Advertisement

(Shear) Strain Imaging Used in Noninvasive Detection of Vulnerable Plaques in the Carotid Arterial Wall

Chapter

Abstract

The primary trigger for myocardial infarction and stroke is destabilization of atherosclerotic plaques. The chance of a plaque to rupture is related to its composition and geometry. Ultrasound (shear) strain imaging allows assessment of local tissue mechanics and possible risk assessment of vulnerable plaques. Intravascularly, in coronary arteries using a catheter, strain imaging has been demonstrated to be successful. At different intraluminal pressures, ultrasound data of the artery wall were recorded and local radial strains were estimated using cross-correlation methods. It has been shown in vitro and in vivo that softer lipidic plaques can be distinguished from harder fibrous and calcified plaques on basis of their strain values.

However, plaque rupture often occurs without preceding clinical symptoms. A relatively cheap noninvasive technique would make it possible to screen people before an actual cardiovascular event occurs and possibly give a risk assessment of the plaques present. Given the successful results of intravascular strain imaging, noninvasive versions of the technique are being developed by multiple research centers. These techniques focus on (shear) strain imaging of the carotid artery wall. At the moment, most of these techniques have been shown to give promising results for simulated and experimental data of vessel-like phantoms. Furthermore, the first in vivo results show good correspondence between calcifications and histology. A few studies also show in vivo reproducibility of the technique.

Various methods for noninvasive ultrasound strain imaging have been developed, and the first results demonstrate the potential of the methods to detect vulnerable plaques. Further validation of these methods will open the door for clinical screening of plaques.

Keywords

Ultrasound Strain imaging Compounding Shear strain Vulnerable plaque detection 

References

  1. 1.
    Thom T, Haase N, Rosamond W, Howard VJ, Rumsfeld J, Manolio T, et al. Heart disease and stroke statistics – 2006 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 2006 Feb 14;113(6):e85–151.CrossRefPubMedGoogle Scholar
  2. 2.
    Weintraub HS. Identifying the vulnerable patient with rupture-prone plaque. Am J Cardiol 2008 Jun 16;101(12A):3F–10F.CrossRefPubMedGoogle Scholar
  3. 3.
    Kolodgie FD, Burke AP, Skorija KS, Ladich E, Kutys R, Makuria AT, et al. Lipoprotein-associated phospholipase A2 protein expression in the natural progression of human coronary atherosclerosis. Arterioscler Thromb Vasc Biol 2006 Nov;26(11):2523–9.CrossRefPubMedGoogle Scholar
  4. 4.
    Schaar JA, Muller JE, Falk E, Virmani R, Fuster V, Serruys PW, et al. Terminology for high-risk and vulnerable coronary artery plaques. Report of a meeting on the vulnerable plaque, June 17 and 18, 2003, Santorini, Greece. Eur Heart J 2004 Jun;25(12):1077–82.CrossRefPubMedGoogle Scholar
  5. 5.
    Glagov S, Weisenberg E, Zarins CK, Stankunavicius R, Kolettis GJ. Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med 1987 May 28;316(22):1371–5.CrossRefPubMedGoogle Scholar
  6. 6.
    Pasterkamp G, Schoneveld AH, van der Wal AC, Haudenschild CC, Clarijs RJ, Becker AE, et al. Relation of arterial geometry to luminal narrowing and histologic markers for plaque vulnerability: the remodeling paradox. J Am Coll Cardiol 1998;32(3):655–62.CrossRefPubMedGoogle Scholar
  7. 7.
    Hurks R, Peeters W, Derksen WJ, Hellings WE, Hoefer IE, Moll FL, et al. Biobanks and the search for predictive biomarkers of local and systemic outcome in atherosclerotic disease. Thromb Haemost 2009 Jan;101(1):48–54.PubMedGoogle Scholar
  8. 8.
    Hansen HH, Lopata RG, De Korte CL. Noninvasive carotid strain imaging using angular compounding at large beam steered angles: validation in vessel phantoms. IEEE Trans Med Imaging 2009 Jun;28(6):872–80.CrossRefPubMedGoogle Scholar
  9. 9.
    Lerakis S, Synetos A, Toutouzas K, Vavuranakis M, Tsiamis E, Stefanadis C. Imaging of the vulnerable plaque: noninvasive and invasive techniques. Am J Med Sci 2008 Oct;336(4):342–8.CrossRefPubMedGoogle Scholar
  10. 10.
    Young JJ, Phillips HR, Marso SP, Granada JF, McPherson JA, Waksman R, et al. Vulnerable plaque intervention: state of the art. Catheter Cardiovasc Interv 2008 Feb 15;71(3):367–74.CrossRefPubMedGoogle Scholar
  11. 11.
    Schmitt C, Soulez G, Maurice RL, Giroux MF, Cloutier G. Noninvasive vascular elastography: toward a complementary characterization tool of atherosclerosis in carotid arteries. Ultrasound Med Biol 2007 Dec;33(12):1841–58.CrossRefPubMedGoogle Scholar
  12. 12.
    Behler RH, Nichols TC, Zhu H, Merricks EP, Gallippi CM. ARFI imaging for noninvasive material characterization of atherosclerosis. Part II: toward in vivo characterization. Ultrasound Med Biol 2009 Feb;35(2):278–95.CrossRefPubMedGoogle Scholar
  13. 13.
    Ophir J, Céspedes EI, Ponnekanti H, Yazdi Y, Li X. Elastography: a method for imaging the elasticity in biological tissues. Ultrason Imaging 1991;13:111–34.CrossRefPubMedGoogle Scholar
  14. 14.
    de Korte CL, Pasterkamp G, van der Steen AFW, Woutman HA, Bom N. Characterization of plaque components using intravascular ultrasound elastography in human femoral and coronary arteries in vitro. Circulation 2000;102(6):617–23.PubMedGoogle Scholar
  15. 15.
    de Korte CL, Carlier SG, Mastik F, Doyley MM, van der Steen AFW, Serruys PW, et al. Morphological and mechanical information of coronary arteries obtained with Intravascular elastography: a feasibility study in vivo. Eur Heart J 2002;23(5):405–13.CrossRefPubMedGoogle Scholar
  16. 16.
    Hasegawa H, Kanai H. Reduction of influence of variation in center frequencies of RF echoes on estimation of artery-wall strain. IEEE Trans Ultrason Ferroelectr Freq Control 2008 Sep;55(9):1921–34.CrossRefPubMedGoogle Scholar
  17. 17.
    Idzenga T, Hansen HHG, Lopata RGP, De Korte CL. Non-invasive assessment of shear strain in the carotid arterial wall based on ultrasound radiofrequency data. Proc IEEE Ultrason Symp 2009 2010 39:2456–2459.Google Scholar
  18. 18.
    Cinthio M, Ahlgren AR, Bergkvist J, Jansson T, Persson HW, Lindstrom K. Longitudinal movements and resulting shear strain of the arterial wall. Am J Physiol Heart Circ Physiol 2006 Jul;291(1):H394–402.CrossRefPubMedGoogle Scholar
  19. 19.
    Maurice RL, Ohayon J, Fretigny Y, Bertrand M, Soulez G, Cloutier G. Noninvasive vascular elastography: theoretical framework. IEEE Trans Med Imaging 2004 Feb;23(2):164–80.CrossRefPubMedGoogle Scholar
  20. 20.
    Ribbers H, Lopata RG, Holewijn S, Pasterkamp G, Blankensteijn JD, De Korte CL. Noninvasive two-dimensional strain imaging of arteries: validation in phantoms and preliminary experience in carotid arteries in vivo. Ultrasound Med Biol 2007 Apr;33(4):530–40.CrossRefPubMedGoogle Scholar
  21. 21.
    Shi H, Varghese T. Two-dimensional multi-level strain estimation for discontinuous tissue. Phys Med Biol 2007 Jan 21;52(2):389–401.CrossRefPubMedGoogle Scholar
  22. 22.
    Kallel F, Ophir J. A least-squares strain estimator for elastography. Ultrasonic Imaging 1997 Jul;19(3):195–208.PubMedGoogle Scholar
  23. 23.
    de Korte CL, Céspedes EI, van der Steen AFW, Lancée CT. Intravascular elasticity imaging using ultrasound: feasibility studies in phantoms. Ultrasound Med Biol 1997;23(5):735–46.CrossRefPubMedGoogle Scholar
  24. 24.
    Ryan LK, Foster FS. Ultrasonic measurement of differential displacement and strain in a vascular model. Ultrasonic Imaging 1997;19:19–38.PubMedGoogle Scholar
  25. 25.
    Shapo BM, Crowe JR, Erkamp R, Emelianov SY, Eberle M, O’Donnell M. Strain imaging of coronary arteries with intraluminal ultrasound: experiments on an inhomogeneous phantom. Ultrasonic Imaging 1996;18:173–91.CrossRefPubMedGoogle Scholar
  26. 26.
    Céspedes EI, de Korte CL, van der Steen AFW. Intravascular ultrasonic palpation: assessment of local wall compliance. Toronto, Canada, IEEE, 1997 pp. 1079–82.Google Scholar
  27. 27.
    de Korte CL, Sierevogel M, Mastik F, Strijder C, Velema E, Pasterkamp G, et al. Identification of atherosclerotic plaque components with intravascular ultrasound elastography in vivo: a Yucatan pig study. Circulation 2002;105(14):1627–30.CrossRefPubMedGoogle Scholar
  28. 28.
    Schaar JA, de Korte CL, Mastik F, Strijder C, Pasterkamp G, Serruys P, et al. Vulnerable plaque detection with intravascular elastography: a sensitivity and specificity study. Circulation 2001;104(17):II–459.Google Scholar
  29. 29.
    Brusseau E, Fromageau J, Finet G, Delachartre P, Vray D. Axial strain imaging of intravascular data: results on polyvinyl alcohol cryogel phantoms and carotid artery. Ultrasound Med Biol 2001;27(12):1631–42.CrossRefPubMedGoogle Scholar
  30. 30.
    Nicolaides A, Sabetai M, Kakkos SK, Dhanjil S, Tegos T, Stevens JM, et al. The asymptomatic carotid stenosis and risk of stroke (ACSRS) study – aims and results of quality control. Int Angiol 2003 Sep;22(3):263–72.PubMedGoogle Scholar
  31. 31.
    O’Leary DH, Polak JF, Kronmal RA. Carotid-artery intima and media thickness as a risk factor for myocardial infarction and stroke – reply. N Engl J Med 1999 Jun 3;340(22):1763.CrossRefGoogle Scholar
  32. 32.
    Bonnefous O, Brevannes L, Denis E, Sananes JC, Montaudon M, Laurent FH, et al. New noninvasive echographic technique for arterial wall characterization. Radiology 1996 Nov;201:1129.Google Scholar
  33. 33.
    Kanai H, Sato M, Koiwa Y, Chubachi N. Transcutaneous measurement and spectrum analysis of heart wall vibrations. IEEE Trans Ultrason Ferroelectr Freq Control 1996 Sep;43(5):791–810.CrossRefGoogle Scholar
  34. 34.
    Hasegawa H, Kanai H. Reduction of influence of variation in center frequencies of RF echoes on estimation of artery-wall strain. IEEE Trans Ultrason Ferroelectr Freq Control 2008 Sep;55(9):1921–34.CrossRefPubMedGoogle Scholar
  35. 35.
    Hasegawa H, Kanai H. Simultaneous imaging of artery-wall strain and blood flow by high frame rate acquisition of RF signals. IEEE Trans Ultrason Ferroelectr Freq Control 2008 Dec;55(12):2626–39.CrossRefPubMedGoogle Scholar
  36. 36.
    Maurice RL, Bertrand M. Lagrangian speckle model and tissue-motion estimation – theory. IEEE Trans Med Imaging 1999 Jul;18(7):593–603.CrossRefPubMedGoogle Scholar
  37. 37.
    Maurice RL, Brusseau E, Finet G, Cloutier G. On the potential of the Lagrangian speckle model estimator to characterize atherosclerotic plaques in endovascular elastography: in vitro experiments using an excised human carotid artery. Ultrasound Med Biol 2005 Jan;31(1):85–91.CrossRefPubMedGoogle Scholar
  38. 38.
    Maurice RL, Soulez G, Giroux MF, Cloutier G. Noninvasive vascular elastography for carotid artery characterization on subjects without previous history of atherosclerosis. Med Phys 2008 Aug;35(8):3436–43.CrossRefPubMedGoogle Scholar
  39. 39.
    Chen H, Shi H, Varghese T. Improvement of elastographic displacement estimation using a two-step cross-correlation method. Ultrasound Med Biol 2007 Jan;33(1):48–56.CrossRefPubMedGoogle Scholar
  40. 40.
    Lopata RG, Nillesen MM, Hansen HH, Gerrits IH, Thijssen JM, De Korte CL. Performance evaluation of methods for two-dimensional displacement and strain estimation using ultrasound radio frequency data. Ultrasound Med Biol 2009 Mar;35(5):796–812.CrossRefPubMedGoogle Scholar
  41. 41.
    Shi H, Varghese T. Two-dimensional multi-level strain estimation for discontinuous tissue. Phys Med Biol 2007 Jan 21;52(2):389–401.CrossRefPubMedGoogle Scholar
  42. 42.
    Shi H, Mitchell CC, McCormick M, Kliewer MA, Dempsey RJ, Varghese T. Preliminary in vivo atherosclerotic carotid plaque characterization using the accumulated axial strain and relative lateral shift strain indices. Phys Med Biol 2008 Nov 21;53(22):6377–94.CrossRefPubMedGoogle Scholar
  43. 43.
    Kim K, Weitzel WF, Rubin JM, Xie H, Chen XC, O’Donnell M. Vascular intramural strain imaging using arterial pressure equalization. Ultrasound Med Biol 2004 Jun;30(6):761–71.CrossRefPubMedGoogle Scholar
  44. 44.
    Weitzel WF, Kim K, Henke PK, Rubin JM. High-resolution ultrasound speckle tracking may detect vascular mechanical wall changes in peripheral artery bypass vein grafts. Ann Vasc Surg 2009 Mar;23(2):201–6.CrossRefPubMedGoogle Scholar
  45. 45.
    Weitzel WF, Kim K, Park DW, Hamilton J, O’Donnell M, Cichonski TJ, et al. High-resolution ultrasound elasticity imaging to evaluate dialysis fistula stenosis. Semin Dial 2009 Jan;22(1):84–9.CrossRefPubMedGoogle Scholar
  46. 46.
    Kanai H, Sato M, Koiwa Y, Chubachi N. Transcutaneous measurement and spectrum analysis of heart wall vibrations. IEEE Trans Ultrason Ferroelectr Freq Control 1996 Sep;43(5):791–810.CrossRefGoogle Scholar
  47. 47.
    Nakagawa N, Hasegawa H, Kanai H. Cross-sectional elasticity imaging of carotid arterial wall in short-axis plane by transcutaneous ultrasound. Jpn J Appl Phys 2004 May;43(5B):3220–6.CrossRefGoogle Scholar
  48. 48.
    Hansen HHG, Lopata RGP, Holewijn S, Truijers M, de Korte CL. Non-invasive vascular ultrasound strain imaging: different arteries, different approaches. IFMBE Proc 2009;22:298–302.Google Scholar
  49. 49.
    Konofagou EE, Harrigan T, Ophir J. Shear strain estimation and lesion mobility assessment in elastography. Ultrasonics 2000 Mar;38(1–8):400–4.CrossRefPubMedGoogle Scholar
  50. 50.
    Thitaikumar A, Krouskop TA, Garra BS, Ophir J. Visualization of bonding at an inclusion boundary using axial-shear strain elastography: a feasibility study. Phys Med Biol 2007 May 7;52(9):2615–33.CrossRefPubMedGoogle Scholar
  51. 51.
    Idzenga T, Pasterkamp G, De Korte C. Shear strain in the adventitial layer of the arterial wall facilitates development of vulnerable plaques. Biosci Hypotheses 2009;2(5):339–42.CrossRefGoogle Scholar
  52. 52.
    Cinthio M, Ahlgren AR, Jansson T, Eriksson A, Persson HW, Lindstrom K. Evaluation of an ultrasonic echo-tracking method for measurements of arterial wall movements in two dimensions. IEEE Trans Ultrason Ferroelectr Freq Control 2005 Aug;52(8):1300–11.CrossRefPubMedGoogle Scholar
  53. 53.
    Cinthio M, Jansson T, Persson HW, Lindstrom K, Ahlgren AR. Non-invasive measurements of longitudinal strain of the arterial wall. Proc IEEE Ultrason Symp 2007;570–2.Google Scholar
  54. 54.
    Persson M, Ahlgren AR, Eriksson A, Jansson T, Persson HW, Lindstrom K. Non-invasive measurement of arterial longitudinal movement. Proc IEEE Ultrason Symp 2002;2:1783–6.Google Scholar
  55. 55.
    Persson M, Ahlgren AR, Jansson T, Eriksson A, Persson HW, Lindstrom K. A new non-invasive ultrasonic method for simultaneous measurements of longitudinal and radial arterial wall movements: first in vivo trial. Clin Physiol Funct Imaging 2003 Sep;23(5):247–51.CrossRefPubMedGoogle Scholar
  56. 56.
    Konofagou E, Ophir J. A new elastographic method for estimation and imaging of lateral displacements, lateral strains, corrected axial strains and Poisson’s ratios in tissues. Ultrasound Med Biol 1998 Oct;24(8):1183–99.CrossRefPubMedGoogle Scholar
  57. 57.
    Chen H, Varghese T. Multilevel hybrid 2D strain imaging algorithm for ultrasound sector/phased arrays. Med Phys 2009 Jun;36(6):2098–106.CrossRefPubMedGoogle Scholar
  58. 58.
    Varghese T, Bilgen M, Ophir J. Multiresolution imaging in elastography. IEEE Trans Ultrason Ferroelectr Freq Control 1998;45(1):65–75.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Pediatrics, Clinical Physics Laboratory, CUKZ 833Radboud University Nijmegen Medical CenterNijmegenThe Netherlands

Personalised recommendations