Comments on (5), (14), (22), (30), and (31)

Chapter
Part of the Selected Works in Probability and Statistics book series (SWPS)

Abstract

During the two decades after the publication of the pioneering papers “Proof of the ergodic theorem” and “Proof the quasi-ergodic hypothesis” by Birkhoff [4] and von Neumann [18], but before the publication of “A general ergodic theorem” by Calderón in 1953, there were new proofs and generalizations of the results of Birkhoff and von Neumann given by many mathematicians. These include, among others, Khintchine, Hopf, Kolmogorov, F. Riesz, Yoshida, Kakutani, Wiener, Dunford, Pitt, Doob, and Zygmund. Much of this substantial body of work is referenced in [11], [15], and [16]. Explorations in many new directions have continued since then and have greatly expanded the connections and applications of ergodic theory to other parts of mathematics and beyond. Calderón’s 1953 paper (5) played an important role in this development.

Keywords

Convolution Stein Unifed Elon Cora 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mustafa Akcoglu, Alexandra Bellow, Roger L. Jones, Viktor Losert, Karin Reinhold-Larsson, and Maté Wierdl, The strong sweeping out property for lacunary sequences, Riemann sums, convolution powers, and related matters, Ergodic Theory Dynam. Systems, 16 (1996), no. 2, 207-253.MATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Alexandra Bellow, Transference principles in ergodic theory, Harmonic Analysis and Partial Differential Equations, edited by Michael Christ, Carlos E. Kenig, and Cora Sadosky, Univ. Chicago Press, Chicago, Illinois, (1999), 27-39.Google Scholar
  3. 3.
    Alexandra Bellow and Ulrich Krengel, On Hopfs ergodic theorem for particles with différent velocities, Almost Everywhere Convergence II, edited by Alexandra Bellow and Roger L. Jones, Academic Press, New York, (1991), 41-47.Google Scholar
  4. 4.
    G. D. Birkhoff, Proof of the ergodic theorem, Proc. Nat. Acad. Sci. U.S.A., (1931), 656-660.Google Scholar
  5. 5.
    J. Bourgain, Extension of a result of Benedek, Calderón and Panzone, Ark. Mat., 22, (1984), 91-95.MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Donald L. Burkholder, Martingales and singular integrals in &Qmach spaces, Handbook of the Geometry of Banach spaces, 1, edited by W. B. Johnson and J. Linden-strauss, Elsevier, Amsterdam, (2001), 233-269.CrossRefGoogle Scholar
  7. 7.
    Ronald R. Coif m an and Guido Weiss, Transference Methods in Analysis, Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics, No. 31, American Mathematical Society, Providence, R.I., 1976.Google Scholar
  8. 8.
    Misha Cotlar, A unifed theory of Hubert transforms and ergodic theorems, Rev. Mat. Guyana 1, (1955), 105-167.MathSciNetGoogle Scholar
  9. 9.
    Nelson Dunford, An ergodic theorem for noncommutatwe transformations, Acta Sei. Math. Szeged 14, (1951), 1-4.MATHMathSciNetGoogle Scholar
  10. 10.
    Eberhard Hopf, Über die Bedeutung der willkürlichen Funktionen für die Wahrscheinlichkeitstheorie, Jahresber. Dtsch. Math. Verein 46, (1936), 179-195.Google Scholar
  11. 11.
    Eberhard Hopf, Ergodentheone, Springer, Berlin, 1937.Google Scholar
  12. 12.
    Lars Hörmander, Estimates for translation invariant operators in L p spaces, Acta Math., 104, (1960), 93-139.MATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Roger L. Jones, Robert Kaufman, Joseph M. Rosenblatt, and Maté Wierdl, Oscillation in ergodic theory, Ergodic Theory Dynam. Systems, 18, (1998), 889-935.MATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Roger L. Jones, Joseph M. Rosenblatt, Maté Wierdl, Oscillation in ergodic theory: higher dimensional results, Israel J. Math. 135 (2003), 1-27.MATHMathSciNetGoogle Scholar
  15. 15.
    Shizuo Kakutani, Ergodic theory, Proc. Int. Congr. Math., 2, (1950), 128-142.Google Scholar
  16. 16.
    Ulrich Krengel, Ergodic Theorems, De Gruyter, Berlin, 1985.MATHCrossRefGoogle Scholar
  17. 17.
    Elon Lindenstrauss, Pointwise theorems for amenable groups, Invent. Math., 146, (2001), 259-295.MATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    John von Neumann, Proof of the quasi-ergodic hypothesis, Proc. Nat. Acad. Sei. U.S.A., 18, (1932), 70-82.CrossRefGoogle Scholar
  19. 19.
    Amos Nevo, Harmonic analysis and pointwise ergodic theorems for noncommuting transformations, J. Amer. Math. Soc. 7, (1994), 875-902.MATHMathSciNetGoogle Scholar
  20. 20.
    Amos Nevo and Elias M. Stein, A generalization of Birkhoff ’s pointwise ergodic theorem, Acta Math., 173, (1994), 135-154.MATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    J. Schwartz, A remark on inequalities of C alder on-Zygmund type for vector-valued functions, Coram. Pure and Applied Math., 14, (1961), 785-799.MATHCrossRefGoogle Scholar
  22. 22.
    A. A. Tempelman, Ergodic theorems for general dynamic systems, Soviet Math. Dokl., 8, (1967), No. 5, 1213-216.Google Scholar
  23. 23.
    Arkady Tempelman, Ergodie Theorems for Group Actions: Informational and Ther-modynamical Aspects, Kluwer Academic Publishers, Dordrecht, 1992.Google Scholar
  24. 24.
    Norbert Wiener, The ergodtc theorem, Duke Math. J., 5, (1939), 1-18.MathSciNetCrossRefGoogle Scholar
  25. 25.
    Felipe Zo, A note on approximation of the identity, Studia Math., 55, (1976), 111-122.MATHMathSciNetGoogle Scholar
  26. 26.
    A. Zygmund, An individual ergodic theorem for non-commutative transformations, Acta Sei. Math. Szeged 14, (1951), 103-110.MATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Mathematics and Department of StatisticsPurdue UniversityWest LafayetteUSA
  2. 2.Department of MathematicsUniversity of IllinoisUrbanaUSA

Personalised recommendations