Skip to main content

A Geometrical Characterization of Banach Spaces in Which Martingale Difference Sequences are Unconditional

  • Chapter
  • First Online:
Selected Works of Donald L. Burkholder

Part of the book series: Selected Works in Probability and Statistics ((SWPS))

  • 1747 Accesses

Abstract

Let 1 < p < ∞. For what Banach spaces B does there exist a positive real number c p such that

$$||{\varepsilon _1}{d_1} + \cdots + {\varepsilon _n}{d_1}|{|_p} \leq {c_p}||{d_1} +\cdots + {d_n}|{|_p}$$

for all B-valued martingale difference sequences d = (d1, d2,…) all numbers є1є2,… in {-1, 1}, and all n ≥ 1? This and closely related questions have been of interest to Maurey [16], Pisier [17], Diestel and Uhl [12], Aldous [1], and others. Let us write B∈E UMD (the space B has the unconditionality property for martingale differences) if such a constant Cp = Cp(B) does exist. (Maurey uses a slightly different notation.) This class of spaces appears to depend on p but, in fact, does not [16] as we shall see in another way. It was proved in [4] that ∈ UMD and from this follows immediately that the Lebesgue spaces lr, Lr(0 1) E UMD for 1 < r < ∞. Any UMD-space is reflexive, in fact superreflexive [16], [1], so, for example, l1,lE UMD. On the other hand, Pisier [17] has constructed an example showing that a suoerreflexive space need not be UMD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AldousD. J. (1979). Unconditional bases and martingales in L P (F). Math. Proc. Cambridge Philos. Soc. 85117-123.

    Article  MATH  MathSciNet  Google Scholar 

  2. Bollobàs, Béla (1980). Martingale inequalities. Math. Proc. Cambridge Philos. Soc. 87377-382.

    Article  MATH  MathSciNet  Google Scholar 

  3. BurkholderD. L. (1964). Maximal inequalities as necessary conditions for almost everywhere convergence. Z. Wahrsch. verw. Gebiete 375-88.

    Article  MATH  MathSciNet  Google Scholar 

  4. BurkholderD. L. (1966). Martingale transforms. Ann. Math. Statist. 371494-1504.

    Article  MATH  MathSciNet  Google Scholar 

  5. BurkholderD. L. (1973). Distribution function inequalities for martingales. Ann. Probability 119-42.

    Article  MATH  MathSciNet  Google Scholar 

  6. BurkholderD. L. (1979). A sharp inequality for martingale transforms. Ann. Probability 7858-863.

    Article  MATH  MathSciNet  Google Scholar 

  7. Burkholder, D. L. (1981). Martingale transforms and the geometry of Banach spaces. Proceedings of the Third International Conference on Probability in Banach Spaces, Tufts University, 1980. Lecture Notes in Mathematics, 86035-50. Springer, Berlin.

    Google Scholar 

  8. BurkholderD. L. and GundyR. F. (1970). Extrapolation and interpolation of quasi-linear operators on martingales. Acta Math. 124249-304.

    Article  MATH  MathSciNet  Google Scholar 

  9. BurkholderD. L., DavisB. J. and GundyR. F. (1972). Integral inequalities for convex functions of operators on martingales. Proc. Sixth Berkeley Symp. Math. Statist. Prob. 2223-240.

    MathSciNet  Google Scholar 

  10. ChatterjiS. D. (1968). Martingale convergence and the Radon-Nikodym theorem in Banach Spaces. Math. Scand. 2221-41.

    MATH  MathSciNet  Google Scholar 

  11. DavisB. J. (1970). On the integrability of the martingale square function. Israel J. Math. 8187-190.

    Article  MATH  MathSciNet  Google Scholar 

  12. DiestelJ. and UhlJ. J. (1977). Vector Measures.Math. Surveys, No. 15, Amer. Math. Soc, Providence, Rhode Island.

    Google Scholar 

  13. DoobJ. L. (1953). Stochastic Processes. Wiley, New York.

    MATH  Google Scholar 

  14. Kahane, Jean-Pierre (1968). Some Random Series of Functions. Heath, Lexington, Massachusetts.

    Google Scholar 

  15. KwapienS. (1972). Isomorphic characterizations of inner product spaces by orthogonal series with vector valued coefficients. Studia Math. 44583-595.

    MATH  MathSciNet  Google Scholar 

  16. MaureyB. (1975). Système de Haar. Séminaire Maurey-Schwartz, 1974-1975, Ecole Polytechnique, Paris.

    Google Scholar 

  17. PisierG. (1975). Un exemple concernant la super-réflexivité. Séminaire Maurey-Schwartz, 1974-1975, Ecole Polytechnique, Paris.

    Google Scholar 

  18. PisierG. (1975). Martingales with values in uniformly convex spaces. Israel J. Math. 20326-350.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burgess Davis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Davis, B., Song, R. (2011). A Geometrical Characterization of Banach Spaces in Which Martingale Difference Sequences are Unconditional. In: Davis, B., Song, R. (eds) Selected Works of Donald L. Burkholder. Selected Works in Probability and Statistics. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7245-3_23

Download citation

Publish with us

Policies and ethics