Brownian Motion and the Hardy Spaces Hp

  • Burgess DavisEmail author
  • Renming Song
Part of the Selected Works in Probability and Statistics book series (SWPS)


Our aim here is to describe, particularly in the context of Hardy spaces, some of the interplay of Brownian motion and analytic functions. We shall begin with a little of the historical background and introduce some of the key ideas along the way.


Brownian Motion Harmonic Function Hardy Space Maximal Function Exit Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Baernstein, Some sharp inequalities for conjugate functions, Indiana Univ. Math. J. 27(1978) 833-852.zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    J. Brossard, Comportement des fonctions biharmoniques là où l’intégrale d’aire est finie, Bull. Sci. Math. 103(1979) 77-95.zbMATHMathSciNetGoogle Scholar
  3. 3.
    D. L. Burkholder, Maximal inequalities as necessary conditions for almost everywhere convergence, Z. Wahrsch. Verw. Gebiete 3(1964) 75-88zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    D. L. Burkholder, Martingale transforms, Ann. Math. Statist. 37(1966) 1494-1504.zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    D. L. Akrkholder, Distribution function inequalities for martingales, Ann. Probability 1(1973) 19-42.CrossRefMathSciNetGoogle Scholar
  6. 6.
    D. L. Burkholder, One-sided maximal functions and H p, J. Functional Analysis 18(1975)429-454.zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    D. L. Burkholder, Exit times of Brownian motion, harmonic majorization, and Hardy spaces, Advances in Math. 26(1977) 182-205.zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    D. L. Burkholder, Boundary value estimation of the range of an analytic function, Michigan Math. J. 25(1978) 197-211.zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    D. L. Burkholder, A sharp inequality for martingale transforms, Ann. Probability 7(1979) 858-863.zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    D. L. Burkholder, Weak inequalities for exit times and analytic functions, in"Proceedings of the Probability Semester" (Spring, 1976) Vol. 5, pp. 27—34. Banach Center Publications, Warsaw, 1979.Google Scholar
  11. 11.
    D. L. Burkholder and R. F. Gundy, Extrapolation and interpolation of quasi-linear operators on martingales, A eta Math. 124(1970) 249—304.zbMATHMathSciNetGoogle Scholar
  12. 12.
    D. L. Burkholder and R. F. Gundy, Distribution function inequalities for the area integral, Studia Math. 44(1972) 527-544.zbMATHMathSciNetGoogle Scholar
  13. 13.
    D. L. Burkholder and R. F. Gundy, Boundary behavior of harmonic functions in a half-space and Brownian motion, Ann. Inst. Fourier (Grenoble) 23(1973) 195-212.zbMATHMathSciNetGoogle Scholar
  14. 14.
    D. L. Burkholder, B. J. Davis, and R. F. Gundy, Integral inequalities for convex functions of operators on martingales, Proc. Sixth Berkeley Symp. Math. Statist, and Probability 2(1972) 223-240.MathSciNetGoogle Scholar
  15. 15.
    D. L. Burkholder, R. F. Gundy, and M. L. Silverstein, A maximal function characterization of the class H p, Trans. Amer. Math. Soc. 157(1971) 137-153.zbMATHMathSciNetGoogle Scholar
  16. 16.
    A. P. Calderón, On the behaviour of harmonic functions at the boundary, Trans. Amer. Math. Soc. 68(1950) 47-54.zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    A. P. Calderón, On a theorem of Marcinkiewicz and Zygmund, Trans. Amer. Math. Soc. 68(1950)55-61.zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    A. P. Calderón, Commutators of singular integral operators, Proc. Nat. Acad. Sei. U.S.A. 53(1965) 1092-1099.zbMATHCrossRefGoogle Scholar
  19. 19.
    A. P. Calderón and A. Torchinsky, Parabolic maximal functions associated with a distribution, Advances in Math. 16(1975) 1-64.zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    L. Carleson, On the existence of boundary values for harmonic functions in several variables, Ark. Mat. 4(1962) 393-399.zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis,Bull. Amer. Math. Soc. 83(1977) 569-645.zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    B. Davis, On the integrability of the martingale square function, Israel J.Math. 8(1970) 187-190.zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    B. Davis, An inequality for the distribution of the Brownian gradient function, Proc. Amer. Math. Soc. 37(1973) 189-194.zbMATHCrossRefGoogle Scholar
  24. 24.
    B. Davis, On the weak type (1, 1) inequality for conjugate functions, Proc. Amer. Math. Soc. 44(1974) 307-311.zbMATHMathSciNetGoogle Scholar
  25. 25.
    B. Davis, Picard ’s theorem and Brownian motion, Trans. Amer. Math. Soc. 213(1975) 353-362.zbMATHMathSciNetGoogle Scholar
  26. 26.
    B. Davis, Brownian motion and analytic functions, Ann. Probability 7(1979)913-932.zbMATHCrossRefGoogle Scholar
  27. 27.
    J. L. Doob, "Stochastic processes". John Wiley and Sons, New York, 1953.zbMATHGoogle Scholar
  28. 28.
    J. L. Doob, Semimartingales and subharmonic functions, Trans. Amer. Math. Soc. 77(1954) 86-121.zbMATHMathSciNetGoogle Scholar
  29. 29.
    J. L. Doob, Conformally invariant cluster value theory, Illinois J. Math. 5(1961)521-549.zbMATHMathSciNetGoogle Scholar
  30. 30.
    P. L. Duren, "Theory of H pspaces". Academic Press, London and New York, 1970Google Scholar
  31. 31.
    C. Fefferman, Characterizations of bounded mean oscillation, Bull. Amer. Math. Soc. 11(1971) 587-588.CrossRefMathSciNetGoogle Scholar
  32. 32.
    C. Fefferman and E. M. Stein, H pspaces of several variables, A eta Ma th. 129(1972) 137-192.zbMATHMathSciNetGoogle Scholar
  33. 33.
    L. Gårding, Marcel Riesz in memoriam, A eta Math. 124(1970) i-xi.Google Scholar
  34. 34.
    J. Gilbert, Nikišin—Stein theory and factorization with applications, in"Proceedings of Symposia in Pure Mathematics", Vol. 35, Part 3, pp. 283-301.Google Scholar
  35. 35.
    R. F. Gundy, A decomposition for L 1-bounded martingales, Ann. Math. Statist. 39(1968) 134-138.zbMATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    R. F. Gundy and E. M. Stein, H ptheory for the poly-disc, Proc. Nat. Acad. Sei. U.S.A. 76(1979) 1026-1029.zbMATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    L. J. Hansen, Boundary values and mapping properties of H pfunctions, Math. Z. 128(1972) 189-194.zbMATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    G. H. Hardy and J. E. Little wood, A maximal theorem with function theoretic applications, Acta Math. 54(1930) 81-116.CrossRefMathSciNetGoogle Scholar
  39. 39.
    J. Horváth, Sur les f on citons conjugées à plusieurs variables, Nederl Akad. Wetensch. Indag. Math. 15(1953) 17-29.Google Scholar
  40. 40.
    R. A. Hunt, On L(p,q)spaces, Enseignement Math.(2 ) 12 (1966), 249-276.Google Scholar
  41. 41.
    A. N. Kolmogorov, Sur les fonctions harmoniques conjuguées et les séries de Fourier, Fund. Math. 7(1925) 24-29.Google Scholar
  42. 42.
    P. Lévy, "Processus stochastiques et mouvement brownien". Gauthier-Villars, Paris, 1948.zbMATHGoogle Scholar
  43. 43.
    M. P. Malliavin and P. Malliavin, Intégrales de Lusin-Calderón pour les fonctions biharmoniques, Bull. Sei. Math.(2 ) 101(1977), 357-384.MathSciNetGoogle Scholar
  44. 44.
    J. Marcinkiewicz, Sur l’interpolation d’opérations, C. R. Acad. Sei. Paris 208(1939) 1272-1273.Google Scholar
  45. 45.
    H. P. McKean, "Stochastic integrals". Academic Press, New York and London, 1969.zbMATHGoogle Scholar
  46. 46.
    P. A. Meyer, "Probability and potentials". Blaisdell, Waltham, MA, 1966.zbMATHGoogle Scholar
  47. 47.
    R. E. A. C. Paley, A remarkable series of orthogonal functions I. Proc. London Math. Soc. 34(1932)241-264.zbMATHCrossRefGoogle Scholar
  48. 48.
    K. E. Petersen, "Brownian motion, Hardy spaces and bounded mean oscillation". London Mathematical Society Lecture Note Series (2), Vol. 28. Cambridge University Press, Cambridge, 1977.Google Scholar
  49. 49.
    S. K. Pichorides, On the best values of the constants in the theorems of M. Riesz, Zygmund, and Kolmogorov, Studia Math. 46(1972) 164-179.MathSciNetGoogle Scholar
  50. 50.
    I. I. Privalov, "Intégrale de Cauchy" (in Russian). Saratov, 1919.Google Scholar
  51. 51.
    M. Riesz, Les fonctions conjuguées et les séries de Fourier, C, R, Acad. Sei Paris 178(1924) 1464-1467.zbMATHGoogle Scholar
  52. 52.
    M. Riesz, Sur les fonctions conjuguées, Math. Z. 27(1927) 218-244.zbMATHCrossRefMathSciNetGoogle Scholar
  53. 53.
    F. Schipp, Fourier series and martingale transforms, in"Linear spaces and approximation" (P. L. Butzer and B. Sz. -Nagy eds.) pp. 571-581. Birkhäuser-Verlag, Basel, 1978.Google Scholar
  54. 54.
    E. M. Stein, On the theory of harmonic functions of several variables II. Behavior nel the boundary, Acta Math. 106(1961) 137-174.zbMATHCrossRefMathSciNetGoogle Scholar
  55. 55.
    E. M. Stein, On limits of sequences of operators, Ann. of Math. 74(1961) 140-170.CrossRefMathSciNetGoogle Scholar
  56. 56.
    E. M. Stein, "Singular integrals and differentiability properties of functions." Princeton University Press, Princeton, NJ, 1970.Google Scholar
  57. 57.
    E. M. Stein and G. Weiss, On the theory of harmonic functions of several variables I. The theory of H p-spaces, Acta Math. 103(1960)25-62.zbMATHCrossRefMathSciNetGoogle Scholar
  58. 58.
    K. Stephenson, Weak subordination and stable classes of meromorphic functions, to appear.Google Scholar
  59. 59.
    D. E. Tepper and J. H. Neuwirth, A covering property for H p-functions, in"Proceedings of the S.U.N.Y. Brockport Conference on Complex Analysis" (Sanford S. Miller, ed.) pp. 95-97. Marcel Dekker, New York, 1978.Google Scholar
  60. 60.
    M. Tsuji, "Potential theory in modern function theory". Maruzen, Tokyo, 1959.zbMATHGoogle Scholar
  61. 61.
    A. Zygmund, "Trigonometrical Series I, II". Cambridge University Press, Cambridge, 1959.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Mathematics and Department of StatisticsPurdue UniversityWest LafayetteUSA
  2. 2.Department of MathematicsUniversity of IllinoisUrbanaUSA

Personalised recommendations