Skip to main content

Capillary Instability of Free Liquid Jets

  • Chapter
  • First Online:
Handbook of Atomization and Sprays

Abstract

This chapter deals with capillary instability of straight free liquid jets moving in air. It begins with linear stability theory for small perturbations of Newtonian liquid jets and discusses the unstable modes, characteristic growth rates, temporal and spatial instabilities and their underlying physical mechanisms. The linear theory also provides an estimate of the main droplet size emerging from capillary breakup. Formation of satellite modes is treated in the framework of either asymptotic methods or direct numerical simulations. Then, such additional effects like thermocapillarity, or swirl are taken into account. In addition, quasi-one-dimensional approach for description of capillary breakup is introduced and illustrated in detail for Newtonian and rheologically complex liquid jets (pseudoplastic, dilatant, and viscoelastic polymeric liquids).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 469.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 599.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bidone, G. Experiences sur la forme et sur la direction des veines et des courants d’eau lances par diverses ouvertures. Imprimerie Royale, Turin, pp. 1–136 (1829).

    Google Scholar 

  2. Savart, F. Memoire sur la constitution des veines liquides lancees par des orifices circulaires en mince paroi. Ann. Chim. Phys. 53, 337–386 (1833).

    Google Scholar 

  3. Plateau, J. Statique experimentale et theorique des liquids soumis aux seules forces moleculaires. Cited by Lord Rayleigh, Theory of Sound, Vol. II, p. 363, 1945. New York: Dover (1873).

    Google Scholar 

  4. Rayleigh, W.S. On the instability of jets. Proc. London Math. Soc. 10, 4–13 (1879).

    Article  Google Scholar 

  5. Rayleigh, W. S. On the instability of jets. Proc. London Math. Soc. 4, 10 (1878).

    Google Scholar 

  6. Rayleigh, W.S. Further observations upon liquid jets. Proc. London Math. Soc. 34, 130–145 (1882).

    Article  Google Scholar 

  7. Rayleigh, W.S. Theory of Sound, 2nd edn, Vol. 2. London: Macmillan (1896). Reprinted in 1945, New York: Dover, 504 pp.

    MATH  Google Scholar 

  8. Magnus, G. Hydraulische Untersuchungen. Anne. Phys. Chem. 95, 1–59 (1855).

    Article  Google Scholar 

  9. Boussinesq. J. Mem. Acad. Sci. Paris 23, 639 (1877).

    Google Scholar 

  10. Weber, C. On the breakdown of a fluid jet, Zum Zerfall eines Flussigkeitsstrahles. Z. Angew. Math. und Mech. 11, 136–154 (1931).

    Article  MATH  Google Scholar 

  11. Nayfeh, A. H. Non-linear stability of a liquid jet. Phys. Fluids 13, 841–847 (1970).

    Article  MATH  Google Scholar 

  12. Nayfeh, A. H. & Hassan, S.D. The method of multiple scales and nonlinear dispersive waves. J. Fluid Mech. 48, 463–475 (1971).

    Article  MathSciNet  MATH  Google Scholar 

  13. Keller, J. B., Rubinow, S. I., & Tu, Y. O. Spatial instability of a jet. Phys. Fluids 16, 2052–2055 (1973).

    Article  Google Scholar 

  14. Bogy, D. B. Drop formation in a circular liquid jet. Annu. Rev. Fluid Mech. 11, 207–228 (1979).

    Article  Google Scholar 

  15. Leib, S. J. & Goldstein, M. E. The generation of capillary instabilities on a liquid jet. J. Fluid Mech. 168, 479–500 (1986).

    Article  MATH  Google Scholar 

  16. Haenlein, A. Disintegration of a liquid jet. NACA-TM-659 (1931).

    Google Scholar 

  17. Donnelly, R. J. & Glaberson. W. Experiments on the capillary instability of a jet. Proc. R. Soc. Lond. A 209. 547–556 (1966).

    Google Scholar 

  18. Goedde, E. F. & Yuen, M. C. Experiments on liquid jet instability. J. Fluid Mech. 40, 495–511 (1970).

    Article  Google Scholar 

  19. McCarthy, M. J. & Molloy, N. A. Review of’ stability of liquid jets and the influence of nozzle design. Chem. Eng. J. 7, 1–20 (1974).

    Google Scholar 

  20. Sirignano, W. A. & Mehring, C. Review of theory of distortion and disintegration of liquid streams. Prog. Energy Combust. Sci. 26. 609–655 (2000).

    Article  Google Scholar 

  21. Vassallo, P. & Ashgriz, N. Satellite formation and merging in liquid jet breakup. Proc. R. Soc. Lond. A 433, 269–286 (1991).

    Article  MATH  Google Scholar 

  22. Grant, R. P. & Middleman, S. Newtonian jet stability. AIChE J. 12, 669–678 (1966).

    Article  Google Scholar 

  23. Chandrasekhar, S. Hydrodynamic and Hydromagnetic Stability. Oxford: Claredon (1961).

    MATH  Google Scholar 

  24. Sterling, A. M. & Sleicher, C. A. The instability of capillary jets. J. Fluid Mech. 68(3), 477–495 (1975).

    Article  MATH  Google Scholar 

  25. Reitz, R. D. & Bracco, F. V. Mechanism of atomization of a liquid jet. Phys. Fluids 25(10), 1730–1742 (1982).

    Article  MATH  Google Scholar 

  26. Yoon, S. S. & Heister, S. D. Categorizing linear theories for atomizing round jets, Atomization and Sprays (SCI), 13(5&6), pp. 499–516 (2003).

    Article  Google Scholar 

  27. Batchelor, G. K. An Introduction to Fluid Dynamics. New York: Cambridge University Press (1999), pp. 511–517, 521–526.

    Google Scholar 

  28. Gordillo, J. M., Perez-Saborid, M., & Ganan-Calvo, A. M. Linear stability of co-flowing liquid–gas jets. J. Fluid Mech. 448, 23–51 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  29. Yarin, A. L. Free Liquid Jets and Films: Hydrodynamics and Rheology. Harlow/New York: Longman/Wiley (1993).

    MATH  Google Scholar 

  30. Lee, H. C. Drop formation in a liquid jet. IBM J. Res. Dev. 18, 364–369 (1974).

    Article  MATH  Google Scholar 

  31. Kase, S. & Matsuo, T. Studies on melt spinning. I. Fundamental equations on the dynamics of melt spinning. J. Polym. Sci., Pt. A 3, 2541–2554 (1965).

    Google Scholar 

  32. Matovich, M. A. & Pearson, J. R. A. Spinning a molten threadline. Steady-state viscous flows. Ind. Eng. Chem. Fundam. 8, 512–520 (1969).

    Article  Google Scholar 

  33. Eggers, J. Nonlinear dynamics and breakup of free-surface flows. Rev. Mod. Phys. 69, 865–929 (1997).

    Article  Google Scholar 

  34. Eggers, J. & Villermaux, E. Physics of liquid jets. Rep. Prog. Phys. 71, 036601 (2008).

    Article  Google Scholar 

  35. Bechtel, S. E., Cao, J. Z., & Forest, M. G. Practical application of a higher-order perturbation-theory for slender viscoelastic jets and fibers. J. Non-Newton. Fluid Mech. 41, 201–273 (1992).

    Article  MATH  Google Scholar 

  36. Pimbley, W. T. Drop formation from a liquid jet: A linear one-dimensional analysis considered as boundary value problem. IBM J. Res. Dev. 20, 148–156 (1976).

    Article  MATH  Google Scholar 

  37. Green, A. E. & Laws, N. Ideal fluid jets. Int. J. Eng. Sci. 6, 317–328 (1968).

    Article  MATH  Google Scholar 

  38. Green, A. E. On the nonlinear behavior of fluid jets. Int. J. Eng. Sci. 14, 49–63 (1976).

    Article  MATH  Google Scholar 

  39. Naghdi, P. M. On the applicability of directed fluid jets to Newtonian and non-Newtonian flows. J. Non-Newton. Fluid Mech. 5, 233–265 (1979).

    Article  MATH  Google Scholar 

  40. Caulk, D. A. & Naghdi, P. M. The influence of twist on the motion of straight elliptical jets. Arch. Ration. Mech. Anal. 69, 1–30 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  41. Bogy, D. B. Use of one-dimensional Cosserat theory to study instability of a viscous liquid jet. Phys. Fluids 21, 190–197 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  42. Lopez-Herrera, J. M., Ganan-Calvo, A. M., & Perez-Saboird, M. One-dimensional simulation of the breakup of capillary jets of conducting liquids. Application to EHD spraying. J. Aerosol Sci. 30, 895–912 (1999).

    Article  Google Scholar 

  43. Barrero, A. & Loscertales, I. G. Micro- and nanoparticles via capillary flows. Annu. Rev. Fluid Mech. 39, 89–106 (2007).

    Article  Google Scholar 

  44. Fernandez de la Mora, J. The fluid dynamics of Taylor cone. Annu. Rev. Fluid Mech. 39, 217–243 (2007).

    Article  MathSciNet  Google Scholar 

  45. Leib, S. J. & Goldstein, M. E. Convective and absolute instability of a viscous liquid jet. Phys. Fluids 29, 952–954 (1986).

    Article  Google Scholar 

  46. Lin, P. S. & Kang, D. J. Atomization of a liquid jet. Phys. Fluids 30, 2000–2006 (1987).

    Article  Google Scholar 

  47. Lin, S. P. & Lian, Z. W. Absolute and convective instability of a viscous liquid jet surrounded by a viscous gas in a vertical pipe. Phys. Fluids. A 5, 771–773 (1993).

    Article  Google Scholar 

  48. Zhou, Z. W. & Lin, S. P. Effects of compressibility on the atomization of liquid jets. J. Propul. Power 8, 736–740 (1992).

    Article  Google Scholar 

  49. Lin, S. P. Regimes of jet breakup and breakup mechanisms (mathematical aspects). In Recent Advances in Spray Combustion: Spray Atomization and Drop Burning Phenomena, Vol. 1, ed. K.K. Kuo. Reston: AIAA Inc. (1996), pp. 137–160.

    Google Scholar 

  50. Lin, S. P. & Lian, Z. W. Absolute instability of a liquid jet in a gas. Phys. Fluids A 1(3), 490–493 (1980).

    Article  Google Scholar 

  51. Lin, S. P. & Chen, J. N. Roles played by the interfacial shears in the instability mechanism of a viscous liquid jet surrounded by a viscous gas in a pipe. J. Fluid Mech. 376, 37–51 (1998).

    Article  MATH  Google Scholar 

  52. Vihinen, I., Honohan, A., & Lin, S. P. Absolute and convective instability of a viscous jet in microgravity. Phys. Fluids 9, 3117–3119 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  53. O’Donnel, B., Chen, J. N., & Lin, S. P. Transition from convective to absolute instability in a liquid jet. Phys. Fluids 13, 2732–2734 (2001).

    Article  Google Scholar 

  54. Lin, S. P. & Reitz, R. D. Drop and spray formation from a liquid jet. Ann. Rev. Fluid Mech. 30, 85–105 (1998).

    Article  MathSciNet  Google Scholar 

  55. Lin, S. P. Breakup of Liquid Sheets and Jets. Cambridge: Cambridge University Press, 2003.

    Book  MATH  Google Scholar 

  56. Gaster, M. Growth of disturbances in both space and time. J. Fluid Mech. 11, 723–727 (1968).

    Google Scholar 

  57. Lin, S. P. & Woods, D. R. Tailored liquid jets. Atom. Sprays 18, 363–374 (2008).

    Article  Google Scholar 

  58. Chinn, J. J. An appraisal of swirl atomizer inviscid internal flow analysis, Part 2, Inviscid spray cone angle and comparison of inviscid method with experimental results for discharge coefficient, air core radius, and spray angle. Atom. Sprays 19, 283–308 (2009).

    Article  Google Scholar 

  59. Craig, L., Barlow, N., Partel, S., Kanya, B., & Lin, S. P. Optimal and non optimal flows in a swirl atomizer. J. Int. Inst. Liquid Atom. Spray Syst. 13, 113–1124 (2009).

    Google Scholar 

  60. Lafrance, P. & Ritter, R. C. Capillary breakup of a liquid jet with a random initial perturbation. Trans ASME: J. Appl. Mech. 44, 385–388 (1977).

    Article  Google Scholar 

  61. Pimbley, W. T. & Lee, H.C. Satellite droplet formation in a liquid jet. IBM J. Res. Dev. 21, 21–30 (1977).

    Article  Google Scholar 

  62. Scarlett, B. & Parkin, C. S. Droplet production on controlled jet breakup. Chem. Eng. J. 13, 127–141 (1977).

    Article  Google Scholar 

  63. Yuen, M. C. Non-linear capillary instability of a liquid jet. J. Fluid Mech. 33, 151–163 (1968).

    Article  MATH  Google Scholar 

  64. Kakutani, T., Inoue, Y., & Kan, T. Nonlinear capillary waves on the surface of liquid column. J. Phys. Soc. Jpn. 37, 529–538 (1974).

    Article  Google Scholar 

  65. Lafrance, P. Nonlinear breakup of a liquid jet. Phys. Fluids 17, 1913–1914 (1974).

    Article  Google Scholar 

  66. Lafrance, P. Nonlinear breakup of a laminar liquid jet. Phys. Fluids 18, 428–432 (1975).

    Article  MATH  Google Scholar 

  67. Bogy, D. B. Break-up of a liquid jet: second perturbation solution for one-dimensional Cosserat theory. IBM J. Res. Dev. 23, 87–92 (1979).

    Article  MATH  Google Scholar 

  68. Bogy, D. B. Break-up of a liquid jet: Third perturbation Cosserat solution. Phys. Fluids 22, 224–230 (1979).

    Article  MATH  Google Scholar 

  69. Bogy, D. B. Wave propagation and instability in a circular semi-infinite liquid jet harmonically forced at the nozzle. Trans ASME: J. Appl. Mech. 45, 469–474 (1978).

    Article  MATH  Google Scholar 

  70. Taub, H. H. Investigation of nonlinear waves on liquid jets. Phys. Fluids 19, 1124–1129 (1976).

    Article  Google Scholar 

  71. Chaudhary, K. C. & Redekopp, L. G. The nonlinear capillary instability of a liquid jet. Part 1. Theory. J. Fluid Mech. 96, 257–274 (1980).

    Article  MATH  Google Scholar 

  72. Chaudhary, K. C. & Maxworthy, T. The nonlinear capillary instability of a liquid jet. Part 2. Experiments on jet behavior before droplet formation. J. Fluid Mech. 96, 275–286 (1980).

    Article  MATH  Google Scholar 

  73. Chaudhary, K. C. & Maxworthy, T. The nonlinear capillary instability of a liquid jet. Part 3. Experiments on satellite drop formation and control. J. Fluid Mech. 96, 287–298 (1980).

    Article  MATH  Google Scholar 

  74. Mansour, N. N. & Lundgren, T. S. Satellite formation in capillary jet breakup. Phys. Fluids A 2, 1141–1144 (1990).

    Article  Google Scholar 

  75. Ashgriz, N. & Mashayek, F. Temporal analysis of capillary jet breakup. J. Fluid Mech. 291, 163–190 (1995).

    Article  MATH  Google Scholar 

  76. Ambravaneswaran, B., Phillips, S. D., & Basaran, O. A. Theoretical analysis of dripping faucet. Phys. Rev. Lett. 85, 5332–5335 (2000).

    Article  Google Scholar 

  77. Basaran, O. A. & Suryo, R. The invisible jet. Nat. Phys. 3, 679–680 (2007).

    Article  Google Scholar 

  78. Bogy, D. B., Shine, S. J., & Talke, F. E. Finite difference solution of the Cosserat fluid jet equations. J. Comput. Phys. 38, 294–326 (1980).

    Article  MATH  Google Scholar 

  79. Eggers, J. Universal pinching of 3D axisymmetric free-surface flow. Phys. Rev. Lett. 72, 3458–3460 (1993).

    Article  Google Scholar 

  80. Brenner, M. P., Shi, X. D., & Nagel, S.R. Iterated instabilities during droplet fission. Phys. Rev. Lett. 73, 3391–3394 (1994).

    Article  Google Scholar 

  81. Eggers, J. Theory of drop formation. Phys. Fluids 7, 941–953 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  82. Papageorgiou, D. T. On the breakup of viscous liquid threads. Phys. Fluids 7, 1529–1544 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  83. Brenner, M. P., Lister, J., & Stone, H. A. Pinching threads, singularities and the number 0.0304. Phys. Fluids 8, 2827–2836 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  84. Brenner, M. P., Eggers, J., Joseph, K., Nagel, S. R., & Shi, X. D. Breakdown of scaling in droplet fission at high Reynolds number. Phys. Fluids 9, 1573–1590 (1997).

    Article  Google Scholar 

  85. Cline, H. E. & Anthony, T. R. The effects of harmonics on the capillary instability of liquid jets. J. Appl. Phys. 49 (6), 3203–3208 (1978).

    Article  Google Scholar 

  86. Rutland, D. F. & Jameson, G. J. Theoretical prediction of the sizes of drops formed in the breakup of capillary jets. Chem. Eng. Sci. 25(11-E), 1689–1698 (1970).

    Google Scholar 

  87. Hibling, J. & Heister, S. D. Droplet size control in liquid jet breakup. Phys. Fluids 8(6), 1574–1581 (1996).

    Article  Google Scholar 

  88. Orme, M. & Muntz, E. P. The manipulation of capillary stream breakup using amplitude-modulated disturbances: A pictorial and quantitative representation. Phys. Fluids A 2(7), 1124–1140 (1990).

    Article  Google Scholar 

  89. Orme, M., Willis, K., & Nguyen, T.-V. Droplet patterns from capillary stream breakup. Phys. Fluids A 5(1), 80–90 (1993).

    Article  Google Scholar 

  90. Bousfield, D. W., Keunings, R., Marrucci, G., & Denn, M. M. Nonlinear analysis of the surface tension driven breakup of viscoelastic filaments. J. Non-Newtonian Fluid Mech. 21, 79–97 (1986).

    Article  Google Scholar 

  91. Bousfield, D., Stockel, I. H., & Nanivadekar, C. K. The breakup of viscous jets with large velocity modulations. J. Fluid Mech. 218, 601–617 (1990).

    Article  Google Scholar 

  92. Huynh, H., Ashgriz, N., & Mashayek, F. Instability of a liquid jet subject to disturbances composed of two wave numbers. J. Fluid Mech. 320, 185–210 (1996).

    Article  MATH  Google Scholar 

  93. Spangler, C. A., Hibling, J. H., & Heister, S. D. Nonlinear modeling of jet atomization in the wind-induced regime. Phys. Fluids 7 (5), 964–971 (1995).

    Article  MATH  Google Scholar 

  94. Tjahjadi, M., Stone, H.A., & Ottino, J.M., Satellite and subsatellite formation in capillary breakup. J. Fluid Mech. 243, 297–317 (1992).

    Article  Google Scholar 

  95. Bauer, H. F. Free liquid surface response induced by fluctuations of thermal Marangoni convection. AIAA J. 22, 421–428 (1983).

    Article  Google Scholar 

  96. Xu, J. J. & Davis, S. H. Instability of capillary jets with thermocapillarity. J. Fluid Mech. 161, 1–26 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  97. Dijkstra, H. A. & Steen, P. H. Thermocapillary stabilization of the capillary breakup of an annular film of liquid. J. Fluid Mech. 229, 205–228 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  98. Mashayek, F. & Ashgriz, N. Nonlinear instability of liquid jets with thermocapillarity. J. Fluid Mech. 283, 97–123 (1995).

    Article  MATH  Google Scholar 

  99. Ostrach, S. Low-gravity fluid flows. Ann. Rev. Fluid Mech. 14, 13–345 (1982).

    Article  Google Scholar 

  100. Davis, S. H. Thermocapillary instabilities. Ann. Rev. Fluid Mech. 19, 403–435 (1987).

    Article  MATH  Google Scholar 

  101. Faidley, R. W. & Panton, R. L. Measurement of liquid jet instability induced by surface tension variations. Exp. Therm. Fluid Sci. 3, 383–387 (1990).

    Article  Google Scholar 

  102. Nahas, N. M. & Panton, R. L. Control of surface tension flows-Instability of a liquid jet. J. Fluids Eng. Trans. ASME 112, 3, 296–301 (1990).

    Article  Google Scholar 

  103. Fulnari, E. P. Temporal instability of viscous liquid microjets with spatially varying surface tension. J. Phys. A: Math. Gen. 38, 263–276 (2005).

    Article  Google Scholar 

  104. Saroka, M., Guo, Y., & Ashgriz, N. Nonlinear instability of an evaporating capillary jet. AIAA J. 39(9), 1728–1734 (September 2001).

    Article  Google Scholar 

  105. Ponstein, J. Instability of rotating cylindrical jets. Appl. Sci. Res. 8(6), 425–456 (1959).

    Article  MathSciNet  MATH  Google Scholar 

  106. Saffman, P. G. The number of waves on unstable vortex rings. J. Fluid Mech. 84(4), 625–639 (1978).

    Article  MathSciNet  Google Scholar 

  107. Entov, V. M., Kordonskii, V. I., Kuz’min, V. A., Shul’man, Z. P., & Yarin, A. L. Investigation of the decomposition of jets of rheologically complex liquids. J. Appl. Mech. Tech. Phys. 21, 365–371 (1980).

    Article  Google Scholar 

  108. Yarin, A. L., Zussman, E., Theron, S. A., Rahimi, S., Sobe, Z., & Hasan, D. Elongational behavior of gelled propellant stimulants. J. Rheol. 48, 101–116 (2004).

    Article  Google Scholar 

  109. Goldin, M., Pfeffer, R., & Shinnar, R. Break-up of a capillary jet of a non-Newtonian fluid having a yield stress. Chem. Eng. J. 4, 8–20 (1972).

    Article  Google Scholar 

  110. Goldin, M., Yerushalmi, J., Pfeffer, R., & Shinnar, R. Breakup of a laminar capillary jet of viscoelastic fluid. J. Fluid Mech. 38, 689–711 (1969).

    Article  Google Scholar 

  111. Entov, V. M. & Yarin, A. L. Influence of elastic stresses on the capillary breakup of jets of dilute polymer solutions. Fluid Dyn. 19, 21–29 (1984).

    Article  MATH  Google Scholar 

  112. Rubin, H. & Wharshavsky, M. A note on the breakup of viscoelastic liquid jets. Isr. J. Technol. 8, 285–288 (1970).

    Google Scholar 

  113. Gordon, M., Yerushalmi, J., & Shinnar, R. Instability of jets of non-Newtonian fluids. Trans. Soc. Rheol. 17, 303–324 (1973).

    Article  Google Scholar 

  114. Goren, S. & Gavis, J. Transverse wave motion on a thin capillary jet of a viscoelastic liquid. Phys. Fluids 4, 575–579 (1961).

    Article  MathSciNet  MATH  Google Scholar 

  115. Han, T., Yarin, A. L., & Reneker, D. H. Viscoelastic electrospun jets: initial stresses and elongational rheometry. Polymer 49, 1651–1658 (2008).

    Article  Google Scholar 

  116. Joseph, D. D. Fluid Dynamics of Viscoelastic Liquids. New York: Springer (1990).

    MATH  Google Scholar 

  117. Entov, V. M. & Kestenboim, Kh. S. Mechanics of fiber formation. Fluid Dyn. 22, 677–686 (1987).

    Article  MATH  Google Scholar 

  118. Reneker, D. H., Yarin, A. L., Zussman, E., & Xu, H. Electrospinning of nanofibers from polymer solutions and melts. Adv. Appl. Mech. 41, 43–195 (2007).

    Article  Google Scholar 

  119. Bazilevsky, A. V., Voronkov, S. I., Entov, V. M., & Rozhkov, A. N. Orientational effects in capillary breakup of jets and threads of dilute polymer solutions. Sov. Phys. Doklady 257, 336–339 (1981) (the English version in Vol. 26).

    Google Scholar 

  120. Stelter, M., Brenn, G., Yarin, A. L., Singh, R. P., & Durst, F. Validation and application of a novel elongational device for polymer solutions. J. Rheol. 44, 595–616 (2000).

    Article  Google Scholar 

  121. Schümmer, P. & Tebel, K. H. A new elongational rheometer for polymer solutions. J. Non-Newtonian Fluid Mech. 12, 331–347 (1983).

    Article  Google Scholar 

  122. Anna, S. L. & McKinley, G. H. Elasto-capillary thinning and breakup of model elastic liquids. J. Rheol. 45, 115–138 (2001).

    Article  Google Scholar 

  123. Kroesser, F. W. & Middleman, S. Viscoelastic jet stability. AIChE J. 15, 383–386 (1969).

    Article  Google Scholar 

  124. Rubin, H. Breakup of viscoelastic liquid jets. Isr. J. Technol. 9, 579–581 (1971).

    Google Scholar 

  125. Sagiv, A., Rubin, H., & Takserman-Krozer, R. On the breakup of cylindrical liquid jets. Isr. J. Technol. 11, 349–354 (1973).

    Google Scholar 

  126. Sagiv, A. & Takserman-Krozer, R. Capillary breakup of viscoelastic liquid jet of variable cross-section. Rheol. Acta 14, 420–426 (1975).

    Article  Google Scholar 

  127. Goren, S. L. & Gottlieb, M. Surface-tension-driven breakup of viscoelastic liquid threads. J. Fluid Mech. 120, 245–266 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  128. Lee, W. K., Yu, K. L., & Flumerfelt, R. W. Instability of stationary and uniformly moving cylindrical fluid bodies. Int. J. Multiphase Flow 7, 385–400 (1981).

    Article  MATH  Google Scholar 

  129. Chang, H. C., Demekhin, E. A., & Kalaidin, E. Iterated stretching of viscoelastic jets. Phys. Fluids 11, 1717–1737 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  130. Li, J. & Fontelos, M. A. Drop dynamics on the beads-on-string structure for viscoelastic jets: A numerical study. Phys. Fluids 15, 922–937 (2003).

    Article  Google Scholar 

  131. Clasen, C., Eggers, J., Fontelos, M. A., Li, J., & McKinley, G. H. The beads-on-string structure of viscoelastic threads. J. Fluid Mech. 556, 283–308 (2006).

    Article  MATH  Google Scholar 

  132. Oliveira, M. S. N. & McKinley, G. H. Iterated stretching and multiple beads-on-a-string phenomena in dilute solutions of highly extensible flexible polymers. Phys. Fluids 17, 071704 (2005).

    Article  Google Scholar 

  133. Renardy, M. Some comments on the surface-tension driven break-up (or lack of it) of viscoelastic jets. J. Non-Newton. Fluid Mech. 51, 97–107 (1994).

    Article  Google Scholar 

  134. Renardy, M. A numerical study of the asymptotic evolution and breakup of Newtonian and viscoelastic jets. J. Non-Newton. Fluid Mech. 59, 267–282 (1995).

    Article  Google Scholar 

  135. Bazilevsky, A. V., Entov, V. M., & Rozhkov, A. N. Breakup of an Oldroyd liquid bridge as a method for testing the rheological properties of polymer solutions. Polym. Sci. Ser. A 43, 716–726 (2001).

    Google Scholar 

  136. Ziabicki, A. Fundamentals of Fibre Formation. London: Wiley (1976).

    Google Scholar 

  137. Ziabicki, A. & Kawai, H. (editors). High-Speed Fiber Spinning. New York: Wiley (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Ashgriz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer US

About this chapter

Cite this chapter

Ashgriz, N., Yarin, A.L. (2011). Capillary Instability of Free Liquid Jets. In: Ashgriz, N. (eds) Handbook of Atomization and Sprays. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7264-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7264-4_1

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-7263-7

  • Online ISBN: 978-1-4419-7264-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics