Advertisement

Brownian Motion and the Hardy Spaces Hp

Chapter
Part of the Selected Works in Probability and Statistics book series (SWPS)

Abstract

Our aim here is to describe, particularly in the context of Hardy spaces, some of the interplay of Brownian motion and analytic functions. We shall begin with a little of the historical background and introduce some of the key ideas along the way.

Keywords

Brownian Motion Harmonic Function Hardy Space Maximal Function Exit Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Baernstein, Some sharp inequalities for conjugate functions, Indiana Univ. Math. J. 27(1978) 833-852.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    J. Brossard, Comportement des fonctions biharmoniques là où l’intégrale d’aire est finie, Bull. Sci. Math. 103(1979) 77-95.MATHMathSciNetGoogle Scholar
  3. 3.
    D. L. Burkholder, Maximal inequalities as necessary conditions for almost everywhere convergence, Z. Wahrsch. Verw. Gebiete 3(1964) 75-88MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    D. L. Burkholder, Martingale transforms, Ann. Math. Statist. 37(1966) 1494-1504.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    D. L. Akrkholder, Distribution function inequalities for martingales, Ann. Probability 1(1973) 19-42.CrossRefMathSciNetGoogle Scholar
  6. 6.
    D. L. Burkholder, One-sided maximal functions and H p, J. Functional Analysis 18(1975)429-454.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    D. L. Burkholder, Exit times of Brownian motion, harmonic majorization, and Hardy spaces, Advances in Math. 26(1977) 182-205.MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    D. L. Burkholder, Boundary value estimation of the range of an analytic function, Michigan Math. J. 25(1978) 197-211.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    D. L. Burkholder, A sharp inequality for martingale transforms, Ann. Probability 7(1979) 858-863.MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    D. L. Burkholder, Weak inequalities for exit times and analytic functions, in"Proceedings of the Probability Semester" (Spring, 1976) Vol. 5, pp. 27—34. Banach Center Publications, Warsaw, 1979.Google Scholar
  11. 11.
    D. L. Burkholder and R. F. Gundy, Extrapolation and interpolation of quasi-linear operators on martingales, A eta Math. 124(1970) 249—304.MATHMathSciNetGoogle Scholar
  12. 12.
    D. L. Burkholder and R. F. Gundy, Distribution function inequalities for the area integral, Studia Math. 44(1972) 527-544.MATHMathSciNetGoogle Scholar
  13. 13.
    D. L. Burkholder and R. F. Gundy, Boundary behavior of harmonic functions in a half-space and Brownian motion, Ann. Inst. Fourier (Grenoble) 23(1973) 195-212.MATHMathSciNetGoogle Scholar
  14. 14.
    D. L. Burkholder, B. J. Davis, and R. F. Gundy, Integral inequalities for convex functions of operators on martingales, Proc. Sixth Berkeley Symp. Math. Statist, and Probability 2(1972) 223-240.MathSciNetGoogle Scholar
  15. 15.
    D. L. Burkholder, R. F. Gundy, and M. L. Silverstein, A maximal function characterization of the class H p, Trans. Amer. Math. Soc. 157(1971) 137-153.MATHMathSciNetGoogle Scholar
  16. 16.
    A. P. Calderón, On the behaviour of harmonic functions at the boundary, Trans. Amer. Math. Soc. 68(1950) 47-54.MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    A. P. Calderón, On a theorem of Marcinkiewicz and Zygmund, Trans. Amer. Math. Soc. 68(1950)55-61.MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    A. P. Calderón, Commutators of singular integral operators, Proc. Nat. Acad. Sei. U.S.A. 53(1965) 1092-1099.MATHCrossRefGoogle Scholar
  19. 19.
    A. P. Calderón and A. Torchinsky, Parabolic maximal functions associated with a distribution, Advances in Math. 16(1975) 1-64.MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    L. Carleson, On the existence of boundary values for harmonic functions in several variables, Ark. Mat. 4(1962) 393-399.MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis,Bull. Amer. Math. Soc. 83(1977) 569-645.MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    B. Davis, On the integrability of the martingale square function, Israel J.Math. 8(1970) 187-190.MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    B. Davis, An inequality for the distribution of the Brownian gradient function, Proc. Amer. Math. Soc. 37(1973) 189-194.MATHCrossRefGoogle Scholar
  24. 24.
    B. Davis, On the weak type (1, 1) inequality for conjugate functions, Proc. Amer. Math. Soc. 44(1974) 307-311.MATHMathSciNetGoogle Scholar
  25. 25.
    B. Davis, Picard ’s theorem and Brownian motion, Trans. Amer. Math. Soc. 213(1975) 353-362.MATHMathSciNetGoogle Scholar
  26. 26.
    B. Davis, Brownian motion and analytic functions, Ann. Probability 7(1979)913-932.MATHCrossRefGoogle Scholar
  27. 27.
    J. L. Doob, "Stochastic processes". John Wiley and Sons, New York, 1953.MATHGoogle Scholar
  28. 28.
    J. L. Doob, Semimartingales and subharmonic functions, Trans. Amer. Math. Soc. 77(1954) 86-121.MATHMathSciNetGoogle Scholar
  29. 29.
    J. L. Doob, Conformally invariant cluster value theory, Illinois J. Math. 5(1961)521-549.MATHMathSciNetGoogle Scholar
  30. 30.
    P. L. Duren, "Theory of H pspaces". Academic Press, London and New York, 1970Google Scholar
  31. 31.
    C. Fefferman, Characterizations of bounded mean oscillation, Bull. Amer. Math. Soc. 11(1971) 587-588.CrossRefMathSciNetGoogle Scholar
  32. 32.
    C. Fefferman and E. M. Stein, H pspaces of several variables, A eta Ma th. 129(1972) 137-192.MATHMathSciNetGoogle Scholar
  33. 33.
    L. Gårding, Marcel Riesz in memoriam, A eta Math. 124(1970) i-xi.Google Scholar
  34. 34.
    J. Gilbert, Nikišin—Stein theory and factorization with applications, in"Proceedings of Symposia in Pure Mathematics", Vol. 35, Part 3, pp. 283-301.Google Scholar
  35. 35.
    R. F. Gundy, A decomposition for L 1-bounded martingales, Ann. Math. Statist. 39(1968) 134-138.MATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    R. F. Gundy and E. M. Stein, H ptheory for the poly-disc, Proc. Nat. Acad. Sei. U.S.A. 76(1979) 1026-1029.MATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    L. J. Hansen, Boundary values and mapping properties of H pfunctions, Math. Z. 128(1972) 189-194.MATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    G. H. Hardy and J. E. Little wood, A maximal theorem with function theoretic applications, Acta Math. 54(1930) 81-116.CrossRefMathSciNetGoogle Scholar
  39. 39.
    J. Horváth, Sur les f on citons conjugées à plusieurs variables, Nederl Akad. Wetensch. Indag. Math. 15(1953) 17-29.Google Scholar
  40. 40.
    R. A. Hunt, On L(p,q)spaces, Enseignement Math.(2 ) 12 (1966), 249-276.Google Scholar
  41. 41.
    A. N. Kolmogorov, Sur les fonctions harmoniques conjuguées et les séries de Fourier, Fund. Math. 7(1925) 24-29.Google Scholar
  42. 42.
    P. Lévy, "Processus stochastiques et mouvement brownien". Gauthier-Villars, Paris, 1948.MATHGoogle Scholar
  43. 43.
    M. P. Malliavin and P. Malliavin, Intégrales de Lusin-Calderón pour les fonctions biharmoniques, Bull. Sei. Math.(2 ) 101(1977), 357-384.MathSciNetGoogle Scholar
  44. 44.
    J. Marcinkiewicz, Sur l’interpolation d’opérations, C. R. Acad. Sei. Paris 208(1939) 1272-1273.Google Scholar
  45. 45.
    H. P. McKean, "Stochastic integrals". Academic Press, New York and London, 1969.MATHGoogle Scholar
  46. 46.
    P. A. Meyer, "Probability and potentials". Blaisdell, Waltham, MA, 1966.MATHGoogle Scholar
  47. 47.
    R. E. A. C. Paley, A remarkable series of orthogonal functions I. Proc. London Math. Soc. 34(1932)241-264.MATHCrossRefGoogle Scholar
  48. 48.
    K. E. Petersen, "Brownian motion, Hardy spaces and bounded mean oscillation". London Mathematical Society Lecture Note Series (2), Vol. 28. Cambridge University Press, Cambridge, 1977.Google Scholar
  49. 49.
    S. K. Pichorides, On the best values of the constants in the theorems of M. Riesz, Zygmund, and Kolmogorov, Studia Math. 46(1972) 164-179.MathSciNetGoogle Scholar
  50. 50.
    I. I. Privalov, "Intégrale de Cauchy" (in Russian). Saratov, 1919.Google Scholar
  51. 51.
    M. Riesz, Les fonctions conjuguées et les séries de Fourier, C, R, Acad. Sei Paris 178(1924) 1464-1467.MATHGoogle Scholar
  52. 52.
    M. Riesz, Sur les fonctions conjuguées, Math. Z. 27(1927) 218-244.MATHCrossRefMathSciNetGoogle Scholar
  53. 53.
    F. Schipp, Fourier series and martingale transforms, in"Linear spaces and approximation" (P. L. Butzer and B. Sz. -Nagy eds.) pp. 571-581. Birkhäuser-Verlag, Basel, 1978.Google Scholar
  54. 54.
    E. M. Stein, On the theory of harmonic functions of several variables II. Behavior nel the boundary, Acta Math. 106(1961) 137-174.MATHCrossRefMathSciNetGoogle Scholar
  55. 55.
    E. M. Stein, On limits of sequences of operators, Ann. of Math. 74(1961) 140-170.CrossRefMathSciNetGoogle Scholar
  56. 56.
    E. M. Stein, "Singular integrals and differentiability properties of functions." Princeton University Press, Princeton, NJ, 1970.Google Scholar
  57. 57.
    E. M. Stein and G. Weiss, On the theory of harmonic functions of several variables I. The theory of H p-spaces, Acta Math. 103(1960)25-62.MATHCrossRefMathSciNetGoogle Scholar
  58. 58.
    K. Stephenson, Weak subordination and stable classes of meromorphic functions, to appear.Google Scholar
  59. 59.
    D. E. Tepper and J. H. Neuwirth, A covering property for H p-functions, in"Proceedings of the S.U.N.Y. Brockport Conference on Complex Analysis" (Sanford S. Miller, ed.) pp. 95-97. Marcel Dekker, New York, 1978.Google Scholar
  60. 60.
    M. Tsuji, "Potential theory in modern function theory". Maruzen, Tokyo, 1959.MATHGoogle Scholar
  61. 61.
    A. Zygmund, "Trigonometrical Series I, II". Cambridge University Press, Cambridge, 1959.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Mathematics and Department of StatisticsPurdue UniversityWest LafayetteUSA
  2. 2.Department of MathematicsUniversity of IllinoisUrbanaUSA

Personalised recommendations