1996.Google Scholar
  40. 40.
    H. Pitsch, Y. P. Wan, and N. Peters. Numerical investigation of soot formation and oxidation under diesel engine conditions. SAE Paper 952357, 1995.Google Scholar
  41. 41.
    S. B. Pope. PDF methods for turbulent reactive flows. Prog. Energy Combust. Sci., 11:119–192, 1985.MathSciNetGoogle Scholar
  42. 42.
    U. Reuter. Kammerversuche zur Strahlausbreitung und Zündung bei dieselmotorischer Einspritzung. Ph.D. thesis, RWTH, Aachen, 1989.Google Scholar
  43. 43.
    D. B. Spalding. In Thirteenth Symposium (International) on Combustion, pp. 649–657, The Combustion Institute, Pittsburgh, 1971.Google Scholar
  44. 44.
    G. Stiesch. Modeling Engine Spray and Combustion Processes. Springer-Verlag, Berlin, 2003.Google Scholar
  45. 45.
    F. X. Tanner. Validation of an auto-ignition model based on a transport equation of a characteristic ignition progress variable. In Proceedings of the 15th ILASS-Americas Annual Conference, pp. 98–102, Madison, May 2002.Google Scholar
  46. 46.
    F. X. Tanner, M. Brunner, and G. Weisser. A computational investigation of water injection strategies for nitric oxide reduction in large-bore DI diesel engines. SAE Paper 2001-01-1069, 2001.Google Scholar
  47. 47.
    F. X. Tanner and R. D. Reitz. The spray-induced flow and its effect on the turbulent characteristic combustion time in DI diesel engines. Atomization Sprays, 12(1–3):187–208, 2002.CrossRefGoogle Scholar
  48. 48.
    F. X. Tanner, G. S. Zhu, and R. D. Reitz. A non-equilibrium turbulence dissipation correction and its influence on pollution predictions for DI diesel engines. J. Eng. Gas Turbines Power, 125(2):534–540, 2003.CrossRefGoogle Scholar
  49. 49.
    F. X. Tanner and S. Srinivasan. Optimization of an asynchronous fuel injection system in diesel engines by means of a micro-genetic algorithm and an adaptive gradient method. SAE Paper 2008-01-0925, 2008.Google Scholar
  50. 50.
    F. X. Tanner and S. Srinivasan. CFD-based optimization of fuel injection strategies in a diesel engine using an adaptive gradient method. J. Appl. Math. Model., 33:1366–1385, 2009.zbMATHCrossRefMathSciNetGoogle Scholar
  51. 51.
    D. Veynante and L. Vervisch. Turbulent combustion modeling. Prog. Energy Combust. Sci., 28:193–266, 2002.CrossRefGoogle Scholar
  52. 52.
    J. Warnatz, U. Maas, and Dibble R. W. Combustion: Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation, 3rd edn. Springer-Verlag, Berlin, 2001.zbMATHGoogle Scholar
  53. 53.
    G. Weisser. Modelling of combustion and nitric oxide formation for medium-speed DI diesel engines: zero and three-dimensional approaches. Ph.D. thesis, Swiss Federal Institute of Technology (ETH), Diss. ETH Nr. 14465, 2001.Google Scholar
  54. 54.
    G. Weisser, F. X. Tanner, and K. Boulouchos. Modeling of ignition and early flame development with respect to large diesel engine simulation. SAE Trans.: J. Fuels Lubricants, 107(4):802–811, 1999.Google Scholar
  55. 55.
    C. K. Westbrook and F. L. Dryer. Simplified reaction mechanisms for the oxidation of hydrocarbon fuels in flames. Combust. Sci. Technol., 27:31–45, 1981.CrossRefGoogle Scholar
  56. 56.
    F. A. Williams. Combustion Theory, 2nd edn. Addison-Wesley, Redwood City, 1985.Google Scholar
  57. 57.
    Y. B. Zeldovich. The oxidation of nitrogen in combustion and explosions. Acta Physicochimica, USSR, 21:577–628, 1946.Google Scholar

Copyright information

© Springer US 2011

Authors and Affiliations

  1. 1.Department of Mathematical SciencesMichigan Technological UniversityHoughtonUSA

Personalised recommendations