Temperature Effects on Binding Equilibrium and Reaction Rate



This type of investigation is quite important for the characterisation of an enzyme:
$$\Delta {G'}^{0} = -R {_\ast} T {_\ast}\ln (1/{K}_{\mathrm{ d}})\qquad \mathrm{at}\,\,25\mathrm{\!\circ \mathrm{C}}$$
$$\ln ({K}_{\mathrm{d}}) = -\dfrac{\Delta {H'}^{0}} {R} {_\ast} \dfrac{1} {T} + A$$
$$\Delta {S'}^{0} = \dfrac{\Delta {H'}^{0} - \Delta {G'}^{0}} {T}$$
Such experiments can be performed on a Forbes-bar (see Fig. 44.1), that allows measurements at different temperatures in parallel. The standard Gibbs free energy of ligand binding1 Δ G 0 can be determined from the dissociation constant at standard temperature (25∘C)


Entropy Enthalpy Titration Calorimetry Calorimeter 

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.BiochemistryRoss University School of MedicineRoseauDominica

Personalised recommendations