Advertisement

Special Invited Paper

Boundary Value Problems and Sharp Inequalities for Martingale Transforms
  • Burgess DavisEmail author
  • Renming Song
Chapter
  • 1.3k Downloads
Part of the Selected Works in Probability and Statistics book series (SWPS)

Abstract

Let p* be the maximum of p and q where 1 < p < ∞ and 1/p + 1/q = 1. If d = (d 1 d 2,…) is a martingale difference sequence in real L p (0, 1), ε = (ε 1, ε 2,…) is a sequence of numbers in {–1, 1}, and nis a positive integer, then
$$||\sum\nolimits_{k = 1}^n {{\varepsilon _k}{d_k}|{|_p} \leq \left( {p^* - 1} \right)||} \sum\nolimits_{k = 1}^n {{d_k}|{|_p}}$$
and the constant p* – 1 is best possible. Furthermore, strict inequality holds if and only if p ≠ 2 and \(||\sum\nolimits_{k = 1}^n {{d_k}|{|_p} >0}\). This improves an earlier inequality of the author by giving the best constant and conditions for equality. The inequality holds with the same constant if ε is replaced by a real-valued predictable sequence uniformly bounded in absolute value by 1, thus yielding a similar inequality for stochastic integrals. The underlying method rests on finding an upper or a lower solution to a novel boundary value problem, a problem with no solution (the upper is not equal to the lower solution) except in the special case p = 2. The inequality above, in combination with the work of Ando, Dor, Maurey, Odell, Olevskiï, Pelczynski, and Rosenthal, implies that the unconditional constant of a monotone basis of L p (0,1) is p * – 1. The paper also contains a number of other sharp inequalities for martingale transforms and stochastic integrals. Along with other applications, these provide answers to some questions that arise naturally in the study of the optimal control of martingales.

Keywords

Strict Inequality Continuous Extension Good Constant Sharp Inequality Haar System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    AndoT. (1966). Contractive projections in L pspaces. Pacific J. Math, 17391-405.zbMATHMathSciNetGoogle Scholar
  2. 2.
    BichtelerK. (1981). Stochastic integration and L p-theory of semimartingales. Ann. Probab. 949-89.zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    BurkholderD. L. (1966). Martingale transforms. Ann. Math. Statist 371494-1504.zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    BurkholderD. L. (1979). A sharp inequality for martingale transforms. Ann. Probab. 7858-863.zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    BurkholderD. L. (1981). A geometrical characterization of Banach spaces in which martingale difference sequences are unconditional. Ann. Probab. 9997-1011.zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    BurkholderD. L. (1982). A nonlinear partial differential equation and the unconditional constant of the Haar system in Lp. Bull. Amer. Math. Soc. (N.S.) 7591-595.zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Burkholder, D. L. (1983). A geometric condition that implies the existence of certain singular integrals of Banach-space-valued functions. Conference on Harmonic Analysis in Honor of Antoni Zygmund1 270-286. Edited by William Beckner, Alberto P. Calderón, Robert Fefferman, and Peter W. Jones. Wadsworth, Belmont, California.Google Scholar
  8. 8.
    ClarksonJ. A. (1936). Uniformly convex spaces. Trans. Amer. Math. Soc. 40396-414.zbMATHMathSciNetGoogle Scholar
  9. 9.
    DellacherieC. and Meyer, P.-A. (1980). Probabilités et potentiel: Théorie des martingales. Hermann, Paris.zbMATHGoogle Scholar
  10. 10.
    DOOB, J. L. (1953). Stochastic Processes. Wiley, New York.zbMATHGoogle Scholar
  11. 11.
    DOOB, J. L. (1954). Semimartingales and subharmonic functions. Trans. Amer. Math. Soc. 7786-121.zbMATHMathSciNetGoogle Scholar
  12. 12.
    DorL. E. and OdellE. (1975). Monotone bases in L p . Pacific J. Math. 6051-61.zbMATHMathSciNetGoogle Scholar
  13. 13.
    GamelinT. W. (1978). Uniform Algebras and Jensen Measures. Cambridge University Press, London.zbMATHGoogle Scholar
  14. 14.
    LindenstraussJ. and PelczynskiA. (1971). Contributions to the theory of the classical Banach spaces. J. Funct. Anal. 8225-249.zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    LindenstraussJ. and Tzafriri, L. (1979). Classical Banach SpacesII: Function Spaces. Springer, New York.zbMATHGoogle Scholar
  16. 16.
    MarcinkiewiczJ. (1937). Quelques théorèmes sur les séries orthogonales. Ann. Soc. Polon. Math. 1684-96.Google Scholar
  17. 17.
    MaureyB. (1975). Système de Haar. Séminaire Maurey-Schwartz(1974-1975). École Polytechnique, Paris.Google Scholar
  18. 18.
    OlevskiïA. M. (1967). Fourier series and Lebesgue functions. Uspehi Mat. Nauk 22237-239. (Russian)MathSciNetGoogle Scholar
  19. 19.
    OlevskiïA. M. (1975). Fourier Series with Respect to General Orthogonal Systems. Springer, New York.zbMATHGoogle Scholar
  20. 20.
    PaleyR. E. A. C. (1932). A remarkable series of orthogonal functions I. Proc. London Math. Soc. 34241-264.zbMATHCrossRefGoogle Scholar
  21. 21.
    PelczynskiA. and RosenthalH. P. (1975). Localization techniques in L pspaces. Studia Math. 52263-289.zbMATHMathSciNetGoogle Scholar
  22. 22.
    PichoridesS. K. (1972). On the best values of the constants in the theorems of M. Riesz, Zygmund and Kolmogorov. Studia Math. 44165-179.zbMATHMathSciNetGoogle Scholar
  23. 23.
    RIESZ, M. (1927). Sur les fonctions conjuguées. Math. Z. 27218-244.zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    SchauderJ. (1928). Eine Eigenschaft fes barschen Orthogonalsystems. Math. Z. 28317-320.zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    StarrN. (1965). On an operator limit theorem of Rota. Ann. Math. Statist. 361864-1866.zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    TzafririL. (1969). Remarks on contractive projections in Lp-spaces. Israel J. Math. 79-15.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Mathematics and Department of StatisticsPurdue UniversityWest LafayetteUSA
  2. 2.Department of MathematicsUniversity of IllinoisUrbanaUSA

Personalised recommendations