Skip to main content

Clinical Applications of Activated Immune Cells

  • Chapter
  • First Online:
Book cover Immunologic Signatures of Rejection

Abstract

Adoptive immune therapy has been used for many years to treat viral diseases, hematologic malignancies and cancer. While some diseased have been effectively treated with adoptive T cell immune therapy, many have not. Most successful T cell therapies have required ex vivo T cell expansion and some have required ex vivo T cell sensitization. NK cells and genetically engineered T cells have also be used for adoptive immune therapy. Dendrtic cells have been extensively used and studied to enhance immune therapies and dendritic cell polarized toward Th1 cells appears to be essential to their effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albert ML, Jegathesan M, Darnell RB. Dendritic cell maturation is required for the cross-tolerization of CD8+ T cells. Nat. Immunol. 2001;2(11):1010–7.

    Article  PubMed  CAS  Google Scholar 

  • Berg M, Lundqvist A, McCoy P, Jr., Samsel L, Fan Y, Tawab A, Childs R. Clinical-grade ex vivo-expanded human natural killer cells up-regulate activating receptors and death receptor ligands and have enhanced cytolytic activity against tumor cells. Cytotherapy. 2009;11(3):341–55.

    Article  PubMed  CAS  Google Scholar 

  • Berger TG, Strasser E, Smith R, Carste C, Schuler-Thurner B, Kaempgen E, Schuler G. Efficient elutriation of monocytes within a closed system (Elutra) for clinical-scale generation of dendritic cells. J. Immunol. Methods 2005;298(1–2):61–72.

    Article  PubMed  CAS  Google Scholar 

  • Castiello L, Sabatino M, Jin P, Clayberger C, Marincola FM, Krensky AM, Stroncek DF. DC maturation strategies and related pathways: a transcriptional veiw. Curr. Opin. Immunol. 2010.

    Google Scholar 

  • Cobbold M, Khan N, Pourgheysari B, Tauro S, McDonald D, Osman H, Assenmacher M, Billingham L, Steward C, Crawley C, et al. Adoptive transfer of cytomegalovirus-specific CTL to stem cell transplant patients after selection by HLA-peptide tetramers. J. Exp. Med. 2005;202(3):379–86.

    Article  PubMed  CAS  Google Scholar 

  • Cwynarski K, Ainsworth J, Cobbold M, Wagner S, Mahendra P, Apperley J, Goldman J, Craddock C, Moss PA. Direct visualization of cytomegalovirus-specific T-cell reconstitution after allogeneic stem cell transplantation. Blood 2001;97(5):1232–40.

    Article  PubMed  CAS  Google Scholar 

  • Einsele H, Roosnek E, Rufer N, Sinzger C, Riegler S, Loffler J, Grigoleit U, Moris A, Rammensee HG, Kanz L, et al. Infusion of cytomegalovirus (CMV)-specific T cells for the treatment of CMV infection not responding to antiviral chemotherapy. Blood 2002;99(11):3916–22.

    Article  PubMed  CAS  Google Scholar 

  • Felzmann T, Witt V, Wimmer D, Ressmann G, Wagner D, Paul P, Huttner K, Fritsch G. Monocyte enrichment from leukapharesis products for the generation of DCs by plastic adherence, or by positive or negative selection. Cytotherapy 2003;5(5):391–8.

    Article  PubMed  CAS  Google Scholar 

  • Fowler DH, Odom J, Steinberg SM, Chow CK, Foley J, Kogan Y, Hou J, Gea-Banacloche J, Sportes C, Pavletic S, et al. Phase I clinical trial of costimulated, IL-4 polarized donor CD4+ T cells as augmentation of allogeneic hematopoietic cell transplantation. Biol. Blood Marrow Transplant. 2006;12(11):1150–60.

    Article  PubMed  CAS  Google Scholar 

  • Giermasz AS, Urban JA, Nakamura Y, Watchmaker P, Cumberland RL, Gooding W, Kalinski P. Type-1 polarized dendritic cells primed for high IL-12 production show enhanced activity as cancer vaccines. Cancer Immunol. Immunother. 2009;58(8):1329–36.

    Article  PubMed  CAS  Google Scholar 

  • Gilboa E. DC-based cancer vaccines. J. Clin. Invest. 2007;117(5):1195–203.

    Article  PubMed  CAS  Google Scholar 

  • Gratama JW, van Esser JW, Lamers CH, Tournay C, Lowenberg B, Bolhuis RL, Cornelissen JJ. Tetramer-based quantification of cytomegalovirus (CMV)-specific CD8+ T lymphocytes in T-cell-depleted stem cell grafts and after transplantation may identify patients at risk for progressive CMV infection. Blood 2001;98(5):1358–64.

    Article  PubMed  CAS  Google Scholar 

  • Hebart H, Daginik S, Stevanovic S, Grigoleit U, Dobler A, Baur M, Rauser G, Sinzger C, Jahn G, Loeffler J, et al. Sensitive detection of human cytomegalovirus peptide-specific cytotoxic T-lymphocyte responses by interferon-gamma-enzyme-linked immunospot assay and flow cytometry in healthy individuals and in patients after allogeneic stem cell transplantation. Blood 2002;99(10):3830–7.

    Article  PubMed  CAS  Google Scholar 

  • Heslop HE, Slobod KS, Pule MA, Hale GA, Rousseau A, Smith CA, Bollard CM, Liu H, Wu MF, Rochester RJ, et al. Long-term outcome of EBV-specific T-cell infusions to prevent or treat EBV-related lymphoproliferative disease in transplant recipients. Blood 2010;115(5):925–35.

    Article  PubMed  CAS  Google Scholar 

  • Hsu FJ, Benike C, Fagnoni F, Liles TM, Czerwinski D, Taidi B, Engleman EG, Levy R. Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nat. Med. 1996;2(1):52–8.

    Article  PubMed  CAS  Google Scholar 

  • Imai C, Iwamoto S, Campana D. Genetic modification of primary natural killer cells overcomes inhibitory signals and induces specific killing of leukemic cells. Blood 2005;106(1):376–83.

    Article  PubMed  CAS  Google Scholar 

  • Jin P, Han TH, Ren J, Saunders S, Wang E, Marincola FM, Stroncek DF. Molecular signatures of maturing dendritic cells: implications for testing the quality of dendritic cell therapies. J. Transl. Med. 2010;8(1):4.

    Google Scholar 

  • Kalinski P, Moser M. Opinion – Consensual immunity: success-driven development of T-helper-1 and T-helper-2 responses. Nat. Rev. Immunol. 2005;5(3):251–60.

    Article  PubMed  CAS  Google Scholar 

  • Kalinski P, Urban J, Narang R, Berk E, Wieckowski E, Muthuswamy R. Dendritic cell-based therapeutic cancer vaccines: what we have and what we need. Future Oncol. 2009;5(3):379–90.

    Article  PubMed  CAS  Google Scholar 

  • Lee JJ, Foon KA, Mailliard RB, Muthuswamy R, Kalinski P. Type 1-polarized dendritic cells loaded with autologous tumor are a potent immunogen against chronic lymphocytic leukemia. J Leukoc Biol. 2008;84(1):319–25.

    Article  PubMed  CAS  Google Scholar 

  • Leen AM, Myers GD, Sili U, Huls MH, Weiss H, Leung KS, Carrum G, Krance RA, Chang CC, Molldrem JJ, et al. Monoculture-derived T lymphocytes specific for multiple viruses expand and produce clinically relevant effects in immunocompromised individuals. Nat. Med. 2006;12(10):1160–6.

    Article  PubMed  CAS  Google Scholar 

  • Loren AW, Porter DL. Donor leukocyte infusions for the treatment of relapsed acute leukemia after allogeneic stem cell transplantation. Bone Marrow Transplant. 2008;41(5):483–93.

    Article  PubMed  CAS  Google Scholar 

  • Mayordomo JI, Zorina T, Storkus WJ, Zitvogel L, Celluzzi C, Falo LD, Melief CJ, Ildstad ST, Kast WM, DeLeo AB, et al. Bone marrow-derived dendritic cells pulsed with synthetic tumour peptides elicit protective and therapeutic antitumour immunity. Nat. Med. 1995;1(12):1297–302.

    Article  PubMed  CAS  Google Scholar 

  • Messmer D, Messmer B, Chiorazzi N. The global transcriptional maturation program and stimuli-specific gene expression profiles of human myeloid dendritic cells. Int. Immunol. 2003;15(4):491–503.

    Article  PubMed  CAS  Google Scholar 

  • Micklethwaite K, Hansen A, Foster A, Snape E, Antonenas V, Sartor M, Shaw P, Bradstock K, Gottlieb D. Ex vivo expansion and prophylactic infusion of CMV-pp65 peptide-specific cytotoxic T-lymphocytes following allogeneic hematopoietic stem cell transplantation. Biol. Blood Marrow Transplant. 2007;13(6):707–14.

    Article  PubMed  CAS  Google Scholar 

  • Miller JS, Soignier Y, Panoskaltsis-Mortari A, McNearney SA, Yun GH, Fautsch SK, McKenna D, Le C, DeFor TE, Burns LJ, et al. Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood 2005;105(8):3051–7.

    Article  PubMed  CAS  Google Scholar 

  • Moller I, Michel K, Frech N, Burger M, Pfeifer D, Frommolt P, Veelken H, Thomas-Kaskel AK. Dendritic cell maturation with poly(I:C)-based versus PGE2-based cytokine combinations results in differential functional characteristics relevant to clinical application. J. Immunother. 2008;31(5):506–19.

    Article  PubMed  Google Scholar 

  • Muthuswamy R, Urban J, Lee JJ, Reinhart TA, Bartlett D, Kalinski P. Ability of mature dendritic cells to interact with regulatory T cells is imprinted during maturation. Cancer Res. 2008;68(14):5972–8.

    Article  PubMed  CAS  Google Scholar 

  • Nestle FO, Alijagic S, Gilliet M, Sun Y, Grabbe S, Dummer R, Burg G, Schadendorf D. Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat. Med. 1998;4(3):328–32.

    Article  PubMed  CAS  Google Scholar 

  • Nicolette CA, Healey D, Tcherepanova I, Whelton P, Monesmith T, Coombs L, Finke LH, Whiteside T, Miesowicz F. Dendritic cells for active immunotherapy: optimizing design and manufacture in order to develop commercially and clinically viable products. Vaccine 2007;25 Suppl 2:B47–60.

    Article  PubMed  CAS  Google Scholar 

  • Peggs KS. Adoptive T cell immunotherapy for cytomegalovirus. Expert. Opin. Biol. Ther. 2009;9(6):725–36.

    Article  PubMed  CAS  Google Scholar 

  • Peggs KS, Verfuerth S, Pizzey A, Khan N, Guiver M, Moss PA, Mackinnon S. Adoptive cellular therapy for early cytomegalovirus infection after allogeneic stem-cell transplantation with virus-specific T-cell lines. Lancet 2003;362(9393):1375–7.

    Article  PubMed  Google Scholar 

  • Rosenberg SA, Dudley ME. Adoptive cell therapy for the treatment of patients with metastatic melanoma. Curr. Opin. Immunol. 2009;21(2):233–40.

    Article  PubMed  CAS  Google Scholar 

  • Steinman RM, Banchereau J. Taking dendritic cells into medicine. Nature 2007; 449(7161):419–26.

    Article  PubMed  CAS  Google Scholar 

  • Sylwester AW, Mitchell BL, Edgar JB, Taormina C, Pelte C, Ruchti F, Sleath PR, Grabstein KH, Hosken NA, Kern F, et al. Broadly targeted human cytomegalovirus-specific CD4+ and CD8+ T cells dominate the memory compartments of exposed subjects. J. Exp. Med. 2005;202(5):673–85.

    Article  PubMed  CAS  Google Scholar 

  • Tomblyn M, Lazarus HM. Donor lymphocyte infusions: the long and winding road: how should it be traveled? Bone Marrow Transplant. 2008;42(9):569–79.

    Article  PubMed  CAS  Google Scholar 

  • Walter EA, Greenberg PD, Gilbert MJ, Finch RJ, Watanabe KS, Thomas ED, Riddell SR. Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. N. Engl. J. Med. 1995;333(16):1038–44.

    Article  PubMed  CAS  Google Scholar 

  • Wong EC, Maher VE, Hines K, Lee J, Carter CS, Goletz T, Kopp W, Mackall CL, Berzofsky J, Read EJ. Development of a clinical-scale method for generation of dendritic cells from PBMC for use in cancer immunotherapy. Cytotherapy 2001;3(1):19–29.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Stroncek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Castiello, L., Sabatino, M., Jin, P., Marincola, F.M., Stroncek, D. (2011). Clinical Applications of Activated Immune Cells. In: Marincola, F., Wang, E. (eds) Immunologic Signatures of Rejection. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7219-4_7

Download citation

Publish with us

Policies and ethics