Skip to main content

The Angiogenic Switch: Role of Immune Cells

  • Chapter
  • First Online:
Immunologic Signatures of Rejection

Abstract

Angiogenesis is a frequent hallmark of inflammation; in acute inflammation angiogenesis occurs to revascularize damaged tissues, with subsequent vascular pruning and maturation, which results in restoration of an adequate blood supply to the tissue involved. Angiogenesis is also a characteristic of chronic inflammation, and may be one of the links between inflammation and cancer (Colotta et al. 2009; Kobayashi and Lin 2009).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Addison CL, Daniel TO, Burdick MD, et al. (2000). The CXC chemokine receptor 2, CXCR2, is the putative receptor for ELR+ CXC chemokine-induced angiogenic activity. J Immunol 165: 5269–5277.

    PubMed  CAS  Google Scholar 

  • Albini A, Marchisone C, Del Grosso F, et al. (2000). Inhibition of angiogenesis and vascular tumor growth by interferon-producing cells: A gene therapy approach. Am J Pathol 156: 1381–1393.

    Article  PubMed  CAS  Google Scholar 

  • Albini A, Tosetti F, Benelli R, et al. (2005). Tumor inflammatory angiogenesis and its chemoprevention. Cancer Res 65: 10637–10641.

    Article  PubMed  CAS  Google Scholar 

  • Albini A, Noonan DM, and Ferrari N (2007). Molecular pathways for cancer angioprevention. Clin Cancer Res 13: 4320–4325.

    Article  PubMed  CAS  Google Scholar 

  • Albini A, Brigati C, Ventura A, et al. (2009). Angiostatin anti-angiogenesis requires iL-12: The innate immune system as a key target. J Transl Med 7: 5.

    Article  PubMed  CAS  Google Scholar 

  • Almand B, Clark JI, Nikitina E, et al. (2001). Increased production of immature myeloid cells in cancer patients: A mechanism of immunosuppression in cancer. J Immunol 166: 678–689.

    PubMed  CAS  Google Scholar 

  • Ashkar AA, Di Santo JP, and Croy BA (2000). Interferon gamma contributes to initiation of uterine vascular modification, decidual integrity, and uterine natural killer cell maturation during normal murine pregnancy. J Exp Med 192: 259–270.

    Article  PubMed  CAS  Google Scholar 

  • Asselin-Paturel C and Trinchieri G (2005). Production of type I interferons: Plasmacytoid dendritic cells and beyond. J Exp Med 202: 461–465.

    Article  PubMed  CAS  Google Scholar 

  • Balkwill F (2004). Cancer and the chemokine network. Nat Rev Cancer 4: 540–550.

    Article  PubMed  CAS  Google Scholar 

  • Balkwill F and Mantovani A (2001). Inflammation and cancer: Back to virchow? Lancet 357: 539–545.

    Article  PubMed  CAS  Google Scholar 

  • Baud V and Karin M (2009). Is NF-kappaB a good target for cancer therapy? Hopes and pitfalls. Nat Rev 8: 33–40.

    Article  CAS  Google Scholar 

  • Benelli R, Barbero A, Ferrini S, et al. (2000). Human immunodeficiency virus transactivator protein (tat) stimulates chemotaxis, calcium mobilization, and activation of human polymorphonuclear leukocytes: Implications for tat-mediated pathogenesis. J Infect Dis 182: 1643–1651.

    Article  PubMed  CAS  Google Scholar 

  • Benelli R, Morini M, Carrozzino F, et al. (2002). Neutrophils as a key cellular target for angiostatin: Implications for regulation of angiogenesis and inflammation. Faseb J 16: 267–269.

    PubMed  CAS  Google Scholar 

  • Bergers G and Benjamin LE (2003). Tumorigenesis and the angiogenic switch. Nat Rev Cancer 3: 401–410.

    Article  PubMed  CAS  Google Scholar 

  • Bierie B and Moses HL (2006). Tumour microenvironment: TGFbeta: The molecular jekyll and hyde of cancer. Nat Rev Cancer 6: 506–520.

    Article  PubMed  CAS  Google Scholar 

  • Biswas SK, Gangi L, Paul S, et al. (2006). A distinct and unique transcriptional program expressed by tumor-associated macrophages (defective NF-kappaB and enhanced IRF-3/STAT1 activation). Blood 107: 2112–2122.

    Article  PubMed  CAS  Google Scholar 

  • Bourbie-Vaudaine S, Blanchard N, Hivroz C, et al. (2006). Dendritic cells can turn cd4+ t lymphocytes into vascular endothelial growth factor-carrying cells by intercellular neuropilin-1 transfer. J Immunol 177: 1460–1469.

    PubMed  CAS  Google Scholar 

  • Brassard DL, Grace MJ, and Bordens RW (2002). Interferon-alpha as an immunotherapeutic protein. J Leukoc Biol 71: 565–581.

    PubMed  CAS  Google Scholar 

  • Brigati C, Noonan DM, Albini A, et al. (2002). Tumors and inflammatory infiltrates: Friends or foes? Clin Exp Metastasis 19: 247–258.

    Article  PubMed  CAS  Google Scholar 

  • Bronte V (2009). Myeloid-derived suppressor cells in inflammation: Uncovering cell subsets with enhanced immunosuppressive functions. Eur J Immunol 39: 2670–2672.

    Article  PubMed  CAS  Google Scholar 

  • Bronte V and Zanovello P (2005). Regulation of immune responses by L-arginine metabolism. Nat Rev Immunol 5: 641–654.

    Article  PubMed  CAS  Google Scholar 

  • Campbell JJ, Qin S, Unutmaz D, et al. (2001). Unique subpopulations of CD56+ NK and NK-T peripheral blood lymphocytes identified by chemokine receptor expression repertoire. J Immunol 166: 6477–6482.

    PubMed  CAS  Google Scholar 

  • Carrega P, Morandi B, Costa R, et al. (2008). Natural killer cells infiltrating human nonsmall-cell lung cancer are enriched in CD56 bright CD16(−) cells and display an impaired capability to kill tumor cells. Cancer 112: 863–875.

    Article  PubMed  Google Scholar 

  • Caux C, Massacrier C, Vanbervliet B, et al. (1994). Activation of human dendritic cells through CD40 cross-linking. J Exp Med 180: 1263–1272.

    Article  PubMed  CAS  Google Scholar 

  • Chan A, Hong DL, Atzberger A, et al. (2007). CD56bright human NK cells differentiate into CD56dim cells: Role of contact with peripheral fibroblasts. J Immunol 179: 89–94.

    PubMed  CAS  Google Scholar 

  • Coca S, Perez-Piqueras J, Martinez D, et al. (1997). The prognostic significance of intratumoral natural killer cells in patients with colorectal carcinoma. Cancer 79: 2320–2328.

    Article  PubMed  CAS  Google Scholar 

  • Colotta F, Allavena P, Sica A, et al. (2009). Cancer-related inflammation, the seventh hallmark of cancer: Links to genetic instability. Carcinogenesis 30: 1073–1081.

    Article  PubMed  CAS  Google Scholar 

  • Cooper MA, Fehniger TA, and Caligiuri MA (2001). The biology of human natural killer-cell subsets. Trends Immunol 22: 633–640.

    Article  PubMed  CAS  Google Scholar 

  • Coukos G, Benencia F, Buckanovich RJ, et al. (2005). The role of dendritic cell precursors in tumour vasculogenesis. Br J Cancer 92: 1182–1187.

    Article  PubMed  CAS  Google Scholar 

  • Coussens LM and Werb Z (2002). Inflammation and cancer. Nature 420: 860–867.

    Article  PubMed  CAS  Google Scholar 

  • Coussens LM, Raymond WW, Bergers G, et al. (1999). Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis. Genes Dev 13: 1382–1397.

    Article  PubMed  CAS  Google Scholar 

  • Coussens LM, Tinkle CL, Hanahan D, et al. (2000). MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell 103: 481–490.

    Article  PubMed  CAS  Google Scholar 

  • Crivellato E, Nico B, and Ribatti D (2008). Mast cells and tumour angiogenesis: New insight from experimental carcinogenesis. Cancer Lett 269: 1–6.

    Article  PubMed  CAS  Google Scholar 

  • Crivellato E, Travan L, and Ribatti D (2009). Mast cells and basophils: A potential link in promoting angiogenesis during allergic inflammation. Int Arch Allergy Immunol 151: 89–97.

    Article  PubMed  Google Scholar 

  • Curiel TJ, Cheng P, Mottram P, et al. (2004). Dendritic cell subsets differentially regulate angiogenesis in human ovarian cancer. Cancer Res 64: 5535–5538.

    Article  PubMed  CAS  Google Scholar 

  • Damiano V, Caputo R, Garofalo S, et al. (2007). TLR9 agonist acts by different mechanisms synergizing with bevacizumab in sensitive and cetuximab-resistant colon cancer xenografts. Proc Natl Acad Sci U S A 104: 12468–12473.

    Article  PubMed  CAS  Google Scholar 

  • De Graaf JH, Tamminga RY, Dam-Meiring A, et al. (1996). The presence of cytokines in langerhans’ cell histiocytosis. J Pathol 180: 400–406.

    Article  PubMed  Google Scholar 

  • De Palma M and Naldini L (2009). Tie2-expressing monocytes (tems): Novel targets and vehicles of anticancer therapy? Biochim Biophys Acta 1796: 5–10.

    PubMed  Google Scholar 

  • De Palma M, Murdoch C, Venneri MA, et al. (2007). Tie2-expressing monocytes: Regulation of tumor angiogenesis and therapeutic implications. Trends Immunol 28: 519–524.

    Article  PubMed  CAS  Google Scholar 

  • De Santo C, Serafini P, Marigo I, et al. (2005). Nitroaspirin corrects immune dysfunction in tumor-bearing hosts and promotes tumor eradication by cancer vaccination. Proc Natl Acad Sci U S A 102: 4185–4190.

    Article  PubMed  CAS  Google Scholar 

  • De Visser KE, Korets LV, and Coussens LM (2005). De novo carcinogenesis promoted by chronic inflammation is B lymphocyte dependent. Cancer Cell 7: 411–423.

    Article  PubMed  CAS  Google Scholar 

  • De Visser KE, Eichten A, and Coussens LM (2006). Paradoxical roles of the immune system during cancer development. Nat Rev Cancer 6: 24–37.

    Article  PubMed  CAS  Google Scholar 

  • Denardo DG, Barreto JB, Andreu P, et al. (2009). CD4(+) t cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell 16: 91–102.

    Article  PubMed  CAS  Google Scholar 

  • Deryugina EI and Quigley JP (2010). Pleiotropic roles of matrix metalloproteinases in tumor angiogenesis: Contrasting, overlapping and compensatory functions. Biochim Biophys Acta 1803:103–120.

    Article  PubMed  CAS  Google Scholar 

  • Devalaraja RM, Nanney LB, Du J, et al. (2000). Delayed wound healing in CXCR2 knockout mice. J Invest Dermatol 115: 234–244.

    Article  PubMed  CAS  Google Scholar 

  • Di Carlo E, Forni G, Lollini P, et al. (2001). The intriguing role of polymorphonuclear neutrophils in antitumor reactions. Blood 97: 339–345.

    Article  PubMed  Google Scholar 

  • Diaz-Montero CM, Salem ML, Nishimura MI, et al. (2009). Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol Immunother 58: 49–59.

    Article  PubMed  CAS  Google Scholar 

  • Dolcetti L, Peranzoni E, Ugel S, et al. (2010). Hierarchy of immunosuppressive strength among myeloid-derived suppressor cell subsets is determined by GM-CSF. Eur J Immunol 40: 22–35.

    Article  PubMed  CAS  Google Scholar 

  • Dome B, Timar J, Ladanyi A, et al. (2009). Circulating endothelial cells, bone marrow-derived endothelial progenitor cells and proangiogenic hematopoietic cells in cancer: From biology to therapy. Crit Rev Oncol Hematol 69: 108–124.

    Article  PubMed  Google Scholar 

  • Doni A, Peri G, Chieppa M, et al. (2003). Production of the soluble pattern recognition receptor PTX3 by myeloid, but not plasmacytoid, dendritic cells. Eur J Immunol 33: 2886–2893.

    Article  PubMed  CAS  Google Scholar 

  • Doni A, Michela M, Bottazzi B, et al. (2006). Regulation of PTX3, a key component of humoral innate immunity in human dendritic cells: Stimulation by iL-10 and inhibition by IFN-gamma. J Leukoc Biol 79: 797–802.

    Article  PubMed  CAS  Google Scholar 

  • Doyen V, Rubio M, Braun D, et al. (2003). Thrombospondin 1 is an autocrine negative regulator of human dendritic cell activation. J Exp Med 198: 1277–1283.

    Article  PubMed  CAS  Google Scholar 

  • Egeblad M and Werb Z (2002). New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2: 161–174.

    Article  PubMed  CAS  Google Scholar 

  • Fehniger TA, Cooper MA, Nuovo GJ, et al. (2003). CD56bright natural killer cells are present in human lymph nodes and are activated by T cell-derived IL-2: A potential new link between adaptive and innate immunity. Blood 101: 3052–3057.

    Article  PubMed  CAS  Google Scholar 

  • Ferlazzo G and Munz C (2004). NK cell compartments and their activation by dendritic cells. J Immunol 172: 1333–1339.

    PubMed  CAS  Google Scholar 

  • Ferlazzo G, Pack M, Thomas D, et al. (2004a). Distinct roles of IL-12 and IL-15 in human natural killer cell activation by dendritic cells from secondary lymphoid organs. Proc Natl Acad Sci U S A 101: 16606–16611.

    Article  PubMed  CAS  Google Scholar 

  • Ferlazzo G, Thomas D, Lin SL, et al. (2004b). The abundant NK cells in human secondary lymphoid tissues require activation to express killer cell Ig-like receptors and become cytolytic. J Immunol 172: 1455–1462.

    PubMed  CAS  Google Scholar 

  • Ferrara N and Kerbel RS (2005). Angiogenesis as a therapeutic target. Nature 438: 967–974.

    Article  PubMed  CAS  Google Scholar 

  • Folkman J (2006). Angiogenesis. Annu Rev Med 57: 1–18.

    Article  PubMed  CAS  Google Scholar 

  • Fridlender ZG, Sun J, Kim S, et al. (2009). Polarization of tumor-associated neutrophil phenotype by TGF-β: “N1” versus “N2” tan. Cancer Cell 16: 183–194.

    Article  PubMed  CAS  Google Scholar 

  • Fujimoto J, Sakaguchi H, Aoki I, et al. (2000). Clinical implications of expression of interleukin 8 related to angiogenesis in uterine cervical cancers. Cancer Res 60: 2632–2635.

    PubMed  CAS  Google Scholar 

  • Galinsky DS and Nechushtan H (2008). Mast cells and cancer–no longer just basic science. Crit Rev Oncol Hematol 68: 115–130.

    Article  PubMed  Google Scholar 

  • Gargett CE, Lederman F, Heryanto B, et al. (2001). Focal vascular endothelial growth factor correlates with angiogenesis in human endometrium. Role of intravascular neutrophils. Hum Reprod 16: 1065–1075.

    Article  PubMed  CAS  Google Scholar 

  • Garlanda C, Bottazzi B, Bastone A, et al. (2005). Pentraxins at the crossroads between innate immunity, inflammation, matrix deposition, and female fertility. Annu Rev Immunol 23: 337–366.

    Article  PubMed  CAS  Google Scholar 

  • Ge R, Rajeev V, Ray P, et al. (2006). Inhibition of growth and metastasis of mouse mammary carcinoma by selective inhibitor of transforming growth factor-beta type i receptor kinase in vivo. Clin Cancer Res 12: 4315–4330.

    Article  PubMed  CAS  Google Scholar 

  • Goerdt S and Orfanos CE (1999). Other functions, other genes: Alternative activation of antigen-presenting cells. Immunity 10: 137–142.

    Article  PubMed  CAS  Google Scholar 

  • Gordon S (2003). Alternative activation of macrophages. Nat Rev Immunol 3: 23–35.

    Article  PubMed  CAS  Google Scholar 

  • Gregoire C, Chasson L, Luci C, et al. (2007). The trafficking of natural killer cells. Immunol Rev 220: 169–182.

    Article  PubMed  CAS  Google Scholar 

  • Guruli G, Pflug BR, Pecher S, et al. (2004). Function and survival of dendritic cells depend on endothelin-1 and endothelin receptor autocrine loops. Blood 104: 2107–2115.

    Article  PubMed  CAS  Google Scholar 

  • Hanahan D and Folkman J (1996). Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86: 353–364.

    Article  PubMed  CAS  Google Scholar 

  • Hanahan D and Weinberg RA (2000). The hallmarks of cancer. Cell 100: 57–70.

    Article  PubMed  CAS  Google Scholar 

  • Hanna J and Mandelboim O (2007). When killers become helpers. Trends Immunol 28: 201–206.

    Article  PubMed  CAS  Google Scholar 

  • Hanna J, Goldman-Wohl D, Hamani Y, et al. (2006). Decidual nk cells regulate key developmental processes at the human fetal-maternal interface. Nat Med 12: 1065–1074.

    Article  PubMed  CAS  Google Scholar 

  • Harmey JH, Dimitriadis E, Kay E, et al. (1998). Regulation of macrophage production of vascular endothelial growth factor (VEGF) by hypoxia and transforming growth factor beta-1. Ann Surg Oncol 5: 271–278.

    Article  PubMed  CAS  Google Scholar 

  • Heryanto B, Girling JE, and Rogers PA (2004). Intravascular neutrophils partially mediate the endometrial endothelial cell proliferative response to oestrogen in ovariectomised mice. Reproduction 127: 613–620.

    Article  PubMed  CAS  Google Scholar 

  • Hu X, Li WP, Meng C, et al. (2003). Inhibition of IFN-gamma signaling by glucocorticoids. J Immunol 170: 4833–4839.

    PubMed  CAS  Google Scholar 

  • Indraccolo S, Gola E, Rosato A, et al. (2002). Differential effects of angiostatin, endostatin and interferon-alpha(1) gene transfer on in vivo growth of human breast cancer cells. Gene Ther 9: 867–878.

    Article  PubMed  CAS  Google Scholar 

  • Ishigami S, Natsugoe S, Tokuda K, et al. (2000). Prognostic value of intratumoral natural killer cells in gastric carcinoma. Cancer 88: 577–583.

    Article  PubMed  CAS  Google Scholar 

  • Ito S, Ansari P, Sakatsume M, et al. (1999). Interleukin-10 inhibits expression of both interferon alpha- and interferon gamma-induced genes by suppressing tyrosine phosphorylation of STAT1. Blood 93: 1456–1463.

    PubMed  CAS  Google Scholar 

  • Kaipainen A, Kieran MW, Huang S, et al. (2007). Pparalpha deficiency in inflammatory cells suppresses tumor growth. PLoS One 2: e260.

    Article  PubMed  CAS  Google Scholar 

  • Karin M (2006). Nuclear factor-kappaB in cancer development and progression. Nature 441: 431–436.

    Article  PubMed  CAS  Google Scholar 

  • Kerbel R and Folkman J (2002). Clinical translation of angiogenesis inhibitors. Nat Rev Cancer 2: 727–739.

    Article  PubMed  CAS  Google Scholar 

  • Keskin DB, Allan DS, Rybalov B, et al. (2007). TGFbeta promotes conversion of CD16+ peripheral blood NK cells into CD16-NK cells with similarities to decidual NK cells. Proc Natl Acad Sci U S A 104: 3378–3383.

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi H and Lin PC (2009). Angiogenesis links chronic inflammation with cancer. Methods Mol Biol 511: 185–191.

    Article  PubMed  CAS  Google Scholar 

  • Konno S, Eckman JA, Plunkett B, et al. (2006). Interleukin-10 and Th2 cytokines differentially regulate osteopontin expression in human monocytes and dendritic cells. J Interferon Cytokine Res 26: 562–567.

    Article  PubMed  CAS  Google Scholar 

  • Kopcow HD, Allan DS, Chen X, et al. (2005). Human decidual nk cells form immature activating synapses and are not cytotoxic. Proc Natl Acad Sci U S A 102: 15563–15568.

    Article  PubMed  CAS  Google Scholar 

  • Kroemer G and Pouyssegur J (2008). Tumor cell metabolism: Cancer’s achilles’ heel. Cancer Cell 13: 472–482.

    Article  PubMed  CAS  Google Scholar 

  • Kujawski M, Kortylewski M, Lee H, et al. (2008). Stat3 mediates myeloid cell-dependent tumor angiogenesis in mice. J Clin Invest 118: 3367–3377.

    Article  PubMed  CAS  Google Scholar 

  • Kusmartsev S and Gabrilovich DI (2006). Role of immature myeloid cells in mechanisms of immune evasion in cancer. Cancer Immunol Immunother 55: 237–245.

    Article  PubMed  Google Scholar 

  • Lanzavecchia A and Sallusto F (2001). The instructive role of dendritic cells on t cell responses: Lineages, plasticity and kinetics. Curr Opin Immunol 13: 291–298.

    Article  PubMed  CAS  Google Scholar 

  • Leek RD, Lewis CE, Whitehouse R, et al. (1996). Association of macrophage infiltration with angiogenesis and prognosis in invasive breast carcinoma. Cancer Res 56: 4625–4629.

    PubMed  CAS  Google Scholar 

  • Leek RD, Landers RJ, Harris AL, et al. (1999). Necrosis correlates with high vascular density and focal macrophage infiltration in invasive carcinoma of the breast. Br J Cancer 79: 991–995.

    Article  PubMed  CAS  Google Scholar 

  • Leek RD, Hunt NC, Landers RJ, et al. (2000). Macrophage infiltration is associated with VEGF and EGFR expression in breast cancer. J Pathol 190: 430–436.

    Article  PubMed  CAS  Google Scholar 

  • Lewis C and Murdoch C (2005). Macrophage responses to hypoxia: Implications for tumor progression and anti-cancer therapies. Am J Pathol 167: 627–635.

    Article  PubMed  CAS  Google Scholar 

  • Lewis JS, Lee JA, Underwood JC, et al. (1999). Macrophage responses to hypoxia: Relevance to disease mechanisms. J Leukoc Biol 66: 889–900.

    PubMed  CAS  Google Scholar 

  • Lin YJ, Lai MD, Lei HY, et al. (2006). Neutrophils and macrophages promote angiogenesis in the early stage of endometriosis in a mouse model. Endocrinology 147: 1278–1286.

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Divoux A, Sun J, et al. (2009). Genetic deficiency and pharmacological stabilization of mast cells reduce diet-induced obesity and diabetes in mice. Nat Med 15: 940–945.

    Article  PubMed  CAS  Google Scholar 

  • Makkouk A and Abdelnoor AM (2009). The potential use of toll-like receptor (TLR) agonists and antagonists as prophylactic and/or therapeutic agents. Immunopharmacol Immunotoxicol 31: 331–338.

    Article  PubMed  CAS  Google Scholar 

  • Mantovani A (2004). Chemokines in neoplastic progression. Semin Cancer Biol 14: 147–148.

    Article  PubMed  Google Scholar 

  • Mantovani A, Sozzani S, Locati M, et al. (2002). Macrophage polarization: Tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23: 549–555.

    Article  PubMed  CAS  Google Scholar 

  • Mantovani A, Allavena P, Sica A, et al. (2008). Cancer-related inflammation. Nature 454: 436–444.

    Article  PubMed  CAS  Google Scholar 

  • Martinez FO, Gordon S, Locati M, et al. (2006). Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: New molecules and patterns of gene expression. J Immunol 177: 7303–7311.

    PubMed  CAS  Google Scholar 

  • Martinez FO, Sica A, Mantovani A, et al. (2008). Macrophage activation and polarization. Front Biosci 13: 453–461.

    Article  PubMed  CAS  Google Scholar 

  • Maruotti N, Crivellato E, Cantatore FP, et al. (2007). Mast cells in rheumatoid arthritis. Clin Rheumatol 26: 1–4.

    Article  PubMed  Google Scholar 

  • Means TK, Hayashi F, Smith KD, et al. (2003). The toll-like receptor 5 stimulus bacterial flagellin induces maturation and chemokine production in human dendritic cells. J Immunol 170: 5165–5175.

    PubMed  CAS  Google Scholar 

  • Murdoch C, Muthana M, Coffelt SB, et al. (2008). The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer 8: 618–631.

    Article  PubMed  CAS  Google Scholar 

  • Na YJ, Yang SH, Baek DW, et al. (2006). Effects of peritoneal fluid from endometriosis patients on the release of vascular endothelial growth factor by neutrophils and monocytes. Human Reprod 21: 1846–1855.

    Article  CAS  Google Scholar 

  • Nakanishi C and Toi M (2005). Nuclear factor-kappaB inhibitors as sensitizers to anticancer drugs. Nat Rev Cancer 5: 297–309.

    Article  PubMed  CAS  Google Scholar 

  • Naldini A, Leali D, Pucci A, et al. (2006). Cutting edge: IL-1beta mediates the proangiogenic activity of osteopontin-activated human monocytes. J Immunol 177: 4267–4270.

    PubMed  CAS  Google Scholar 

  • Nam JS, Terabe M, Mamura M, et al. (2008). An anti-transforming growth factor beta antibody suppresses metastasis via cooperative effects on multiple cell compartments. Cancer Res 68: 3835–3843.

    Article  PubMed  CAS  Google Scholar 

  • Nico B, Mangieri D, Crivellato E, et al. (2008). Mast cells contribute to vasculogenic mimicry in multiple myeloma. Stem Cells Dev 17: 19–22.

    Article  PubMed  CAS  Google Scholar 

  • Noonan DM, De Lerma Barbaro A, Vannini N, et al. (2008). Inflammation, inflammatory cells and angiogenesis: Decisions and indecisions. Cancer Metastasis Rev 27: 31–40.

    Article  PubMed  Google Scholar 

  • Nozawa H, Chiu C, and Hanahan D (2006). Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis. Proc Natl Acad Sci U S A 103: 12493–12498.

    Article  PubMed  CAS  Google Scholar 

  • O’sullivan C and Lewis CE (1994). Tumour-associated leucocytes: Friends or foes in breast carcinoma. J Pathol 172: 229–235.

    Article  PubMed  Google Scholar 

  • Orimo A and Weinberg RA (2006). Stromal fibroblasts in cancer: A novel tumor-promoting cell type. Cell Cycle 5: 1597–1601.

    Article  PubMed  CAS  Google Scholar 

  • Ostrand-Rosenberg S and Sinha P (2009). Myeloid-derived suppressor cells: Linking inflammation and cancer. J Immunol 182: 4499–4506.

    Article  PubMed  CAS  Google Scholar 

  • Pekarek LA, Starr BA, Toledano AY, et al. (1995). Inhibition of tumor growth by elimination of granulocytes. J Exp Med 181: 435–440.

    Article  PubMed  CAS  Google Scholar 

  • Penna G, Vulcano M, Roncari A, et al. (2002). Cutting edge: Differential chemokine production by myeloid and plasmacytoid dendritic cells. J Immunol 169: 6673–6676.

    PubMed  CAS  Google Scholar 

  • Piqueras B, Connolly J, Freitas H, et al. (2006). Upon viral exposure, myeloid and plasmacytoid dendritic cells produce 3 waves of distinct chemokines to recruit immune effectors. Blood 107: 2613–2618.

    Article  PubMed  CAS  Google Scholar 

  • Pollard JW (2004). Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 4: 71–78.

    Article  PubMed  CAS  Google Scholar 

  • Porta C, Rimoldi M, Raes G, et al. (2009). Tolerance and M2 (alternative) macrophage polarization are related processes orchestrated by p50 nuclear factor kappaB. Proc Natl Acad Sci U S A 106: 14978–14983.

    Article  PubMed  CAS  Google Scholar 

  • Pouyssegur J, Dayan F, and Mazure NM (2006). Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature 441: 437–443.

    Article  PubMed  CAS  Google Scholar 

  • Priceman SJ, Sung JL, Shaposhnik Z, et al. (2010). Targeting distinct tumor-infiltrating myeloid cells by inhibiting CSF-1 receptor: Combating tumor evasion of anti-angiogenic therapy. Blood 115: 1461–1471.

    Article  PubMed  CAS  Google Scholar 

  • Pulaski HL, Spahlinger G, Silva IA, et al. (2009). Identifying alemtuzumab as an anti-myeloid cell antiangiogenic therapy for the treatment of ovarian cancer. J Transl Med 7: 49.

    Article  PubMed  CAS  Google Scholar 

  • Pusztai L, Clover LM, Cooper K, et al. (1994). Expression of tumour necrosis factor alpha and its receptors in carcinoma of the breast. Br J Cancer 70: 289–292.

    Article  PubMed  CAS  Google Scholar 

  • Pyke C, Graem N, Ralfkiaer E, et al. (1993). Receptor for urokinase is present in tumor-associated macrophages in ductal breast carcinoma. Cancer Res 53: 1911–1915.

    PubMed  CAS  Google Scholar 

  • Qin Z, Schwartzkopff J, Pradera F, et al. (2003). A critical requirement of interferon gamma-mediated angiostasis for tumor rejection by CD8+ t cells. Cancer Res 63: 4095–4100.

    PubMed  CAS  Google Scholar 

  • Ranieri G, Ammendola M, Patruno R, et al. (2009). Tryptase-positive mast cells correlate with angiogenesis in early breast cancer patients. Int J Oncol 35: 115–120.

    Article  PubMed  Google Scholar 

  • Ratta M, Fagnoni F, Curti A, et al. (2002). Dendritic cells are functionally defective in multiple myeloma: The role of interleukin-6. Blood 100: 230–237.

    Article  PubMed  CAS  Google Scholar 

  • Ribatti D, Contino R, and Tursi A (1988). Do mast cells intervene in the vasoproliferative process of the rheumatoid synovitis? J Submicrosc Cytol Pathol 20: 635–637.

    PubMed  CAS  Google Scholar 

  • Ribatti D, Vacca A, Nico B, et al. (2001). The role of mast cells in tumour angiogenesis. Br J Haematol 115: 514–521.

    Article  PubMed  CAS  Google Scholar 

  • Ribatti D, Crivellato E, Roccaro AM, et al. (2004). Mast cell contribution to angiogenesis related to tumour progression. Clin Exp Allergy 34: 1660–1664.

    Article  PubMed  CAS  Google Scholar 

  • Ribatti D, Crivellato E, and Molica S (2009). Mast cells and angiogenesis in haematological malignancies. Leuk Res 33: 876–879.

    Article  PubMed  CAS  Google Scholar 

  • Riboldi E, Musso T, Moroni E, et al. (2005). Cutting edge: Proangiogenic properties of alternatively activated dendritic cells. J Immunol 175: 2788–2792.

    PubMed  CAS  Google Scholar 

  • Riley JK, Takeda K, Akira S, et al. (1999). Interleukin-10 receptor signaling through the jak-stat pathway. Requirement for two distinct receptor-derived signals for anti-inflammatory action. J Biol Chem 274: 16513–16521.

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez PC, Ernstoff MS, Hernandez C, et al. (2009). Arginase I-producing myeloid-derived suppressor cells in renal cell carcinoma are a subpopulation of activated granulocytes. Cancer Res 69: 1553–1560.

    Article  PubMed  CAS  Google Scholar 

  • Romagnani C, Juelke K, Falco M, et al. (2007). CD56brightCD16- killer Ig-like receptor-NK cells display longer telomeres and acquire features of CD56dim NK cells upon activation. J Immunol 178: 4947–4955.

    PubMed  CAS  Google Scholar 

  • Ruffell B, Denardo DG, Affara NI, et al. (2010). Lymphocytes in cancer development: Polarization towards pro-tumor immunity. Cytokine Growth Factor Rev 21: 3–10.

    Article  PubMed  CAS  Google Scholar 

  • Rusnati M and Presta M (2006). Extracellular angiogenic growth factor interactions: An angiogenesis interactome survey. Endothelium 13: 93–111.

    Article  PubMed  CAS  Google Scholar 

  • Saccani A, Schioppa T, Porta C, et al. (2006). P50 nuclear factor-kappaB overexpression in tumor-associated macrophages inhibits M1 inflammatory responses and antitumor resistance. Cancer Res 66: 11432–11440.

    Article  PubMed  CAS  Google Scholar 

  • Scapini P, Lapinet-Vera JA, Gasperini S, et al. (2000). The neutrophil as a cellular source of chemokines. Immunol Rev 177: 195–203.

    Article  PubMed  CAS  Google Scholar 

  • Scapini P, Morini M, Tecchio C, et al. (2004). CXCL1/macrophage inflammatory protein-2-induced angiogenesis in vivo is mediated by neutrophil-derived vascular endothelial growth factor-A. J Immunol 172: 5034–5040.

    PubMed  CAS  Google Scholar 

  • Schioppa T, Uranchimeg B, Saccani A, et al. (2003). Regulation of the chemokine receptor CXCR4 by hypoxia. J Exp Med 198: 1391–1402.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt C (2009). Why do tumors become resistant to antiangiogenesis drugs? J Natl Cancer Inst 101: 1530–1532.

    Article  PubMed  Google Scholar 

  • Schruefer R, Lutze N, Schymeinsky J, et al. (2005). Human neutrophils promote angiogenesis by a paracrine feedforward mechanism involving endothelial interleukin-8. Am J Physiol Heart Circ Physiol 288: H1186–H1192.

    Article  PubMed  CAS  Google Scholar 

  • Schruefer R, Sulyok S, Schymeinsky J, et al. (2006). The proangiogenic capacity of polymorphonuclear neutrophils delineated by microarray technique and by measurement of neovascularization in wounded skin of CD18-deficient mice. J Vasc Res 43: 1–11.

    Article  PubMed  CAS  Google Scholar 

  • Scimone ML, Lutzky VP, Zittermann SI, et al. (2005). Migration of polymorphonuclear leucocytes is influenced by dendritic cells. Immunology 114: 375–385.

    Article  PubMed  CAS  Google Scholar 

  • Serafini P, Borrello I, and Bronte V (2006). Myeloid suppressor cells in cancer: Recruitment, phenotype, properties, and mechanisms of immune suppression. Semin Cancer Biol 16: 53–65.

    Article  PubMed  CAS  Google Scholar 

  • Shojaei F and Ferrara N (2008). Refractoriness to antivascular endothelial growth factor ­treatment: Role of myeloid cells. Cancer Res 68: 5501–5504.

    Article  PubMed  CAS  Google Scholar 

  • Shojaei F, Wu X, Malik AK, et al. (2007a). Tumor refractoriness to anti-VEGF treatment is ­mediated by CD11b+Gr1+ myeloid cells. Nat Biotechnol 25: 911–920.

    Article  PubMed  CAS  Google Scholar 

  • Shojaei F, Wu X, Zhong C, et al. (2007b). Bv8 regulates myeloid-cell-dependent tumour ­angiogenesis. Nature 450: 825–831.

    Article  PubMed  CAS  Google Scholar 

  • Shojaei F, Wu X, Qu X, et al. (2009). G-CSF-initiated myeloid cell mobilization and angiogenesis mediate tumor refractoriness to anti-VEGF therapy in mouse models. Proc Natl Acad Sci U S A 106: 6742–6747.

    Article  PubMed  CAS  Google Scholar 

  • Sica A and Bronte V (2007). Altered macrophage differentiation and immune dysfunction in tumor development. J Clin Invest 117: 1155–1166.

    Article  PubMed  CAS  Google Scholar 

  • Smits El, Ponsaerts P, Berneman ZN, et al. (2008). The use of TLR7 and TLR8 ligands for the enhancement of cancer immunotherapy. Oncologist 13: 859–875.

    Article  PubMed  CAS  Google Scholar 

  • Soucek L, Lawlor ER, Soto D, et al. (2007). Mast cells are required for angiogenesis and macroscopic expansion of myc-induced pancreatic islet tumors. Nat Med 13: 1211–1218.

    Article  PubMed  CAS  Google Scholar 

  • Sozzani S (2005). Dendritic cell trafficking: More than just chemokines. Cytokine Growth Factor Rev 16: 581–592.

    Article  PubMed  CAS  Google Scholar 

  • Sozzani S, Allavena P, and Mantovani A (2001). Chemokines and dendritic cells. In Dendritic cells: Biology and clinical applications, Thomas G, and Lotze M, eds. (London: Acadimic), pp. 203–211.

    Chapter  Google Scholar 

  • Sozzani S, Rusnati M, Riboldi E, et al. (2007). Dendritic cell-endothelial cell cross-talk in angiogenesis. Trends Immunol 28: 385–392.

    Article  PubMed  CAS  Google Scholar 

  • Sparmann A and Bar-Sagi D (2004). Ras-induced interleukin-8 expression plays a critical role in tumor growth and angiogenesis. Cancer Cell 6: 447–458.

    Article  PubMed  CAS  Google Scholar 

  • Srivastava MK, Sinha P, Clements VK, et al. (2010). Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine. Cancer Res 70: 68–77.

    Article  CAS  Google Scholar 

  • Steinman RM and Banchereau J (2007). Taking dendritic cells into medicine. Nature 449: 419–426.

    Article  PubMed  CAS  Google Scholar 

  • Stockmann C, Doedens A, Weidemann A, et al. (2008). Deletion of vascular endothelial growth factor in myeloid cells accelerates tumorigenesis. Nature 456: 814–818.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki E, Kim S, Cheung Hk, et al. (2007). A novel small-molecule inhibitor of transforming growth factor beta type I receptor kinase (SM16) inhibits murine mesothelioma tumor growth in vivo and prevents tumor recurrence after surgical resection. Cancer Res 67: 2351–2359.

    Article  PubMed  CAS  Google Scholar 

  • Takeo S, Yasumoto K, Nagashima A, et al. (1986). Role of tumor-associated macrophages in lung cancer. Cancer Res 46: 3179–3182.

    PubMed  CAS  Google Scholar 

  • Tosetti F, Ferrari N, De Flora S, et al. (2002). Angioprevention’: Angiogenesis is a common and key target for cancer chemopreventive agents. FASEB J 16: 2–14.

    Article  PubMed  CAS  Google Scholar 

  • Trinchieri G (1989). Biology of natural killer cells. Adv Immunol 47: 187–376.

    Article  PubMed  CAS  Google Scholar 

  • Trinchieri G (2003). Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol 3: 133–146.

    Article  PubMed  CAS  Google Scholar 

  • Tsuda Y, Takahashi H, Kobayashi M, et al. (2004). Three different neutrophil subsets exhibited in mice with different susceptibilities to infection by methicillin-resistant Staphylococcus aureus. Immunity 21: 215–226.

    Article  PubMed  CAS  Google Scholar 

  • Ueno H, Klechevsky E, Morita R, et al. (2007). Dendritic cell subsets in health and disease. Immunol Rev 219: 118–142.

    Article  PubMed  CAS  Google Scholar 

  • Ugel S, Delpozzo F, Desantis G, et al. (2009). Therapeutic targeting of myeloid-derived suppressor cells. Curr Opin Pharmacol 9: 470–481.

    Article  PubMed  CAS  Google Scholar 

  • Verhasselt V, Buelens C, Willems F, et al. (1997). Bacterial lipopolysaccharide stimulates the production of cytokines and the expression of costimulatory molecules by human peripheral blood dendritic cells: Evidence for a soluble CD14-dependent pathway. J Immunol 158: 2919–2925.

    PubMed  CAS  Google Scholar 

  • Vermi W, Bonecchi R, Facchetti F, et al. (2003). Recruitment of immature plasmacytoid dendritic cells (plasmacytoid monocytes) and myeloid dendritic cells in primary cutaneous melanomas. J Pathol 200: 255–268.

    Article  PubMed  Google Scholar 

  • Vermi W, Facchetti F, Riboldi E, et al. (2006). Role of dendritic cell-derived CXCL13 in the pathogenesis of Bartonella henselae B-rich granuloma. Blood 107: 454–462.

    Article  PubMed  CAS  Google Scholar 

  • Vicari AP, Treilleux I, and Lebecque S (2004). Regulation of the trafficking of tumour-infiltrating dendritic cells by chemokines. Semin Cancer Biol 14: 161–169.

    Article  PubMed  CAS  Google Scholar 

  • Villegas FR, Coca S, Villarrubia VG, et al. (2002). Prognostic significance of tumor infiltrating natural killer cells subset CD57 in patients with squamous cell lung cancer. Lung Cancer 35: 23–28.

    Article  PubMed  Google Scholar 

  • Yang L, Debusk LM, Fukuda K, et al. (2004). Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell 6: 409–421.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

These studies were supported by grants from the AIRC (Associazione Italiana per la Ricerca sul Cancro), the Istituto Superiore della Sanità Alleanza contro il Cancro foundation, the Ministero della Sanità Progetto Finalizzato, the MIUR Progetto Finalizzato and FIRB, the Università degli studi dell’Insubria and the Compagnia di San Paolo. AV is the recipient of a FIRB (Fondazione Italiana per la Ricerca sul Cancro) fellowship, AB and AP are in the Molecular and Cellular Biology PhD program of the University of Insubria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas M. Noonan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Noonan, D.M., Ventura, A., Bruno, A., Pagani, A., Albini, A. (2011). The Angiogenic Switch: Role of Immune Cells. In: Marincola, F., Wang, E. (eds) Immunologic Signatures of Rejection. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7219-4_5

Download citation

Publish with us

Policies and ethics