A Geometrical Characterization of Banach Spaces in Which Martingale Difference Sequences are Unconditional

  • Burgess DavisEmail author
  • Renming Song
Part of the Selected Works in Probability and Statistics book series (SWPS)


Let 1 < p < ∞. For what Banach spaces B does there exist a positive real number c p such that
$$||{\varepsilon _1}{d_1} + \cdots + {\varepsilon _n}{d_1}|{|_p} \leq {c_p}||{d_1} +\cdots + {d_n}|{|_p}$$
for all B-valued martingale difference sequences d = (d1, d2,…) all numbers є1є2,… in {-1, 1}, and all n ≥ 1? This and closely related questions have been of interest to Maurey [16], Pisier [17], Diestel and Uhl [12], Aldous [1], and others. Let us write B∈E UMD (the space B has the unconditionality property for martingale differences) if such a constant Cp = Cp(B) does exist. (Maurey uses a slightly different notation.) This class of spaces appears to depend on p but, in fact, does not [16] as we shall see in another way. It was proved in [4] that ∈ UMD and from this follows immediately that the Lebesgue spaces lr, Lr(0 1) E UMD for 1 < r < ∞. Any UMD-space is reflexive, in fact superreflexive [16], [1], so, for example, l1,lE UMD. On the other hand, Pisier [17] has constructed an example showing that a suoerreflexive space need not be UMD.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    AldousD. J. (1979). Unconditional bases and martingales in L P(F). Math. Proc. Cambridge Philos. Soc. 85117-123.zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bollobàs, Béla (1980). Martingale inequalities. Math. Proc. Cambridge Philos. Soc. 87377-382.zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    BurkholderD. L. (1964). Maximal inequalities as necessary conditions for almost everywhere convergence. Z. Wahrsch. verw. Gebiete 375-88.zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    BurkholderD. L. (1966). Martingale transforms. Ann. Math. Statist. 371494-1504.zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    BurkholderD. L. (1973). Distribution function inequalities for martingales. Ann. Probability 119-42.zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    BurkholderD. L. (1979). A sharp inequality for martingale transforms. Ann. Probability 7858-863.zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Burkholder, D. L. (1981). Martingale transforms and the geometry of Banach spaces. Proceedings of the Third International Conference on Probability in Banach Spaces, Tufts University, 1980. Lecture Notes in Mathematics, 86035-50. Springer, Berlin.Google Scholar
  8. 8.
    BurkholderD. L. and GundyR. F. (1970). Extrapolation and interpolation of quasi-linear operators on martingales. Acta Math. 124249-304.zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    BurkholderD. L., DavisB. J. and GundyR. F. (1972). Integral inequalities for convex functions of operators on martingales. Proc. Sixth Berkeley Symp. Math. Statist. Prob. 2223-240.MathSciNetGoogle Scholar
  10. 10.
    ChatterjiS. D. (1968). Martingale convergence and the Radon-Nikodym theorem in Banach Spaces. Math. Scand. 2221-41.zbMATHMathSciNetGoogle Scholar
  11. 11.
    DavisB. J. (1970). On the integrability of the martingale square function. Israel J. Math. 8187-190.zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    DiestelJ. and UhlJ. J. (1977). Vector Measures.Math. Surveys, No. 15, Amer. Math. Soc, Providence, Rhode Island.Google Scholar
  13. 13.
    DoobJ. L. (1953). Stochastic Processes. Wiley, New York.zbMATHGoogle Scholar
  14. 14.
    Kahane, Jean-Pierre (1968). Some Random Series of Functions. Heath, Lexington, Massachusetts.Google Scholar
  15. 15.
    KwapienS. (1972). Isomorphic characterizations of inner product spaces by orthogonal series with vector valued coefficients. Studia Math. 44583-595.zbMATHMathSciNetGoogle Scholar
  16. 16.
    MaureyB. (1975). Système de Haar. Séminaire Maurey-Schwartz, 1974-1975, Ecole Polytechnique, Paris.Google Scholar
  17. 17.
    PisierG. (1975). Un exemple concernant la super-réflexivité. Séminaire Maurey-Schwartz, 1974-1975, Ecole Polytechnique, Paris.Google Scholar
  18. 18.
    PisierG. (1975). Martingales with values in uniformly convex spaces. Israel J. Math. 20326-350.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Mathematics and Department of StatisticsPurdue UniversityWest LafayetteUSA
  2. 2.Department of MathematicsUniversity of IllinoisUrbanaUSA

Personalised recommendations