Skip to main content

Inhibition of the Src Oncogene: Therapeutic Potential in Ovarian Carcinoma

  • Chapter
  • First Online:
Book cover Emerging Therapeutic Targets in Ovarian Cancer

Abstract

Src, a non-receptor tyrosine kinase, is the convergence point for multiple cellular pathways vital for tumorigenesis. It is a key regulator of angiogenesis with indirect effects exerted through VEGF. Additional potent pro-angiogenic cytokines such as IL-6 and IL-8 act via Src as well. Src also directly affects vascular permeability by impacting endothelial cadherin function, thereby inducing vascular leakage of tumor and interstitial fluid. Furthermore, with downstream targets such as FAK, Src orchestrates cell migration and integrin functions, which collectively contribute to the metastatic phenotype. Overexpression of Src is associated with advanced ovarian cancers, and the role of chemoresistance is of special interest as Src inhibition appears to reverse platinum-resistance, in part, by upregulation of caspase-3-mediated apoptosis. Src is an attractive target in ovarian cancers, and current trials using various Src inhibitors are underway.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rous P (1911). A sarcoma of the fowl transmissible by an agent separable from the tumor cells. J Exp Med 13:397–411.

    Article  PubMed  CAS  Google Scholar 

  2. Stehelin D, et al. (1976). DNA related to the transforming gene(s) of avian sarcoma viruses is present in normal avian DNA. Nature 260(5547):170–73.

    Article  PubMed  CAS  Google Scholar 

  3. Wiener JR, et al. (2003). Activated SRC protein tyrosine kinase is overexpressed in late-stage human ovarian cancers. Gynecol Oncol 88(1):73–79.

    Article  PubMed  CAS  Google Scholar 

  4. Huebner RJ, Todaro GJ (1969). Oncogenes of RNA tumor viruses as determinants of cancer. Proc Natl Acad Sci USA 64(3):1087–94.

    Article  PubMed  CAS  Google Scholar 

  5. Yeatman TJ (2004). A renaissance for SRC. Nat Rev Cancer 4(6):470–80.

    Article  PubMed  CAS  Google Scholar 

  6. Hunter T, Sefton BM (1980). Transforming gene product of Rous sarcoma virus phosphorylates tyrosine. Proc Natl Acad Sci USA 77(3):1311–15.

    Article  PubMed  CAS  Google Scholar 

  7. Summy JM, Gallick GE (2003). Src family kinases in tumor progression and metastasis. Cancer Metastasis Rev 22(4):337–58.

    Article  PubMed  CAS  Google Scholar 

  8. Han LY, et al. (2006). Antiangiogenic and antitumor effects of SRC inhibition in ovarian carcinoma. Cancer Res 66(17):8633–39.

    Article  PubMed  CAS  Google Scholar 

  9. Eliceiri BP, et al. (1999). Selective requirement for Src kinases during VEGF-induced angiogenesis and vascular permeability. Mol Cell 4(6):915–24.

    Article  PubMed  CAS  Google Scholar 

  10. Thomas SM, Brugge JS (1997). Cellular functions regulated by Src family kinases. Annu Rev Cell Dev Biol 13:513–609.

    Article  PubMed  CAS  Google Scholar 

  11. Blake RA, et al. (2000). SU6656, a selective src family kinase inhibitor, used to probe growth factor signaling. Mol Cell Biol 20(23):9018–27.

    Article  PubMed  CAS  Google Scholar 

  12. Fleming RY, et al. (1997). Regulation of vascular endothelial growth factor expression in human colon carcinoma cells by activity of src kinase. Surgery 122(2):501–7.

    Article  PubMed  CAS  Google Scholar 

  13. Ishizawar R, Parsons SJ (2004). c-Src and cooperating partners in human cancer. Cancer Cell 6(3):209–14.

    Article  PubMed  CAS  Google Scholar 

  14. Silva CM (2004). Role of STATs as downstream signal transducers in Src family kinase-mediated tumorigenesis. Oncogene 23(48):8017–23.

    Article  PubMed  CAS  Google Scholar 

  15. Summy JM, et al. (2005). AP23846, a novel and highly potent Src family kinase inhibitor, reduces vascular endothelial growth factor and interleukin-8 expression in human solid tumor cell lines and abrogates downstream angiogenic processes. Mol Cancer Ther 4(12):1900–11.

    Article  PubMed  CAS  Google Scholar 

  16. Trevino JG, et al. (2005). Expression and activity of SRC regulate interleukin-8 expression in pancreatic adenocarcinoma cells: implications for angiogenesis. Cancer Res 65(16):7214–22.

    Article  PubMed  CAS  Google Scholar 

  17. Calalb MB, Polte TR, Hanks SK (1995). Tyrosine phosphorylation of focal adhesion kinase at sites in the catalytic domain regulates kinase activity: a role for Src family kinases. Mol Cell Biol 15(2):954–63.

    PubMed  CAS  Google Scholar 

  18. Xu W, Harrison SC, Eck MJ (1997). Three-dimensional structure of the tyrosine kinase c-Src. Nature 385(6617):595–602.

    Article  PubMed  CAS  Google Scholar 

  19. Sicheri F, Moarefi I, Kuriyan J (1997). Crystal structure of the Src family tyrosine kinase Hck. Nature 385(6617):602–9.

    Article  PubMed  CAS  Google Scholar 

  20. Frame MC (2002). Src in cancer: deregulation and consequences for cell behaviour. Biochim Biophys Acta 1602(2):114–30.

    PubMed  CAS  Google Scholar 

  21. Moarefi I, et al. (1997). Activation of the Src-family tyrosine kinase Hck by SH3 domain displacement. Nature 385(6617):650–53.

    Article  PubMed  CAS  Google Scholar 

  22. Sigal CT, Resh MD (1993). The ADP/ATP carrier is the 32-kilodalton receptor for an NH2-terminally myristylated src peptide but not for pp60src polypeptide. Mol Cell Biol 13(5):3084–92.

    PubMed  CAS  Google Scholar 

  23. Alland L, et al. (1994). Dual myristylation and palmitylation of Src family member p59fyn affects subcellular localization. J Biol Chem 269(24):16701–5.

    PubMed  CAS  Google Scholar 

  24. Brown MT, Cooper JA (1996). Regulation, substrates and functions of src. Biochim Biophys Acta 1287(2-3):121–49.

    PubMed  Google Scholar 

  25. Irby RB, Yeatman TJ (2000). Role of Src expression and activation in human cancer. Oncogene 19(49):5636–42.

    Article  PubMed  CAS  Google Scholar 

  26. Yap TA, Carden CP, Kaye SB (2009). Beyond chemotherapy: targeted therapies in ovarian cancer. Nat Rev Cancer 9(3):167–81.

    Article  PubMed  CAS  Google Scholar 

  27. Garcia AA, et al. (2008). Phase II clinical trial of bevacizumab and low-dose metronomic oral cyclophosphamide in recurrent ovarian cancer: a trial of the California, Chicago, and Princess Margaret Hospital Phase II Consortia. J Clin Oncol 26(1):76–82.

    Article  PubMed  CAS  Google Scholar 

  28. Monk BJ, et al. (2009). Phase II trial of bevacizumab in the treatment of persistent or recurrent squamous cell carcinoma of the cervix: a Gynecologic Oncology Group Study. J Clin Oncol 27(7):1069–74.

    Article  PubMed  CAS  Google Scholar 

  29. Cannistra SA, et al. (2007). Phase II study of bevacizumab in patients with platinum-resistant ovarian cancer or peritoneal serous cancer. J Clin Oncol 25(33):5180–86.

    Article  PubMed  CAS  Google Scholar 

  30. Rini BI, et al. (2008). Bevacizumab plus interferon alfa compared with interferon alfa monotherapy in patients with metastatic renal cell carcinoma: CALGB 90206. J Clin Oncol 26(33):5422–28.

    Article  PubMed  CAS  Google Scholar 

  31. Dellapasqua S, et al. (2008). Metronomic cyclophosphamide and capecitabine combined with bevacizumab in advanced breast cancer. J Clin Oncol 26(30):4899–905.

    Article  PubMed  CAS  Google Scholar 

  32. Giantonio BJ, Forastiere AA, Comis RL (2008). The role of the Eastern Cooperative Oncology Group in establishing standards of cancer care: over 50 years of progress through clinical research. Semin Oncol 35(5):494–506.

    Article  PubMed  Google Scholar 

  33. Mukhopadhyay D, et al. (1995). Hypoxic induction of human vascular endothelial growth factor expression through c-Src activation. Nature 375(6532):577–81.

    Article  PubMed  CAS  Google Scholar 

  34. Gray MJ, et al. (2005). Neuropilin-1 suppresses tumorigenic properties in a human pancreatic adenocarcinoma cell line lacking neuropilin-1 coreceptors. Cancer Res 65(9):3664–70.

    Article  PubMed  CAS  Google Scholar 

  35. Ellis LM, et al. (1998). Down-regulation of vascular endothelial growth factor in a human colon carcinoma cell line transfected with an antisense expression vector specific for c-src. J Biol Chem 273(2):1052–57.

    Article  PubMed  CAS  Google Scholar 

  36. Wiener JR, et al. (1999). Decreased Src tyrosine kinase activity inhibits malignant human ovarian cancer tumor growth in a nude mouse model. Clin Cancer Res 5(8):2164–70.

    PubMed  CAS  Google Scholar 

  37. Nilsson MB, Langley RR, Fidler IJ (2005). Interleukin-6, secreted by human ovarian carcinoma cells, is a potent proangiogenic cytokine. Cancer Res 65(23):10794–800.

    Article  PubMed  CAS  Google Scholar 

  38. Nilsson MB, et al. (2007). Stress hormones regulate interleukin-6 expression by human ovarian carcinoma cells through a Src-dependent mechanism. J Biol Chem 282(41):29919–26.

    Article  PubMed  CAS  Google Scholar 

  39. Pan S, et al. (2009). Glucose 6-phosphate dehydrogenase is regulated through c-Src-mediated tyrosine phosphorylation in endothelial cells. Arterioscler Thromb Vasc Biol 29(6):895–901.

    Article  PubMed  CAS  Google Scholar 

  40. Behrens J, et al. (1993). Loss of epithelial differentiation and gain of invasiveness correlates with tyrosine phosphorylation of the E-cadherin/beta-catenin complex in cells transformed with a temperature-sensitive v-SRC gene. J Cell Biol 120(3):757–66.

    Article  PubMed  CAS  Google Scholar 

  41. Hamaguchi M, et al. (1993). p60v-src causes tyrosine phosphorylation and inactivation of the N-cadherin–catenin cell adhesion system. EMBO J 12(1):307–14.

    PubMed  CAS  Google Scholar 

  42. Lambeng N, et al. (2005). Vascular endothelial-cadherin tyrosine phosphorylation in angiogenic and quiescent adult tissues. Circ Res 96(3):384–91.

    Article  PubMed  CAS  Google Scholar 

  43. Paul R, et al. (2001). Src deficiency or blockade of Src activity in mice provides cerebral protection following stroke. Nat Med 7(2):222–27.

    Article  PubMed  CAS  Google Scholar 

  44. Pedram A, Razandi M, Levin ER (2002). Deciphering vascular endothelial cell growth factor/vascular permeability factor signaling to vascular permeability. Inhibition by atrial natriuretic peptide. J Biol Chem 277(46):44385–98.

    Article  PubMed  CAS  Google Scholar 

  45. Wallez Y, et al. (2007). Src kinase phosphorylates vascular endothelial-cadherin in response to vascular endothelial growth factor: identification of tyrosine 685 as the unique target site. Oncogene 26(7):1067–77.

    Article  PubMed  CAS  Google Scholar 

  46. Weis S, et al. (2004). Src blockade stabilizes a Flk/cadherin complex, reducing edema and tissue injury following myocardial infarction. J Clin Invest 113(6):885–94.

    PubMed  CAS  Google Scholar 

  47. Scheppke L, et al. (2008). Retinal vascular permeability suppression by topical application of a novel VEGFR2/Src kinase inhibitor in mice and rabbits. J Clin Invest 118(6):2337–46.

    PubMed  CAS  Google Scholar 

  48. van Bruggen N, et al. (1999). VEGF antagonism reduces edema formation and tissue damage after ischemia/reperfusion injury in the mouse brain. J Clin Invest 104(11):1613–20.

    Article  PubMed  Google Scholar 

  49. Dejana E, Orsenigo F, Lampugnani MG (2008). The role of adherens junctions and VE-cadherin in the control of vascular permeability. J Cell Sci 121(Pt 13):2115–22.

    Article  PubMed  CAS  Google Scholar 

  50. Criscuoli ML, Nguyen M, Eliceiri BP (2005). Tumor metastasis but not tumor growth is dependent on Src-mediated vascular permeability. Blood 105(4):1508–14.

    Article  PubMed  CAS  Google Scholar 

  51. Trevino JG, et al. (2006). Inhibition of SRC expression and activity inhibits tumor progression and metastasis of human pancreatic adenocarcinoma cells in an orthotopic nude mouse model. Am J Pathol 168(3):962–72.

    Article  PubMed  CAS  Google Scholar 

  52. Talamonti MS, et al. (1993). Increase in activity and level of pp60c-src in progressive stages of human colorectal cancer. J Clin Invest 91(1):53–60.

    Article  PubMed  CAS  Google Scholar 

  53. Masaki T, et al. (2003). pp60c-src activation in lung adenocarcinoma. Eur J Cancer 39(10):1447–55.

    Article  PubMed  CAS  Google Scholar 

  54. Fincham VJ, et al. (1996). Translocation of Src kinase to the cell periphery is mediated by the actin cytoskeleton under the control of the Rho family of small G proteins. J Cell Biol 135(6 Pt 1):1551–64.

    Article  PubMed  CAS  Google Scholar 

  55. Kaplan KB, et al. (1994). Association of the amino-terminal half of c-Src with focal adhesions alters their properties and is regulated by phosphorylation of tyrosine 527. EMBO J 13(20):4745–56.

    PubMed  CAS  Google Scholar 

  56. Schaller MD, Hildebrand JD, Parsons JT (1999). Complex formation with focal adhesion kinase: a mechanism to regulate activity and subcellular localization of Src kinases. Mol Biol Cell 10(10):3489–505.

    PubMed  CAS  Google Scholar 

  57. Glenney JR Jr, Zokas L (1989). Novel tyrosine kinase substrates from Rous sarcoma virus-transformed cells are present in the membrane skeleton. J Cell Biol 108(6):2401–8.

    Article  PubMed  CAS  Google Scholar 

  58. Kanner SB, et al. (1990). Monoclonal antibodies to individual tyrosine-phosphorylated protein substrates of oncogene-encoded tyrosine kinases. Proc Natl Acad Sci USA 87(9):3328–32.

    Article  PubMed  CAS  Google Scholar 

  59. Playford MP, Schaller MD (2004). The interplay between Src and integrins in normal and tumor biology. Oncogene 23(48):7928–46.

    Article  PubMed  CAS  Google Scholar 

  60. Kadono Y, et al. (1998). Transformation of epithelial Madin–Darby canine kidney cells with p60(v-src) induces expression of membrane-type 1 matrix metalloproteinase and invasiveness. Cancer Res 58(10):2240–44.

    PubMed  CAS  Google Scholar 

  61. Aguirre-Ghiso JA, et al. (1999). RalA requirement for v-Src- and v-Ras-induced tumorigenicity and overproduction of urokinase-type plasminogen activator: involvement of metalloproteases. Oncogene 18(33):4718–25.

    Article  PubMed  CAS  Google Scholar 

  62. Kurata H, et al. (2000). Constitutive activation of MAP kinase kinase (MEK1) is critical and sufficient for the activation of MMP-2. Exp Cell Res 254(1):180–88.

    Article  PubMed  CAS  Google Scholar 

  63. Partridge EE, Barnes MN (1999). Epithelial ovarian cancer: prevention, diagnosis, and treatment. CA Cancer J Clin 49(5):297–320.

    Article  PubMed  CAS  Google Scholar 

  64. Pengetnze Y, et al. (2003). Src tyrosine kinase promotes survival and resistance to chemotherapeutics in a mouse ovarian cancer cell line. Biochem Biophys Res Commun 309(2):377–83.

    Article  PubMed  CAS  Google Scholar 

  65. George JA, Chen T, Taylor CC (2005). SRC tyrosine kinase and multidrug resistance protein-1 inhibitions act independently but cooperatively to restore paclitaxel sensitivity to paclitaxel-resistant ovarian cancer cells. Cancer Res 65(22):10381–88.

    Article  PubMed  CAS  Google Scholar 

  66. Budde RJ, Ke S, Levin VA (1994). Activity of pp60c-src in 60 different cell lines derived from human tumors. Cancer Biochem Biophys 14(3):171–75.

    PubMed  CAS  Google Scholar 

  67. Chen T, Pengetnze Y, Taylor CC (2005). Src inhibition enhances paclitaxel cytotoxicity in ovarian cancer cells by caspase-9-independent activation of caspase-3. Mol Cancer Ther 4(2):217–24.

    PubMed  CAS  Google Scholar 

  68. Duxbury MS, et al. (2004). siRNA directed against c-Src enhances pancreatic adenocarcinoma cell gemcitabine chemosensitivity. J Am Coll Surg 198(6):953–59.

    Article  PubMed  Google Scholar 

  69. Duxbury MS, et al. (2004). Inhibition of SRC tyrosine kinase impairs inherent and acquired gemcitabine resistance in human pancreatic adenocarcinoma cells. Clin Cancer Res 10(7):2307–18.

    Article  PubMed  CAS  Google Scholar 

  70. Agarwal R, Kaye SB (2003). Ovarian cancer: strategies for overcoming resistance to chemotherapy. Nat Rev Cancer 3(7):502–16.

    Article  PubMed  CAS  Google Scholar 

  71. Dressman HK, et al. (2007). An integrated genomic-based approach to individualized treatment of patients with advanced-stage ovarian cancer. J Clin Oncol 25(5):517–25.

    Article  PubMed  CAS  Google Scholar 

  72. Kopetz S, Shah AN, Gallick GE (2007). Src continues aging: current and future clinical directions. Clin Cancer Res 13(24):7232–36.

    Article  PubMed  CAS  Google Scholar 

  73. Apperley JF, et al. (2009). Dasatinib in the treatment of chronic myeloid leukemia in accelerated phase after imatinib failure: The START a trial. J Clin Oncol 27:3472–79.

    Article  PubMed  CAS  Google Scholar 

  74. Messersmith WA, et al. (2007). Bosutinib (SKI-606), a dual Src/Abl tyrosine kinase inhibitor: preliminary results from a phase I study in patients with advanced malignant solid tumors. J Clin Oncol. 2007 ASCO Annual Meeting Proceedings Part I 25(No. 18S (June 20 Supplement)):3552.

    Google Scholar 

  75. Tabernero J, et al. (2007). Phase I study of AZD0530, an oral potent inhibitor of Src kinase: first demonstration of inhibition of Src activity in human cancers. J Clin Oncol. 2007 ASCO Annual Meeting Proceedings Part I 25(18S (June 20 Supplement)):3520.

    Google Scholar 

  76. Arteaga CL (2003). Inhibiting tyrosine kinases: successes and limitations. Cancer Biol Ther 2(4 Suppl 1):S79–S83.

    PubMed  CAS  Google Scholar 

  77. Adjei AA, et al. (2009). Results of a phase I trial of KX2-391, a novel non-ATP competitive substrate-pocket directed Src inhibitor, in patients with advanced malignancies. J Clin Oncol. 2009 ASCO Annual Meeting Proceedings 27(15 s, (Suppl; abstr 3511)).

    Google Scholar 

  78. Kikuchi Y, et al. (2009). Effects of weekly bevacizumab and pegylated liposomal doxorubicin in heavily pretreated patients with recurrent or progressed ovarian cancers. J Clin Oncol. 2009 ASCO Annual Meeting Proceedings 27(15 s, (Suppl; abstr 5547)).

    Google Scholar 

  79. McGonigle KF, et al. (2008). Phase II prospective study of weekly topotecan and bevacizumab in platinum refractory ovarian cancer or peritoneal cancer (OC). J Clin Oncol. 2009 ASCO Annual Meeting Proceedings 26(May 20 supp; abstr 5551).

    Google Scholar 

  80. Zweifel M, et al. (2009). Combretastatin A-4 phosphate (CA4P) carboplatin and paclitaxel in patient with platinum-resistant ovarian cancer: final phase II trial results. J Clin Oncol. 2009 ASCO Annual Meeting Proceedings 27(15 s, (Suppl; abstr 5502)).

    Google Scholar 

  81. Thaker PH, et al. (2005). Antivascular therapy for orthotopic human ovarian carcinoma through blockade of the vascular endothelial growth factor and epidermal growth factor receptors. Clin Cancer Res 11(13):4923–33.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work is partially funded by The Fulbright Commission-Fulbright Distinguished Scholar awarded to LYH, Council for International Exchange of Scholars, Department of State, Washington D.C., and supported in part by NIH (CA110793, CA109298, P50 CA083639, P50 CA098258, CA128797, RC2GM092599, U54 CA151668), DOD (OC73399, W81XWH-10-1-0158, BC 085265), the EIF Foundation, the Ovarian Cancer Research Fund Program Project Development Grant, the Zarrow Foundation, the Marcus Foundation, and the Betty Ann Asche Murray Distinguished Professorship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil K. Sood .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Han, L.Y., Sood, A.K. (2011). Inhibition of the Src Oncogene: Therapeutic Potential in Ovarian Carcinoma. In: Kaye, S., Brown, R., Gabra, H., Gore, M. (eds) Emerging Therapeutic Targets in Ovarian Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7216-3_5

Download citation

Publish with us

Policies and ethics