Extrapolation and Interpolation of Quasi-Linear Operators on Martingales

  • Burgess DavisEmail author
  • Renming Song
Part of the Selected Works in Probability and Statistics book series (SWPS)


In this paper we introduce a new method to obtain one-sided and two-sided integral inequalities for a class of quasi-linear operators. Some of our assumptions are similar to those of the Marcinkiewicz interpolation theorem. However, in contrast to the Marcinkiewicz theorem, the operators that we study here are local in a certain sense and are usually most conveniently defined on martingales. In fact, the suitable choice of starting and stopping times for martingales, together with the systematic use of maximal functions and maximal operators, is central to our method.


Positive Real Number Maximal Function Difference Sequence Integral Inequality Matrix Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Burkholder, D. L., Martingale transforms. Ann. Math. Statist, 37 (1966), 1494-1504.zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Calderón, A. P. & ZygmtjndA., A note on the interpolation of sublinear operations. Amer. J. Math., 78 (1956), 282-288.zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Chow, Y. S., Convergence of sums of squares of martingale differences. Ann. Math. Statist., 39 (1968), 123-133.zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Davis, B.Divergence properties of some martingale transforms. Ann. Math. Statist., 40 (1969), 1852-1854.zbMATHCrossRefGoogle Scholar
  5. 5.
    Doob, J. L., Stochastic processes.New York, 1953.Google Scholar
  6. 6.
    Dvoretzky, A., Personal communication.Google Scholar
  7. 7.
    Gundy, R. F., The martingale version of a theorem of Marcinkiewicz and Zygmund. Ann. Math. Statist., 38 (1967), 725-734.zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Gundy, R. F. A decomposition for L 1-bounded martingales. Ann. Math. Statist., 39 (1968), 134-138.zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Gundy, R. F. On the class Llog L, martingales, and singular integrals. Studia Math., 33 (1969), 109-118.zbMATHMathSciNetGoogle Scholar
  10. 10.
    Hardy, G. H., and Littlewood, J. E., A maximal theorem with function-theoretic applications. Acta Math., 54 (1930), 81-116.CrossRefMathSciNetGoogle Scholar
  11. 11.
    Marcinkiewicz, J., Quelques théorèmes sur les séries orthogonales. Ann. Soc. Polon. Math., 16 (1937), 84-96 (pages 307-318 of the Collected Papers.)Google Scholar
  12. 12.
    Marcinkiewicz, J. & ZygmundA., Quelques théorèmes sur les fonctions indépendantes. Studia Math., 7 (1938), 104-120 (pages 374-388 of the Collected Papersof Marcinkiewicz).zbMATHGoogle Scholar
  13. 13.
    Millar, P. W., Martingale integrals. Trans, Amer. Math. Soc, 133 (1968), 145-166.zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Paley, R. E. A. C, A remarkable series of orthogonal functions. Proc. London Math. Soc, 34 (1932), 241-279.zbMATHCrossRefGoogle Scholar
  15. 15.
    Stein, E. M., Topics in harmonic analysis related to the Littlewood-Paley theory.Ann. Math. Studies 63. Princeton, 1970.Google Scholar
  16. 16.
    Tsuchikura, T., Sample properties of martingales and their arithmetic means. Tôïioku Math. J., 20 (1968), 400-415.zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Zygmund, A., Trigonometric series, 2nd edition. Cambridge, 1959.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Mathematics and Department of StatisticsPurdue UniversityWest LafayetteUSA
  2. 2.Department of MathematicsUniversity of IllinoisUrbanaUSA

Personalised recommendations