Skip to main content

Supercritical and Transcritical Injection

  • Chapter
  • First Online:
Handbook of Atomization and Sprays

Abstract

A supercritical fluid is defined as one that is above its thermodynamic critical point, as identified by the critical pressure (p c) and critical temperature (T c). Supercritical fluid behavior can be peculiar because of the variation of thermophysical properties such as density and specific heat near and at the critical point. Supercritical fluids have some properties similar to liquids (e.g., density), and some properties that are comparable to those of gases (e.g., viscosity). Thus, they cannot be considered either a liquid or a gas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 469.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 599.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Segal, C. & Polikhov, S. (2008). Subcritical to supercritical mixing. Phys. Fluids, 20, 052101.

    Article  Google Scholar 

  2. Newman, J. & Brzustowski, T. (1971). Behavior of a liquid jet near the thermodynamic critical region. AIAA J., 9, 1595–1602.

    Article  Google Scholar 

  3. Mayer, W., Schik, A., Talley, D., &Woodward, R. (1998). Atomization and breakup of cryogenic propellants under high-pressure subcritical and supercritical conditions. J. Prop. Power, 14, 835–842.

    Article  Google Scholar 

  4. Woodward, R. & Talley, D. (1996). Raman imaging of transcritical cryogenic propellants, AIAA 34th Aerospace Sciences Meeting and Exhibit, Reno, IV. AIAA-1996-468.

    Google Scholar 

  5. Mayer, W., Ivancic, B., Schik, A., &Hornung, U. (2001). Propellant atomization and ignition phenomena in liquid oxygen/gaseous hydrogen rocket combustors. J. Prop. Power, 17, 794–799.

    Article  Google Scholar 

  6. Chehroudi, B., Talley, D., & Coy, E. (2002). Visual characteristics and initial growth rates of round cryogenic jets at subcritical and supercritical pressures. Phys. Fluids, 14, 850–861.

    Article  Google Scholar 

  7. Barata, J., Gokalp, I., &Silva, A. (2003). Numerical study of cryogenic jets under supercritical conditions. J. Prop. Power, 19, 142–147.

    Article  Google Scholar 

  8. Branam, R. &Mayer, W. (2003). Characterization of cryogenic injection at supercritical pressure. J. Prop. Power, 19, 342–355.

    Article  Google Scholar 

  9. Zong, N. & Yang, V. (2006). Cryogenic fluid jets and mixing layers in transcritical and supercritical environments. Comb. Sci. Tech., 178, 193–227.

    Article  Google Scholar 

  10. Chehroudi, B., Cohn, R., &Talley, D. (2002). Cryogenic shear layers: experiments and phenomenological modeling of the initial growth rate under subcritical and supercritical conditions. Int. J. Heat Mass Transfer, 23, 554–563.

    Google Scholar 

  11. Zong, N., Meng, H., Hsieh, S., & Yang, V. (2004). A numerical study of cryogenic fluid injection and mixing under supercritical conditions. Phys. Fluids, 16, 4248–4261.

    Article  Google Scholar 

  12. Oschwald, M. & Micci, M. (2002). Spreading angle and centerline variation of density of supercritical nitrogen jets. Atom. Sprays, 11, 91–106.

    Article  Google Scholar 

  13. Mayer, W. & Telaar, J. (2002). Investigation of breakup of turbulent cryogenic variable-density jets. Atom. Sprays, 12, 651–666.

    Article  Google Scholar 

  14. Oschwald, M. & Schik, A. (1999). Supercritical nitrogen free jet investigated by spontaneous Raman scattering. Exp. Fluids, 27, 497–506.

    Article  Google Scholar 

  15. Mayer, W., Telaar, J., Branam, R., Schneider, G., & Hussong, J. (2003). Raman measurements of cryogenic injection at supercritical pressure. Heat Mass Transfer, 39, 709–719.

    Article  Google Scholar 

  16. Chen, L. Heat transfer, fouling and combustion of supercritical fuels. Def. Tech. Info. Center, Report # 940321.

    Google Scholar 

  17. Doungthip, T., Ervin, J., Williams, T., &Bento, J. (2002). Studies of injection of jet fuel at supercritical conditions, Ind. Eng. Chem. Res., 41, 5856–5866.

    Article  Google Scholar 

  18. Wakashima, Y. & Umemura, A. (1999). Linear stability analysis of axisymmetric fuel jet issued into supercritical ambient. JSME J. Ser. B, 42, 539–546.

    Google Scholar 

  19. Zeaton, G., Crook, L., Guildenbecher, D., &Sojka, P. E. (2005). An experimental study of supercritical fluid jets. Proceedings of the 19th European Conference on Liquid Atomization and Spray System, Toronto, Ontario, Canada.

    Google Scholar 

  20. Zong, N. & Yang, V. (2004). Dynamics of simplex swirl injectors for cryogenic propellants at supercritical conditions. 42nd AIAA Aerospace Sciences Meeting and Exhibit, Reno, IV. AIAA 2004–1332.

    Google Scholar 

  21. Chehroudi, B., Cohn, R., Talley, D., & Badakhshan, A. (2000). Raman scattering measurements in the initial region of sub- and supercritical jets. 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Huntsville, AL. AIAA 2000–3392.

    Google Scholar 

  22. Rachedi, R., Crook, L., &Sojka, P. E. (2007). A study of supercritical fuel injection. Proceedings of the ASME IMECE, Seattle, WA, pp. 837–845.

    Google Scholar 

  23. Seebald, P. &Sojka, P. E. (2008). An experimental study of transcritical CO2 injection, ILASS-Europe 2008 Conference, Italy. ILASS08-A055.

    Google Scholar 

  24. Wu, P., Chen, T., Nejad, A., &Carter, C. (1996). Injection of supercritical ethylene in nitrogen. J. Prop. Power, 12, 770–777.

    Article  Google Scholar 

  25. Wu, P., Shahnam, M., Kirkendall, K., Carter, C., &Nejad, A. (1999). Expansion and mixing processes of underexpanded supercritical fuel jets injected into superheated conditions, J. Prop. Power 15, 642–649.

    Article  Google Scholar 

  26. Lin, K., Cox-Stouffer, S., &Jackson, T. (2006). Structures and phase transition processes of supercritical methane/ethylene mixtures injected into a subcritical environment. Comb. Sci. Tech., 178, 129–160.

    Article  Google Scholar 

  27. Bellan, J. (2006). Modeling and analysis of turbulent supercritical mixing. Comb. Sci. Tech., 178, 253–281.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. E. Sojka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer US

About this chapter

Cite this chapter

Seebald, P., Sojka, P.E. (2011). Supercritical and Transcritical Injection. In: Ashgriz, N. (eds) Handbook of Atomization and Sprays. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7264-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7264-4_11

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-7263-7

  • Online ISBN: 978-1-4419-7264-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics