Evaporating Sprays

  • F. X. TannerEmail author


Evaporation of multi-component liquid droplets is reviewed, and modeling approaches of various degrees of sophistication are discussed. First, the evaporation of a single droplet is considered from a general point of view by means of the conservation equations for mass, species and energy of the liquid and gas phases. Subsequently, additional assumptions and simplifications are discussed which lead to simpler evaporation models suitable for use in CFD spray calculations. In particular, the heat and mass transfer for forced and non-forced convection is expressed in terms of the Nusselt and Sherwood numbers. Finally, an evaporation model for sprays that is widely used in today’s CFD codes is presented.


Dufour effect Evaporation Frössling correlation Heat transfer Latent heat Mass transfer Nusselt number Ranz-Marshall correlation Soret effect Stefan flow 


  1. 1.
    J. Abraham and V. Magi. A model for multicomponent droplet vaporization in sprays. SAE Paper 980511, 1998.Google Scholar
  2. 2.
    B. Abramzon and Sirignano. Droplet vaporization model for spray combustion calculations. International Journal of Heat and Mass Transfer, 32(9):1605–1618, 1989.CrossRefGoogle Scholar
  3. 3.
    A. A. Amsden, P. J. O’Rourke, and T. D. Butler. KIVA II: A computer program for chemically reactive flows with sprays. Technical Report LA-11560-MS, Los Alamos National Laboratory, May 1989.Google Scholar
  4. 4.
    Y. Aouina, E. Gutheil, U. Maas, U. Riedel, and J. Warnatz. Mathematical modeling of droplet heating, vaporization, and ignition including detailed chemistry. Combustion Science and Technology, 173:1–29, 2001.CrossRefGoogle Scholar
  5. 5.
    N. S. Ayoub and R. D. Reitz. Multidimensional computation of multicomponent spray vaporization and combustion. SAE Paper 950285, 1995.Google Scholar
  6. 6.
    J. Bellan and K. Harstad. The details of convective evaporation of dense and dilute clusters of droplets. International Journal of Heat and Mass Transfer, 30:1083, 1987.CrossRefGoogle Scholar
  7. 7.
    G. Brenn, L. J. Deviprasath, and F. Durst. Computations and experiments on the evaporation of multicomponent droplets. In Proceedings of the Ninth International Conference on Liquid Atomization & Spray Systems, Sorrento, July 2003. CD-ROM Publication.Google Scholar
  8. 8.
    R. Byron Bird, W. E. Stewart, and E. N. Lightfoot. Transport Phenomena. Wiley, New York, second edition, 2002.Google Scholar
  9. 9.
    L. Consolini, S. K. Aggarwal, and S. Murad. A molecular dynamics simulation of droplet evaporation. International Journal of Heat and Mass Transfer, 46(10):3179–3188, 2003.zbMATHCrossRefGoogle Scholar
  10. 10.
    C. T. Crowe, M. Sommerfeld, and Y. Tsuji. Multiphase Flows With Droplets and Particles. CRC Press, New York, 1998.Google Scholar
  11. 11.
    I. Glassman. Combustion. Academic, San Diego, third edition, 1996.Google Scholar
  12. 12.
    T. B. Gradinger. Spray Modeling with Application to Fuel-Air Premixing. PhD thesis, ETH Zurich, Diss. ETH Nr. 13497, 2000.Google Scholar
  13. 13.
    J. B. Heywood. Engine combustion modeling – an overview. In J. N. Mattavi and C. A. Amann, eds., Combustion Modeling in Reciprocating Engines. Plenum Press, New York, 1980.Google Scholar
  14. 14.
    F. P. Incropera and D. P. DeWitt. Introduction to Heat Transfer. Wiley, New York, fourth edition, 2002.Google Scholar
  15. 15.
    K. K. Kuo. Principles of Combustion. Wiley, New York, first edition, 1989.Google Scholar
  16. 16.
    A. H. Lefebvre. Atomization and Sprays. Hemisphere Publishing Corporation, Bristol, first edition, 1989.Google Scholar
  17. 17.
    A. M. Lippert and R. D. Reitz. Modeling of multicomponent fuels using continuous distributions with applications to droplet evaporation and sprays. SAE Paper 972882, 1997.Google Scholar
  18. 18.
    S. Ohe. Vapor-Liquid Equilibrium at High Pressure. Elsevier, New York, 1st edn., 1990.Google Scholar
  19. 19.
    S. Pagel, G. Stiesch, and G. P. Merker. Modeling the evaporation of a multicomponent fuel. In Proceedings of 12th International Heat Transfer Conference, pp. 899–904, Grenoble, 2002.Google Scholar
  20. 20.
    W. E. Ranz and W. R. Marshall. Evaporation from drops (parts I and II). Chemical Engineering Progress, 48:141–146, 173–180, 1952.Google Scholar
  21. 21.
    M. Renksizbulut, M. Bussmann, and X. Li. A droplet vaporization model for spray calculations. Particle & Particle Systems Characterization, 9:59–65, 1992.CrossRefGoogle Scholar
  22. 22.
    M. Renksizbulut, R. Nafziger, and X. Li. A mass transfer correlation for droplet evaporation in high-temperature flows. Chemical Engineering Science, 46(9):2351–2358, 1991.CrossRefGoogle Scholar
  23. 23.
    M. Renksizbulut and M. C. Yuen. Experimental study of droplet evaporation in a high-temperature air stream. Journal of Heat Transfer, 105:384–388, 1983.CrossRefGoogle Scholar
  24. 24.
    S. S. Sazhin. Advanced models of fuel droplet heating and evaporation. Progress in Energy and Combustion Science, 32:162–214, 2006.CrossRefGoogle Scholar
  25. 25.
    W. A. Sirignano. Fluid Dynamics and Transport of Droplets and Sprays. Cambridge University Press, New York, 1999.Google Scholar
  26. 26.
    D. B. Spalding. The combustion of liquid fuels. In Fourth Symposium (International) on Combustion, pp. 847–864, Williams and Wilkins, Baltimore, 1953.Google Scholar
  27. 27.
    D. B. Spalding. Some Fundamentals of Combustion. Butterworth, London, 1955.Google Scholar
  28. 28.
    G. Stiesch. Modeling Engine Spray and Combustion Processes. Springer, Berlin, 2003.Google Scholar
  29. 29.
    J. H. Walther and P. Koumoutsakos. Molecular dynamics simulation of nanodroplet evaporation. Journal of Heat Transfer, 123(4):741–748, 2001.CrossRefGoogle Scholar
  30. 30.
    F. A. Williams. Spray combustion and atomization. Physics of Fluids, 1(6):541–545, 1958.zbMATHCrossRefGoogle Scholar
  31. 31.
    F. A. Williams. Combustion Theory. Benjamin/Cummings Publishing, Menlo Park, second edition, 1985.Google Scholar
  32. 32.
    K. Yasuoka and M. Matsumoto. Molecular dynamics of homogeneous nucleation in the vapor phase. I. Lennard-Jones fluid. Journal of Chemical Physics, 109:8451, 1998.CrossRefGoogle Scholar
  33. 33.
    K. Yasuoka and M. Matsumoto. Molecular dynamics of homogeneous nucleation in the vapor phase. II. water. Journal of Chemical Physics, 109:8464, 1998.Google Scholar
  34. 34.
    G. S. Zhu, R. D. Reitz, J. Xin, and T. Takabayashi. Characteristics of vaporizing continuous multi-component fuel sprays in a port fuel injection gasoline engine. SAE Paper 2001-01-1231, 2001.Google Scholar

Copyright information

© Springer US 2011

Authors and Affiliations

  1. 1.Department of Mathematical SciencesMichigan Technological UniversityHoughtonUSA

Personalised recommendations