Advertisement

Capillary Instability of Free Liquid Jets

  • N. AshgrizEmail author
  • A. L. Yarin
Chapter

Abstract

This chapter deals with capillary instability of straight free liquid jets moving in air. It begins with linear stability theory for small perturbations of Newtonian liquid jets and discusses the unstable modes, characteristic growth rates, temporal and spatial instabilities and their underlying physical mechanisms. The linear theory also provides an estimate of the main droplet size emerging from capillary breakup. Formation of satellite modes is treated in the framework of either asymptotic methods or direct numerical simulations. Then, such additional effects like thermocapillarity, or swirl are taken into account. In addition, quasi-one-dimensional approach for description of capillary breakup is introduced and illustrated in detail for Newtonian and rheologically complex liquid jets (pseudoplastic, dilatant, and viscoelastic polymeric liquids).

Keywords

Capillary instability of liquid jets Curvature Elongational rheology Free liquid jets Linear stability theory Nonlinear theory Quasi-one-dimensional equations Reynolds number Rheologically complex liquids (pseudoplastic, dilatant, and viscoelastic polymeric liquids) Satellite drops Small perturbations Spatial instability Surface tension Swirl Temporal instability Thermocapillarity Viscosity 

References

  1. 1.
    Bidone, G. Experiences sur la forme et sur la direction des veines et des courants d’eau lances par diverses ouvertures. Imprimerie Royale, Turin, pp. 1–136 (1829).Google Scholar
  2. 2.
    Savart, F. Memoire sur la constitution des veines liquides lancees par des orifices circulaires en mince paroi. Ann. Chim. Phys. 53, 337–386 (1833).Google Scholar
  3. 3.
    Plateau, J. Statique experimentale et theorique des liquids soumis aux seules forces moleculaires. Cited by Lord Rayleigh, Theory of Sound, Vol. II, p. 363, 1945. New York: Dover (1873).Google Scholar
  4. 4.
    Rayleigh, W.S. On the instability of jets. Proc. London Math. Soc. 10, 4–13 (1879).CrossRefGoogle Scholar
  5. 5.
    Rayleigh, W. S. On the instability of jets. Proc. London Math. Soc. 4, 10 (1878).Google Scholar
  6. 6.
    Rayleigh, W.S. Further observations upon liquid jets. Proc. London Math. Soc. 34, 130–145 (1882).CrossRefGoogle Scholar
  7. 7.
    Rayleigh, W.S. Theory of Sound, 2nd edn, Vol. 2. London: Macmillan (1896). Reprinted in 1945, New York: Dover, 504 pp.zbMATHGoogle Scholar
  8. 8.
    Magnus, G. Hydraulische Untersuchungen. Anne. Phys. Chem. 95, 1–59 (1855).CrossRefGoogle Scholar
  9. 9.
    Boussinesq. J. Mem. Acad. Sci. Paris 23, 639 (1877).Google Scholar
  10. 10.
    Weber, C. On the breakdown of a fluid jet, Zum Zerfall eines Flussigkeitsstrahles. Z. Angew. Math. und Mech. 11, 136–154 (1931).zbMATHCrossRefGoogle Scholar
  11. 11.
    Nayfeh, A. H. Non-linear stability of a liquid jet. Phys. Fluids 13, 841–847 (1970).zbMATHCrossRefGoogle Scholar
  12. 12.
    Nayfeh, A. H. & Hassan, S.D. The method of multiple scales and nonlinear dispersive waves. J. Fluid Mech. 48, 463–475 (1971).MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Keller, J. B., Rubinow, S. I., & Tu, Y. O. Spatial instability of a jet. Phys. Fluids 16, 2052–2055 (1973).CrossRefGoogle Scholar
  14. 14.
    Bogy, D. B. Drop formation in a circular liquid jet. Annu. Rev. Fluid Mech. 11, 207–228 (1979).CrossRefGoogle Scholar
  15. 15.
    Leib, S. J. & Goldstein, M. E. The generation of capillary instabilities on a liquid jet. J. Fluid Mech. 168, 479–500 (1986).zbMATHCrossRefGoogle Scholar
  16. 16.
    Haenlein, A. Disintegration of a liquid jet. NACA-TM-659 (1931).Google Scholar
  17. 17.
    Donnelly, R. J. & Glaberson. W. Experiments on the capillary instability of a jet. Proc. R. Soc. Lond. A 209. 547–556 (1966).Google Scholar
  18. 18.
    Goedde, E. F. & Yuen, M. C. Experiments on liquid jet instability. J. Fluid Mech. 40, 495–511 (1970).CrossRefGoogle Scholar
  19. 19.
    McCarthy, M. J. & Molloy, N. A. Review of’ stability of liquid jets and the influence of nozzle design. Chem. Eng. J. 7, 1–20 (1974).Google Scholar
  20. 20.
    Sirignano, W. A. & Mehring, C. Review of theory of distortion and disintegration of liquid streams. Prog. Energy Combust. Sci. 26. 609–655 (2000).CrossRefGoogle Scholar
  21. 21.
    Vassallo, P. & Ashgriz, N. Satellite formation and merging in liquid jet breakup. Proc. R. Soc. Lond. A 433, 269–286 (1991).zbMATHCrossRefGoogle Scholar
  22. 22.
    Grant, R. P. & Middleman, S. Newtonian jet stability. AIChE J. 12, 669–678 (1966).CrossRefGoogle Scholar
  23. 23.
    Chandrasekhar, S. Hydrodynamic and Hydromagnetic Stability. Oxford: Claredon (1961).zbMATHGoogle Scholar
  24. 24.
    Sterling, A. M. & Sleicher, C. A. The instability of capillary jets. J. Fluid Mech. 68(3), 477–495 (1975).zbMATHCrossRefGoogle Scholar
  25. 25.
    Reitz, R. D. & Bracco, F. V. Mechanism of atomization of a liquid jet. Phys. Fluids 25(10), 1730–1742 (1982).zbMATHCrossRefGoogle Scholar
  26. 26.
    Yoon, S. S. & Heister, S. D. Categorizing linear theories for atomizing round jets, Atomization and Sprays (SCI), 13(5&6), pp. 499–516 (2003).CrossRefGoogle Scholar
  27. 27.
    Batchelor, G. K. An Introduction to Fluid Dynamics. New York: Cambridge University Press (1999), pp. 511–517, 521–526.Google Scholar
  28. 28.
    Gordillo, J. M., Perez-Saborid, M., & Ganan-Calvo, A. M. Linear stability of co-flowing liquid–gas jets. J. Fluid Mech. 448, 23–51 (2001).MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Yarin, A. L. Free Liquid Jets and Films: Hydrodynamics and Rheology. Harlow/New York: Longman/Wiley (1993).zbMATHGoogle Scholar
  30. 30.
    Lee, H. C. Drop formation in a liquid jet. IBM J. Res. Dev. 18, 364–369 (1974).zbMATHCrossRefGoogle Scholar
  31. 31.
    Kase, S. & Matsuo, T. Studies on melt spinning. I. Fundamental equations on the dynamics of melt spinning. J. Polym. Sci., Pt. A 3, 2541–2554 (1965).Google Scholar
  32. 32.
    Matovich, M. A. & Pearson, J. R. A. Spinning a molten threadline. Steady-state viscous flows. Ind. Eng. Chem. Fundam. 8, 512–520 (1969).CrossRefGoogle Scholar
  33. 33.
    Eggers, J. Nonlinear dynamics and breakup of free-surface flows. Rev. Mod. Phys. 69, 865–929 (1997).CrossRefGoogle Scholar
  34. 34.
    Eggers, J. & Villermaux, E. Physics of liquid jets. Rep. Prog. Phys. 71, 036601 (2008).CrossRefGoogle Scholar
  35. 35.
    Bechtel, S. E., Cao, J. Z., & Forest, M. G. Practical application of a higher-order perturbation-theory for slender viscoelastic jets and fibers. J. Non-Newton. Fluid Mech. 41, 201–273 (1992).zbMATHCrossRefGoogle Scholar
  36. 36.
    Pimbley, W. T. Drop formation from a liquid jet: A linear one-dimensional analysis considered as boundary value problem. IBM J. Res. Dev. 20, 148–156 (1976).zbMATHCrossRefGoogle Scholar
  37. 37.
    Green, A. E. & Laws, N. Ideal fluid jets. Int. J. Eng. Sci. 6, 317–328 (1968).zbMATHCrossRefGoogle Scholar
  38. 38.
    Green, A. E. On the nonlinear behavior of fluid jets. Int. J. Eng. Sci. 14, 49–63 (1976).zbMATHCrossRefGoogle Scholar
  39. 39.
    Naghdi, P. M. On the applicability of directed fluid jets to Newtonian and non-Newtonian flows. J. Non-Newton. Fluid Mech. 5, 233–265 (1979).zbMATHCrossRefGoogle Scholar
  40. 40.
    Caulk, D. A. & Naghdi, P. M. The influence of twist on the motion of straight elliptical jets. Arch. Ration. Mech. Anal. 69, 1–30 (1979).MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Bogy, D. B. Use of one-dimensional Cosserat theory to study instability of a viscous liquid jet. Phys. Fluids 21, 190–197 (1978).MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    Lopez-Herrera, J. M., Ganan-Calvo, A. M., & Perez-Saboird, M. One-dimensional simulation of the breakup of capillary jets of conducting liquids. Application to EHD spraying. J. Aerosol Sci. 30, 895–912 (1999).CrossRefGoogle Scholar
  43. 43.
    Barrero, A. & Loscertales, I. G. Micro- and nanoparticles via capillary flows. Annu. Rev. Fluid Mech. 39, 89–106 (2007).CrossRefGoogle Scholar
  44. 44.
    Fernandez de la Mora, J. The fluid dynamics of Taylor cone. Annu. Rev. Fluid Mech. 39, 217–243 (2007).MathSciNetCrossRefGoogle Scholar
  45. 45.
    Leib, S. J. & Goldstein, M. E. Convective and absolute instability of a viscous liquid jet. Phys. Fluids 29, 952–954 (1986).CrossRefGoogle Scholar
  46. 46.
    Lin, P. S. & Kang, D. J. Atomization of a liquid jet. Phys. Fluids 30, 2000–2006 (1987).CrossRefGoogle Scholar
  47. 47.
    Lin, S. P. & Lian, Z. W. Absolute and convective instability of a viscous liquid jet surrounded by a viscous gas in a vertical pipe. Phys. Fluids. A 5, 771–773 (1993).CrossRefGoogle Scholar
  48. 48.
    Zhou, Z. W. & Lin, S. P. Effects of compressibility on the atomization of liquid jets. J. Propul. Power 8, 736–740 (1992).CrossRefGoogle Scholar
  49. 49.
    Lin, S. P. Regimes of jet breakup and breakup mechanisms (mathematical aspects). In Recent Advances in Spray Combustion: Spray Atomization and Drop Burning Phenomena, Vol. 1, ed. K.K. Kuo. Reston: AIAA Inc. (1996), pp. 137–160.Google Scholar
  50. 50.
    Lin, S. P. & Lian, Z. W. Absolute instability of a liquid jet in a gas. Phys. Fluids A 1(3), 490–493 (1980).CrossRefGoogle Scholar
  51. 51.
    Lin, S. P. & Chen, J. N. Roles played by the interfacial shears in the instability mechanism of a viscous liquid jet surrounded by a viscous gas in a pipe. J. Fluid Mech. 376, 37–51 (1998).zbMATHCrossRefGoogle Scholar
  52. 52.
    Vihinen, I., Honohan, A., & Lin, S. P. Absolute and convective instability of a viscous jet in microgravity. Phys. Fluids 9, 3117–3119 (1997).MathSciNetzbMATHCrossRefGoogle Scholar
  53. 53.
    O’Donnel, B., Chen, J. N., & Lin, S. P. Transition from convective to absolute instability in a liquid jet. Phys. Fluids 13, 2732–2734 (2001).CrossRefGoogle Scholar
  54. 54.
    Lin, S. P. & Reitz, R. D. Drop and spray formation from a liquid jet. Ann. Rev. Fluid Mech. 30, 85–105 (1998).MathSciNetCrossRefGoogle Scholar
  55. 55.
    Lin, S. P. Breakup of Liquid Sheets and Jets. Cambridge: Cambridge University Press, 2003.zbMATHCrossRefGoogle Scholar
  56. 56.
    Gaster, M. Growth of disturbances in both space and time. J. Fluid Mech. 11, 723–727 (1968).Google Scholar
  57. 57.
    Lin, S. P. & Woods, D. R. Tailored liquid jets. Atom. Sprays 18, 363–374 (2008).CrossRefGoogle Scholar
  58. 58.
    Chinn, J. J. An appraisal of swirl atomizer inviscid internal flow analysis, Part 2, Inviscid spray cone angle and comparison of inviscid method with experimental results for discharge coefficient, air core radius, and spray angle. Atom. Sprays 19, 283–308 (2009).CrossRefGoogle Scholar
  59. 59.
    Craig, L., Barlow, N., Partel, S., Kanya, B., & Lin, S. P. Optimal and non optimal flows in a swirl atomizer. J. Int. Inst. Liquid Atom. Spray Syst. 13, 113–1124 (2009).Google Scholar
  60. 60.
    Lafrance, P. & Ritter, R. C. Capillary breakup of a liquid jet with a random initial perturbation. Trans ASME: J. Appl. Mech. 44, 385–388 (1977).CrossRefGoogle Scholar
  61. 61.
    Pimbley, W. T. & Lee, H.C. Satellite droplet formation in a liquid jet. IBM J. Res. Dev. 21, 21–30 (1977).CrossRefGoogle Scholar
  62. 62.
    Scarlett, B. & Parkin, C. S. Droplet production on controlled jet breakup. Chem. Eng. J. 13, 127–141 (1977).CrossRefGoogle Scholar
  63. 63.
    Yuen, M. C. Non-linear capillary instability of a liquid jet. J. Fluid Mech. 33, 151–163 (1968).zbMATHCrossRefGoogle Scholar
  64. 64.
    Kakutani, T., Inoue, Y., & Kan, T. Nonlinear capillary waves on the surface of liquid column. J. Phys. Soc. Jpn. 37, 529–538 (1974).CrossRefGoogle Scholar
  65. 65.
    Lafrance, P. Nonlinear breakup of a liquid jet. Phys. Fluids 17, 1913–1914 (1974).CrossRefGoogle Scholar
  66. 66.
    Lafrance, P. Nonlinear breakup of a laminar liquid jet. Phys. Fluids 18, 428–432 (1975).zbMATHCrossRefGoogle Scholar
  67. 67.
    Bogy, D. B. Break-up of a liquid jet: second perturbation solution for one-dimensional Cosserat theory. IBM J. Res. Dev. 23, 87–92 (1979).zbMATHCrossRefGoogle Scholar
  68. 68.
    Bogy, D. B. Break-up of a liquid jet: Third perturbation Cosserat solution. Phys. Fluids 22, 224–230 (1979).zbMATHCrossRefGoogle Scholar
  69. 69.
    Bogy, D. B. Wave propagation and instability in a circular semi-infinite liquid jet harmonically forced at the nozzle. Trans ASME: J. Appl. Mech. 45, 469–474 (1978).zbMATHCrossRefGoogle Scholar
  70. 70.
    Taub, H. H. Investigation of nonlinear waves on liquid jets. Phys. Fluids 19, 1124–1129 (1976).CrossRefGoogle Scholar
  71. 71.
    Chaudhary, K. C. & Redekopp, L. G. The nonlinear capillary instability of a liquid jet. Part 1. Theory. J. Fluid Mech. 96, 257–274 (1980).zbMATHCrossRefGoogle Scholar
  72. 72.
    Chaudhary, K. C. & Maxworthy, T. The nonlinear capillary instability of a liquid jet. Part 2. Experiments on jet behavior before droplet formation. J. Fluid Mech. 96, 275–286 (1980).zbMATHCrossRefGoogle Scholar
  73. 73.
    Chaudhary, K. C. & Maxworthy, T. The nonlinear capillary instability of a liquid jet. Part 3. Experiments on satellite drop formation and control. J. Fluid Mech. 96, 287–298 (1980).zbMATHCrossRefGoogle Scholar
  74. 74.
    Mansour, N. N. & Lundgren, T. S. Satellite formation in capillary jet breakup. Phys. Fluids A 2, 1141–1144 (1990).CrossRefGoogle Scholar
  75. 75.
    Ashgriz, N. & Mashayek, F. Temporal analysis of capillary jet breakup. J. Fluid Mech. 291, 163–190 (1995).zbMATHCrossRefGoogle Scholar
  76. 76.
    Ambravaneswaran, B., Phillips, S. D., & Basaran, O. A. Theoretical analysis of dripping faucet. Phys. Rev. Lett. 85, 5332–5335 (2000).CrossRefGoogle Scholar
  77. 77.
    Basaran, O. A. & Suryo, R. The invisible jet. Nat. Phys. 3, 679–680 (2007).CrossRefGoogle Scholar
  78. 78.
    Bogy, D. B., Shine, S. J., & Talke, F. E. Finite difference solution of the Cosserat fluid jet equations. J. Comput. Phys. 38, 294–326 (1980).zbMATHCrossRefGoogle Scholar
  79. 79.
    Eggers, J. Universal pinching of 3D axisymmetric free-surface flow. Phys. Rev. Lett. 72, 3458–3460 (1993).CrossRefGoogle Scholar
  80. 80.
    Brenner, M. P., Shi, X. D., & Nagel, S.R. Iterated instabilities during droplet fission. Phys. Rev. Lett. 73, 3391–3394 (1994).CrossRefGoogle Scholar
  81. 81.
    Eggers, J. Theory of drop formation. Phys. Fluids 7, 941–953 (1995).MathSciNetzbMATHCrossRefGoogle Scholar
  82. 82.
    Papageorgiou, D. T. On the breakup of viscous liquid threads. Phys. Fluids 7, 1529–1544 (1995).MathSciNetzbMATHCrossRefGoogle Scholar
  83. 83.
    Brenner, M. P., Lister, J., & Stone, H. A. Pinching threads, singularities and the number 0.0304. Phys. Fluids 8, 2827–2836 (1996).MathSciNetzbMATHCrossRefGoogle Scholar
  84. 84.
    Brenner, M. P., Eggers, J., Joseph, K., Nagel, S. R., & Shi, X. D. Breakdown of scaling in droplet fission at high Reynolds number. Phys. Fluids 9, 1573–1590 (1997).CrossRefGoogle Scholar
  85. 85.
    Cline, H. E. & Anthony, T. R. The effects of harmonics on the capillary instability of liquid jets. J. Appl. Phys. 49 (6), 3203–3208 (1978).CrossRefGoogle Scholar
  86. 86.
    Rutland, D. F. & Jameson, G. J. Theoretical prediction of the sizes of drops formed in the breakup of capillary jets. Chem. Eng. Sci. 25(11-E), 1689–1698 (1970).Google Scholar
  87. 87.
    Hibling, J. & Heister, S. D. Droplet size control in liquid jet breakup. Phys. Fluids 8(6), 1574–1581 (1996).CrossRefGoogle Scholar
  88. 88.
    Orme, M. & Muntz, E. P. The manipulation of capillary stream breakup using amplitude-modulated disturbances: A pictorial and quantitative representation. Phys. Fluids A 2(7), 1124–1140 (1990).CrossRefGoogle Scholar
  89. 89.
    Orme, M., Willis, K., & Nguyen, T.-V. Droplet patterns from capillary stream breakup. Phys. Fluids A 5(1), 80–90 (1993).CrossRefGoogle Scholar
  90. 90.
    Bousfield, D. W., Keunings, R., Marrucci, G., & Denn, M. M. Nonlinear analysis of the surface tension driven breakup of viscoelastic filaments. J. Non-Newtonian Fluid Mech. 21, 79–97 (1986).CrossRefGoogle Scholar
  91. 91.
    Bousfield, D., Stockel, I. H., & Nanivadekar, C. K. The breakup of viscous jets with large velocity modulations. J. Fluid Mech. 218, 601–617 (1990).CrossRefGoogle Scholar
  92. 92.
    Huynh, H., Ashgriz, N., & Mashayek, F. Instability of a liquid jet subject to disturbances composed of two wave numbers. J. Fluid Mech. 320, 185–210 (1996).zbMATHCrossRefGoogle Scholar
  93. 93.
    Spangler, C. A., Hibling, J. H., & Heister, S. D. Nonlinear modeling of jet atomization in the wind-induced regime. Phys. Fluids 7 (5), 964–971 (1995).zbMATHCrossRefGoogle Scholar
  94. 94.
    Tjahjadi, M., Stone, H.A., & Ottino, J.M., Satellite and subsatellite formation in capillary breakup. J. Fluid Mech. 243, 297–317 (1992).CrossRefGoogle Scholar
  95. 95.
    Bauer, H. F. Free liquid surface response induced by fluctuations of thermal Marangoni convection. AIAA J. 22, 421–428 (1983).CrossRefGoogle Scholar
  96. 96.
    Xu, J. J. & Davis, S. H. Instability of capillary jets with thermocapillarity. J. Fluid Mech. 161, 1–26 (1985).MathSciNetzbMATHCrossRefGoogle Scholar
  97. 97.
    Dijkstra, H. A. & Steen, P. H. Thermocapillary stabilization of the capillary breakup of an annular film of liquid. J. Fluid Mech. 229, 205–228 (1991).MathSciNetzbMATHCrossRefGoogle Scholar
  98. 98.
    Mashayek, F. & Ashgriz, N. Nonlinear instability of liquid jets with thermocapillarity. J. Fluid Mech. 283, 97–123 (1995).zbMATHCrossRefGoogle Scholar
  99. 99.
    Ostrach, S. Low-gravity fluid flows. Ann. Rev. Fluid Mech. 14, 13–345 (1982).CrossRefGoogle Scholar
  100. 100.
    Davis, S. H. Thermocapillary instabilities. Ann. Rev. Fluid Mech. 19, 403–435 (1987).zbMATHCrossRefGoogle Scholar
  101. 101.
    Faidley, R. W. & Panton, R. L. Measurement of liquid jet instability induced by surface tension variations. Exp. Therm. Fluid Sci. 3, 383–387 (1990).CrossRefGoogle Scholar
  102. 102.
    Nahas, N. M. & Panton, R. L. Control of surface tension flows-Instability of a liquid jet. J. Fluids Eng. Trans. ASME 112, 3, 296–301 (1990).CrossRefGoogle Scholar
  103. 103.
    Fulnari, E. P. Temporal instability of viscous liquid microjets with spatially varying surface tension. J. Phys. A: Math. Gen. 38, 263–276 (2005).CrossRefGoogle Scholar
  104. 104.
    Saroka, M., Guo, Y., & Ashgriz, N. Nonlinear instability of an evaporating capillary jet. AIAA J. 39(9), 1728–1734 (September 2001).CrossRefGoogle Scholar
  105. 105.
    Ponstein, J. Instability of rotating cylindrical jets. Appl. Sci. Res. 8(6), 425–456 (1959).MathSciNetzbMATHCrossRefGoogle Scholar
  106. 106.
    Saffman, P. G. The number of waves on unstable vortex rings. J. Fluid Mech. 84(4), 625–639 (1978).MathSciNetCrossRefGoogle Scholar
  107. 107.
    Entov, V. M., Kordonskii, V. I., Kuz’min, V. A., Shul’man, Z. P., & Yarin, A. L. Investigation of the decomposition of jets of rheologically complex liquids. J. Appl. Mech. Tech. Phys. 21, 365–371 (1980).CrossRefGoogle Scholar
  108. 108.
    Yarin, A. L., Zussman, E., Theron, S. A., Rahimi, S., Sobe, Z., & Hasan, D. Elongational behavior of gelled propellant stimulants. J. Rheol. 48, 101–116 (2004).CrossRefGoogle Scholar
  109. 109.
    Goldin, M., Pfeffer, R., & Shinnar, R. Break-up of a capillary jet of a non-Newtonian fluid having a yield stress. Chem. Eng. J. 4, 8–20 (1972).CrossRefGoogle Scholar
  110. 110.
    Goldin, M., Yerushalmi, J., Pfeffer, R., & Shinnar, R. Breakup of a laminar capillary jet of viscoelastic fluid. J. Fluid Mech. 38, 689–711 (1969).CrossRefGoogle Scholar
  111. 111.
    Entov, V. M. & Yarin, A. L. Influence of elastic stresses on the capillary breakup of jets of dilute polymer solutions. Fluid Dyn. 19, 21–29 (1984).zbMATHCrossRefGoogle Scholar
  112. 112.
    Rubin, H. & Wharshavsky, M. A note on the breakup of viscoelastic liquid jets. Isr. J. Technol. 8, 285–288 (1970).Google Scholar
  113. 113.
    Gordon, M., Yerushalmi, J., & Shinnar, R. Instability of jets of non-Newtonian fluids. Trans. Soc. Rheol. 17, 303–324 (1973).CrossRefGoogle Scholar
  114. 114.
    Goren, S. & Gavis, J. Transverse wave motion on a thin capillary jet of a viscoelastic liquid. Phys. Fluids 4, 575–579 (1961).MathSciNetzbMATHCrossRefGoogle Scholar
  115. 115.
    Han, T., Yarin, A. L., & Reneker, D. H. Viscoelastic electrospun jets: initial stresses and elongational rheometry. Polymer 49, 1651–1658 (2008).CrossRefGoogle Scholar
  116. 116.
    Joseph, D. D. Fluid Dynamics of Viscoelastic Liquids. New York: Springer (1990).zbMATHGoogle Scholar
  117. 117.
    Entov, V. M. & Kestenboim, Kh. S. Mechanics of fiber formation. Fluid Dyn. 22, 677–686 (1987).zbMATHCrossRefGoogle Scholar
  118. 118.
    Reneker, D. H., Yarin, A. L., Zussman, E., & Xu, H. Electrospinning of nanofibers from polymer solutions and melts. Adv. Appl. Mech. 41, 43–195 (2007).CrossRefGoogle Scholar
  119. 119.
    Bazilevsky, A. V., Voronkov, S. I., Entov, V. M., & Rozhkov, A. N. Orientational effects in capillary breakup of jets and threads of dilute polymer solutions. Sov. Phys. Doklady 257, 336–339 (1981) (the English version in Vol. 26).Google Scholar
  120. 120.
    Stelter, M., Brenn, G., Yarin, A. L., Singh, R. P., & Durst, F. Validation and application of a novel elongational device for polymer solutions. J. Rheol. 44, 595–616 (2000).CrossRefGoogle Scholar
  121. 121.
    Schümmer, P. & Tebel, K. H. A new elongational rheometer for polymer solutions. J. Non-Newtonian Fluid Mech. 12, 331–347 (1983).CrossRefGoogle Scholar
  122. 122.
    Anna, S. L. & McKinley, G. H. Elasto-capillary thinning and breakup of model elastic liquids. J. Rheol. 45, 115–138 (2001).CrossRefGoogle Scholar
  123. 123.
    Kroesser, F. W. & Middleman, S. Viscoelastic jet stability. AIChE J. 15, 383–386 (1969).CrossRefGoogle Scholar
  124. 124.
    Rubin, H. Breakup of viscoelastic liquid jets. Isr. J. Technol. 9, 579–581 (1971).Google Scholar
  125. 125.
    Sagiv, A., Rubin, H., & Takserman-Krozer, R. On the breakup of cylindrical liquid jets. Isr. J. Technol. 11, 349–354 (1973).Google Scholar
  126. 126.
    Sagiv, A. & Takserman-Krozer, R. Capillary breakup of viscoelastic liquid jet of variable cross-section. Rheol. Acta 14, 420–426 (1975).CrossRefGoogle Scholar
  127. 127.
    Goren, S. L. & Gottlieb, M. Surface-tension-driven breakup of viscoelastic liquid threads. J. Fluid Mech. 120, 245–266 (1982).MathSciNetzbMATHCrossRefGoogle Scholar
  128. 128.
    Lee, W. K., Yu, K. L., & Flumerfelt, R. W. Instability of stationary and uniformly moving cylindrical fluid bodies. Int. J. Multiphase Flow 7, 385–400 (1981).zbMATHCrossRefGoogle Scholar
  129. 129.
    Chang, H. C., Demekhin, E. A., & Kalaidin, E. Iterated stretching of viscoelastic jets. Phys. Fluids 11, 1717–1737 (1999).MathSciNetzbMATHCrossRefGoogle Scholar
  130. 130.
    Li, J. & Fontelos, M. A. Drop dynamics on the beads-on-string structure for viscoelastic jets: A numerical study. Phys. Fluids 15, 922–937 (2003).CrossRefGoogle Scholar
  131. 131.
    Clasen, C., Eggers, J., Fontelos, M. A., Li, J., & McKinley, G. H. The beads-on-string structure of viscoelastic threads. J. Fluid Mech. 556, 283–308 (2006).zbMATHCrossRefGoogle Scholar
  132. 132.
    Oliveira, M. S. N. & McKinley, G. H. Iterated stretching and multiple beads-on-a-string phenomena in dilute solutions of highly extensible flexible polymers. Phys. Fluids 17, 071704 (2005).CrossRefGoogle Scholar
  133. 133.
    Renardy, M. Some comments on the surface-tension driven break-up (or lack of it) of viscoelastic jets. J. Non-Newton. Fluid Mech. 51, 97–107 (1994).CrossRefGoogle Scholar
  134. 134.
    Renardy, M. A numerical study of the asymptotic evolution and breakup of Newtonian and viscoelastic jets. J. Non-Newton. Fluid Mech. 59, 267–282 (1995).CrossRefGoogle Scholar
  135. 135.
    Bazilevsky, A. V., Entov, V. M., & Rozhkov, A. N. Breakup of an Oldroyd liquid bridge as a method for testing the rheological properties of polymer solutions. Polym. Sci. Ser. A 43, 716–726 (2001).Google Scholar
  136. 136.
    Ziabicki, A. Fundamentals of Fibre Formation. London: Wiley (1976).Google Scholar
  137. 137.
    Ziabicki, A. & Kawai, H. (editors). High-Speed Fiber Spinning. New York: Wiley (1985).Google Scholar

Copyright information

© Springer US 2011

Authors and Affiliations

  1. 1.Department of Mechanical and Industrial EngineeringUniversity of TorontoTorontoCanada

Personalised recommendations