Skip to main content

Boundary Behaviour of Harmonic Functions in a Half-Space and Brownian Motion

  • Chapter
  • First Online:
Book cover Selected Works of Donald L. Burkholder

Part of the book series: Selected Works in Probability and Statistics ((SWPS))

  • 1717 Accesses

Abstract

The behaviour of harmonic functions in the half-space \(R_ + ^{n + 1}\) has been discussed from two points of view: geometrical and probabilistic. In this paper, we compare these two view points with respect to (1) local convergence at the boundary and (2) the Hp-spaces. The results are as follows: (1) The existence of a nontangential limit for almost all points in a set E of positive Lebesgue measure in \({R^n}\left( { = \partial \,R_ + ^{n + 1}} \right)\) is more restrictive than the existence of a « fine » or probability limit almost everywhere in E when \(n \geqslant 2\). When \(n=1\), the existence of a nontangential limit almost everywhere in E implies the existence of a « fine » limit almost everywhere in E and conversely.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. M. Brelot and L. Doob, Limites angulaires et limites fines, Ann. Inst. Fourier (Grenoble), 13, (1963), 395-415.

    MATH  MathSciNet  Google Scholar 

  2. D. L. Burkholder and R. F. Gunpy, Distribution function inequalities for the area integral, Studio, Math., 44, (1972), 527-544

    MATH  Google Scholar 

  3. D. L. Burkholder, R. F. Gundy and M. L. Silverstein, A maximal function characterization of the class HP, Trans. Amer. Math. Soc, 157(1971), 137-153.

    MATH  MathSciNet  Google Scholar 

  4. A. P. CalderónOn the behaviour of harmonic functions at the boundary, Trans. Amer. Math. Soc., 68, (1950), 47-54.

    Article  MATH  MathSciNet  Google Scholar 

  5. A. P. CalderónOn a theorem of Marcinkiewicz and Zygmund, Trans. Amer. Math. Soc, 68, (1950), 55-61.

    Article  MATH  MathSciNet  Google Scholar 

  6. L. CarlesonOn the existence of boundary values for harmonic functions in several variables, Arkw för Mathematik, 4, (1961), 393-399.

    Article  MathSciNet  Google Scholar 

  7. C. Constantinescu and A. Cornea, Über das Verhalten der analytischen Abildungen Riemannscher Flachen auf dem idealen Rand von Martin, Nagoya Math. J., 17, (1960), 1-87.

    MATH  MathSciNet  Google Scholar 

  8. J. L. DoobConditional Brownian motion and the boundary limits of harmonic functions, Bull. Soc. Math. France, 85, (1957), 431-458.

    MATH  MathSciNet  Google Scholar 

  9. J. L. Doob, Boundary limit theorems for a half-space, J. Math. Pures Appl, (9) 37, (1958), 385-392.

    MathSciNet  Google Scholar 

  10. C. Fefferman and E. M. Stein, HP-spaces in several variables, Acta Math. 129, (1972), 137-193.

    Article  MATH  MathSciNet  Google Scholar 

  11. G. H. Hardy and J. E. Littlewood, Some properties of conjugate functions, J. fur Mat., 167, (1931), 405-423.

    Google Scholar 

  12. J. LelongReview 4471, Math. Reviews, 40, (1970), 824-825.

    Google Scholar 

  13. J. LelongÉtude au voisinage de la frontière des fonctions surharmoniques positives dans un demi-espace, Ann. Sei. École Norm. Sup., 66, (1949), 125-159.

    MATH  Google Scholar 

  14. J. Marcinkiewicz and A. Zygmund, A theorem of Lusin, Duke Math. J., 4, (1938), 473-485.

    Article  MathSciNet  Google Scholar 

  15. H. P. McKean Jr., Stochastic integrals, Academic Press, New York, 1969.

    MATH  Google Scholar 

  16. L. NaïmSur le rôle de la frontière de R. S. Martin dans la Théorie du potential, Ann. Inst. Fourier(Grenoble), 7, (1957), 183-285.

    MATH  MathSciNet  Google Scholar 

  17. I. I. Privalov, Integral Cauchy, Saratov, 1919.

    Google Scholar 

  18. D. SpencerA function-theoretic identity, Amer. J. Math., 65, (1943), 147-160.

    Article  MATH  MathSciNet  Google Scholar 

  19. E. M. SteinOn the theory of harmonic functions of several variables IL Behaviour near the boundary, Acta Math., 106, (1961), 137-174.

    Article  MATH  MathSciNet  Google Scholar 

  20. E. M. Stein and G. WeissOn the theory of harmonic functions of several variables I. The theory of Hp-spaces, Acta Math., 103, (1960), 25-62.

    MATH  MathSciNet  Google Scholar 

  21. J. L. WalshThe approximation of harmonic functions by harmonic polynomials and harmonic rational functions, Bull. Amer. Math. Soc., 35, (1929), 499-544.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burgess Davis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Davis, B., Song, R. (2011). Boundary Behaviour of Harmonic Functions in a Half-Space and Brownian Motion. In: Davis, B., Song, R. (eds) Selected Works of Donald L. Burkholder. Selected Works in Probability and Statistics. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7245-3_16

Download citation

Publish with us

Policies and ethics