An Elementary Proof of an Inequality of R. E. A. C. Paley

  • Burgess DavisEmail author
  • Renming Song
Part of the Selected Works in Probability and Statistics book series (SWPS)


D. L. Burkholder. An elementary proof of an inequality of R. E. A. C. Paley. Bull. London Math. Soc., 17(5):474–478, 1985. Reproduced with permission of the London Mathematical Society. An electronic version is available at  10. 1112/blms/17.5.474


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Bourg AIN, ’Some remarks on Banach spaces in which martingale difference sequences are unconditional’, Ark. Mat.21 (1983) 163-168.CrossRefMathSciNetGoogle Scholar
  2. 2.
    D. L. Burkholder’Martingale transforms’, Ann. Math. Statist.37 (1966) 1494-1504.zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    D. L. Burkholder’A geometrical characterization of Banach spaces in which martingale difference sequences are unconditional’, Ann. Probab.9 (1981) 997-1011.zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    D. L. Burkholder’A nonlinear partial differential equation and the unconditional constant of the Haar system in L pBull. Amer. Math. Soc.7 (1982) 591-595.zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    D. L. Burkholder, ’A geometric condition that implies the existence of certain singular integrals of Banach-space-valued functions ’, Conference on harmonic analysis in honor of Antoni Zygmund(eds. William Beckner, Alberto P. Calderón, Robert Fefferman and Peter W. Jones, Wadsworth International Group, Belmont, California, 1983), Vol. 1, pp. 270-286.Google Scholar
  6. 6.
    D. L. Burkholder’Boundary value problems and sharp inequalities for martingale transforms’, Ann. Probab.12 (1984) 647-702.zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    M. Essen’A superharmonic proof of the M. Riesz conjugate function theorem’, Ark. Mat.22 (1984) 241-249.zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    S. Kwapien’Isomorphic characterizations of inner product spaces by orthogonal series with vector valued coefficients’, Studio Math.44 (1972) 583-595.zbMATHMathSciNetGoogle Scholar
  9. 9.
    J. Marcinkiewicz’Quelques théorèmes sur les séries orthogonales’, Ann. Soc. Polon. Math.16 (1937) 84-96.Google Scholar
  10. 10.
    T. R. McConnell’On Fourier multiplier transformations of Banach-valued functions’, Trans. Amer. Math. Soc.285 (1984) 739-757.zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    R. E. A. C. Paley’A remarkable series of orthogonal functions I’, Proc. London Math. Soc.34 (1932) 241-264.zbMATHCrossRefGoogle Scholar
  12. 12.
    E. M. Stein’The development of square functions in the work of A. Zygmund’, Bull. Amer. Math. Soc.7 (1982) 359-376.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Mathematics and Department of StatisticsPurdue UniversityWest LafayetteUSA
  2. 2.Department of MathematicsUniversity of IllinoisUrbanaUSA

Personalised recommendations