Skip to main content

Introduction

  • Chapter
  • First Online:
Environmental Radiation Effects on Mammals
  • 570 Accesses

Abstract

Over the past several decades, the problem of ensuring the environmental radiation safety has remained a challenge. This is stipulated by the following circumstances. In some regions of our planet people are exposed to an elevated radiation background. It can be caused either by radioactive rocks occurring at small depths or by radioactive contamination of areas due to accidents, such as the Chernobyl catastrophe. Moreover, the number of persons exposed to occupational radiation has steadily increased due to the development of atomic engineering and the use of radioactive materials in industry, science, and medicine. Additionally, the problem of ensuring the space environmental radiation safety has become particularly real in view of the development of programs of long-term space missions, such as Mars missions and lunar colonies. The solution to this problem entails certain complications due to the nonlinearity of the effects of low-level irradiation on biota and due to the variability of individual radiosensitivity. All this calls for the development of new individual-based approaches to the radiation risk assessment and to the investigation of the health effects of environmental radiation [1–19].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. National Council on Radiation Protection and Measurements. Guidance on Radiation Received in Space Activity (NCRP report no. 98), NCRP, Bethesda, MD, 1989.

    Google Scholar 

  2. Cucinotta F.A., Schimmerling W., Wilson J.W., Peterson L.E., Saganti P.B., Dicello J.F. Uncertainties in estimates of the risks of late effects from space radiation. Advances in Space Research, v. 34(6), pp. 1383–1389, 2004.

    Article  ADS  Google Scholar 

  3. Cucinotta F.A., Dicello J.F. On the development of biophysical models for space radiation risk assessment. Advances in Space Research, v. 25(10), pp. 2131–2140, 2000.

    Article  ADS  Google Scholar 

  4. Schimmerling W., Cucinotta F.A., Wilson J.W. Radiation risk and human space exploration. Advances in Space Research, v. 31(1), pp. 27–34, 2003.

    Article  ADS  Google Scholar 

  5. Hu S., Kim M.H., McClellan G.E., Cucinotta F.A. Modeling the acute health effects of astronauts from exposure to large solar particle events. Health Physics, v. 96(4), pp. 465–476, 2009.

    Article  Google Scholar 

  6. Simonsen L.C., Wilson J.W., Kim, M.H., Cucinotta F.A. Radiation exposure for human Mars exploration. Health Physics, v. 79(5), pp. 515–525, 2000.

    Article  Google Scholar 

  7. Blakely E.A. Biological effects of cosmic radiation: Deterministic and stochastic. Health Physics, v. 79(5), pp. 495–506, 2000.

    Article  Google Scholar 

  8. Eidemuller M., Ostroumova E., Krestinina L., Akleyev A., Jacob P. Analysis of solid cancer mortality in the Techa River Cohort using the two-step clonal expansion model. Radiation Research, v. 169(2), pp. 138–148, 2008.

    Article  Google Scholar 

  9. Canu I.G., Ellis E.D., Tirmarche M. Cancer risk in nuclear workers occupationally exposed to uranium—Emphasis on internal exposure. Health Physics, v. 94(1), pp. 1–17, 2008.

    Article  Google Scholar 

  10. Fliedner T.M., Graessle D.H. Hematopoietic cell renewal systems: Mechanisms of coping and failing after chronic exposure to ionizing radiation. Radiation and Environmental Biophysics, v. 47(1), pp. 63–69, 2008.

    Article  Google Scholar 

  11. Wilson J.W., Kim M., Schimmerling W., Badavi F.F., Thibeault S.A., Cucinotta F.A., Shinn J.L., Kiefer R. Issues in space radiation protection: Galactic cosmic rays. Health Physics, v. 68(1), pp. 50–58, 1995.

    Article  Google Scholar 

  12. Wilson J.W., Thibeault S.A., Cucinotta F.A., Shinn J.L., Kim M., Kiefer R., Badavi F.F. Issues in protection from galactic cosmic rays. Radiation and Environmental Biophysics, v. 34, pp. 217–222, 1995.

    Article  Google Scholar 

  13. Hagen U., Harder D., Jung H., Streffen C. (Eds.). Radiation Research 1895-1995. Eds.: U. Hagen, D. Harder, H. Jung, C. Streffer. Congress Proceedings. Volume 2: Congress Lectures. Wurzburg: Universitatsdruckerei H. Sturtz AG, 1995, pp. 1–1210.

    Google Scholar 

  14. Luckey T.D. Physiological benefits from low levels of ionizing radiation. Health Physics, v. 43(6), pp. 771–789, 1982.

    Article  Google Scholar 

  15. Gottlober P., Steinert M., Weiss M., Bebeshko V., Belyi D., Nadejina N., Stefani F.H., Wagemaker G., Fliedner T.M., Peter R.U. The outcome of local radiation injuries: 14 years of follow-up after the Chernobyl accident. Radiation Research, v. 155(3), pp. 409–416, 2001.

    Article  Google Scholar 

  16. Meineke V., Van Beuningen D., Sohns T., Fliedner T.M. Medical management principles for radiation accidents. Military Medicine, v. 168(3), pp. 219–222, 2003.

    Google Scholar 

  17. Fliedner T.M., et al. Stem cells, multiorgan failure in radiation emergency medical preparedness: A U.S./European consultation workshop. Stem Cells, v. 27(5), pp. 1205–1211, 2009.

    Google Scholar 

  18. Ivanov V.K., Tzyb A.F. Medical radiobiological effects of the Chernobyl catastrophe on the population of Russia: Estimation of radiation risks. Moscow: Meditsina, 2002 (Russian).

    Google Scholar 

  19. Akleev A.V., Kisselyov M.F. (Eds.). Medical–biological and ecological impacts of radioactive contamination of the Techa River. Moscow: Medbioextrem, 2001 (Russian).

    Google Scholar 

  20. Smirnova O.A., Stepanova N.V. Mathematical model of oscillations under infection’s immunity. In: Proceedings of the Second All-Union Symposium on Oscillatory Processes in Biological and Chemical Systems, Pushchino-na-Oke, 1970. NTsBI AN SSSR, Pushchino-na-Oke, v. 2, pp. 247–251, 1971 (Russian).

    Google Scholar 

  21. Smirnova O.A., Stepanova N.V. Computer modeling of immune response dynamics. Vestnik Moskovskogo Universiteta (Fizika, Astronomiya), no. 5, pp. 520–526, 1971 (Russian).

    Google Scholar 

  22. Smirnova O.A., Stepanova N.V. Mathematical model of the cooperative interaction in the immune reaction. Zhurnal Mikrobiologii, Epidemiologii i Immunologii, no. 11, pp. 50–53, 1974 (Russian).

    Google Scholar 

  23. Smirnova O.A., Stepanova N.V. Mathematical model of infection’s immunity. In: Proceedings of the Intercollegiate Meeting on Theoretical and Experimental Biophysics. Kaliningrad: Kaliningrad State University, no. 5, pp. 61–75, 1975 (Russian).

    Google Scholar 

  24. Smirnova O.A. Mathematical model of the immune reaction. Vestnik Moskovskogo Universiteta (Fizika, Astronomiya), no. 4, pp. 485–486, 1975 (Russian).

    Google Scholar 

  25. Smirnova O.A., Stepanova N.V. Mathematical model of autoimmunity. Biofizika, v. 20, pp. 1095–1098, 1975 (Russian).

    Google Scholar 

  26. Levi M.I., Smirnova O.A. The conveyer hypothesis of the primary immune response to soluble antigen. Zhurnal Obschei Biologii, v. 38, pp. 88–99, 1977 (Russian).

    Google Scholar 

  27. Levi M.I., Smirnova O.A. Cyclic kinetics and mathematical expression of the primary immune response to soluble antigen: VII. The conveyer hypothesis and its mathematical expression. Folia Microbiologica, v. 22, pp. 117–127, 1977.

    Google Scholar 

  28. Smirnova O.A., Govorun R.D., Ryshov N.I. Mathematical model to study the postirradiation dynamics of lymphopoiesis. Radiobiologiya, v. 22, pp. 488–473, 1982 (Russian).

    Google Scholar 

  29. Smirnova O.A. Mathematical model of radiation effect on immune system. Immunologiya, no. 2, pp. 38–42, 1984 (Russian).

    Google Scholar 

  30. Smirnova O.A. Mathematical model of cyclic kinetics of granulocytopoiesis. Kosmicheskaya Biologiya i Aviakosmicheskaya Meditsina, no. 1, pp. 77–80, 1985 (Russian).

    Google Scholar 

  31. Smirnova O.A. Mathematical modeling of thrombocytopoiesis dynamics in mammals exposed to radiation. Radiobiologiya, v. 25, p. 571. Dep. in VINITI N 2552-85, 16.04.85, 1985 (Russian).

    Google Scholar 

  32. Smirnova O.A. The mathematical model of mortality dynamics for irradiated mammals which is based on the model of hematopoiesis. Radiobiologiya, v. 27, p. 713. Dep. in VINITI N 2443-1387, 06.07.87, 1987 (Russian).

    Google Scholar 

  33. Smirnova O.A. Mathematical model for postirradiation autoimmunity. Radiobiologiya, v. 28(3), pp. 331–335, 1988 (Russian).

    Google Scholar 

  34. Smirnova O.A. Mathematical modeling of autoimmunity dynamics under continuous irradiation. In: Modeling of Population Dynamics. Gorky: Gorky University Press, pp. 47–54, 1988 (Russian).

    Google Scholar 

  35. Smirnova O.A. Mathematical simulation of the dynamics of postirradiation damage and recovery of intestinal epithelium. Radiobiologiya, v. 28, pp. 817–821, 1988 (Russian).

    Google Scholar 

  36. Zukhbaya T.N., Smirnova O.A. Experimental and theoretical investigation of the dynamics of lymphopoiesis upon prolonged exposure to ionizing radiation. Radiobiologiya, v. 28, pp. 626–631, 1988 (Russian).

    Google Scholar 

  37. Zukhbaya T.N., Smirnova O.A. Mathematical model for the dynamics of granulocytopoiesis in mammals. Radiobiologiya, v. 28, pp. 796–802, 1988 (Russian).

    Google Scholar 

  38. Smirnova O.A. Mathematical modelling of cyclic kinetics of haemopoiesis. Kosmicheskaya Biologiya i Aviakosmicheskaya Meditsina, no. 1, pp. 41–45, 1989 (Russian).

    Google Scholar 

  39. Smirnova O.A. The model of homeostasis of hematopoiesis system under chronic irradiation. In: Modeling of Population Dynamics. Gorky: Gorky University Press, pp. 39–45, 1989 (Russian).

    Google Scholar 

  40. Zukhbaya T.M., Smirnova O.A. The stimulation effect of prolonged radiation of small dose rates on mammalian lymphopoiesis. Kosmicheskaya Biologiya i Aviakosmicheskaya Meditsina, no. 1, pp. 47–51, 1989 (Russian).

    Google Scholar 

  41. Smirnova O.A. Mathematical modelling of dynamics of erythropoiesis and granulocytopoiesis under acute irradiation. Radiobiologiya, v. 30, pp. 627–633, 1990 (Russian).

    Google Scholar 

  42. Smirnova O.A. Mathematical modelling of the death rate dynamics in mammals with intestinal form of radiation sickness. Radiobiologiya, v. 30, pp. 814–820, 1990 (Russian).

    Google Scholar 

  43. Smirnova O.A. Mathematical modelling of bone-marrow erythropoiesis dynamics in nonirradiated and irradiated mammals. In: Dynamics of Biological Populations. Gorky: Gorky University Press, pp. 51–58, 1990 (Russian).

    Google Scholar 

  44. Smirnova O.A. Study of cyclic kinetics of immunity by mathematical modelling methods. Kosmicheskaya Biologiya i Aviakosmicheskaya Meditsina, no. 5, pp. 53–56, 1991 (Russian).

    Google Scholar 

  45. Smirnova O.A., Zukhbaya T.M. The stimulation effect of prolonged radiation of small dose rates on mammalian granulocytopoiesis. Kosmicheskaya Biologiya i Aviakosmicheskaya Meditsina, no. 3, pp. 40–42, 1991 (Russian).

    Google Scholar 

  46. Zukhbaya T.M., Smirnova O.A. An experimental and mathematical analysis of lymphopoiesis dynamics under continuous irradiation. Health Physics, v. 61(1), pp. 87–95, 1991.

    Article  Google Scholar 

  47. Smirnova O.A. Mathematical simulation of the intestinal epithelium dynamics in nonirradiated and irradiated mammals. Radiobiologiya, v. 32, pp. 751–756, 1992 (Russian).

    Google Scholar 

  48. Smirnova O.A. Effect of chronic irradiation at high dose rate on the hemopoietic system: Mathematical simulation. Radiobiologiya, v. 32, pp. 757–763, 1992 (Russian).

    Google Scholar 

  49. Kovalev E.E., Smirnova O.A. Life-span of irradiated mammals. Mathematical modelling. Acta Astronautica, v. 32, pp. 649–652, 1994.

    Article  Google Scholar 

  50. Smirnova O.A. Hematopoiesis dynamics in mammals under combined exposures to radiation: Mathematical modelling. Aviakosmicheskaya i Ekologicheskaya Meditsina, no. 3, pp. 45–49, 1995 (Russian).

    Google Scholar 

  51. Kovalev E.E., Smirnova O.A. Radiation risk assessment based on the concept of individual variability of radiosensitivity. Radiation research 1895–1995. Congress Proceedings. Vol. 1. U. Hagen, H. Jung, C. Streffer (Eds.). Tenth International Congress of Radiation Research, Wurzburg, Germany, August 27 - September 1, 1995. Wurzburg: Universitatsdruckerei H. Strtz AG, p. 335, 1995.

    Google Scholar 

  52. Smirnova O.A. Mathematical modeling of the effect of ionizing radiation on the immune system of mammals. Physics of Particles and Nuclei. American Institute of Physics, v. 27(1), pp. 100–120, 1996.

    MathSciNet  ADS  Google Scholar 

  53. Kovalev E.E., Smirnova O.A. Estimation of radiation risk based on the concept of individual variability of radiosensitivity. AFRRI Contract Report 96-1. Bethesda, MD: Armed Forces Radiobiology Research Institute, 1996.

    Google Scholar 

  54. Smirnova O.A. Problems of mathematical modeling in modern space radiobiology. Proceedings of Sissakian Memorial Symposium under the auspices of UNESCO “Problems of Biochemistry, Radiation and Space Biology.” Moscow, Dubna, Russia, January 22–25, 1997. D-19-97-284. Dubna: JINR, pp. 239–253, 1997 (Russian).

    Google Scholar 

  55. Smirnova O.A. Mathematical modeling of the mortality dynamics of mammals exposed to acute and chronic irradiation. Mathematics, Computers, Education. Moscow: Progress-Tradiciya, v. 5, pp. 299–303, 1998 (Russian).

    Google Scholar 

  56. Smirnova O.A. Mathematical models of hematopoiesis dynamics in nonirradiated and irradiated mammals. BioMedSim’99. 1st Conference on Modelling and Simulation in Biology, Medicine and Biomedical Engineering, Noisy-le-Grand, France, April 20-22, 1999. Proceedings. Paris: Groupe ESIEE, pp. 105–109, 1999.

    Google Scholar 

  57. Smirnova O.A. Autoimmunity dynamics in irradiated mammals: Mathematical modeling. BioMedSim’99. 1st Conference on Modelling and Simulation in Biology, Medicine and Biomedical Engineering, Noisy-le-Grand, France, April 20–22, 1999. Proceedings. Paris: Groupe ESIEE, pp. 110–113, 1999.

    Google Scholar 

  58. Smirnova O.A. Mathematical modeling of mortality dynamics of mammalian populations exposed to radiation. Mathematical Biosciences, v. 167(1), pp. 19–30, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  59. Smirnova O.A. Mathematical models of hematopoiesis dynamics in irradiated mammals. Abstracts of the 24th Meeting of the European Study Group for Cell Proliferation (ESGCP), Leipzig, Germany, June 12–17, 2001. Cell Proliferation, v. 34(3), p. 193, 2001.

    Google Scholar 

  60. Smirnova O.A. Mathematical models of dynamics of small intestine epithelium system in nonirradiated and irradiated mammals. Abstracts of the 24th Meeting of the European Study Group for Cell Proliferation (ESGCP), Leipzig, Germany, June 12–17, 2001. Cell Proliferation, v. 34(3), pp. 193–194, 2001.

    Google Scholar 

  61. Smirnova O.A. Simulation of mortality dynamics for mammalian populations exposed to radiation. The 4th International EUROSIM Congress “Shaping Future with Simulation,” Delft, the Netherlands, June 26–29, 2001. Abstracts, Delft: TUDelft, pp. 109–110, 2001.

    Google Scholar 

  62. Smirnova O.A. Paradoxical effects of low level irradiation on radiosensitivity of mammals: Modeling investigations. “Problems of Biochemistry, Radiation, and Space Biology,” II International Symposium under the auspices of UNESCO dedicated to the memory of Academician N. Sissakian and II Sissakian Readings, Moscow, Dubna, Russia, 29 May–1 June 2001. Proceedings, ISBN 5-85165-697-2, Dubna, JINR, v. 1, pp. 177–182, 2002 (Russian).

    Google Scholar 

  63. Smirnova O.A. Mathematical model for assessment of radiation risk on long space mission. Advances in Space Research, v. 30(4), pp. 1005–1010, 2002.

    Article  MathSciNet  ADS  Google Scholar 

  64. Smirnova O.A. Mathematical modeling of radiation-induced autoimmunity. In: Mathematical Modelling and Computing in Biology and Medicine. 5th ECMTB Conference 2002. V. Capasso (Ed.). Milan: Milan Research Centre for Industrial and Applied Mathematics, pp. 392–402, 2003.

    Google Scholar 

  65. Smirnova O.A., Yonezawa M. Radioprotection effect of low level preirradiation on mammals: Modeling and experimental investigations. Health Physics, v. 85(2), pp. 150–158, 2003.

    Article  Google Scholar 

  66. Sakovich V.A., Smirnova O.A. Modeling radiation effects on life span of mammals. Physics Particles and Nuclei, v. 34(6), pp. 743–766, 2003.

    Google Scholar 

  67. Smirnova O.A. Simulation of mortality dynamics for populations of mammals (mice) exposed to radiation. Simulation Modelling Practice and Theory: Advances in Modelling and Simulation in Biology and Medicine. Y. Hamam and F. Rocaries (Eds.), v. 12(2), pp. 171–182, 2004.

    Google Scholar 

  68. Smirnova O.A. Comparative risk assessment for homogeneous and nonhomogeneous mammalian populations exposed to low level radiation. In: I. Linkov and A.B. Ramadan (Eds.) Comparative Risk Assessment and Environmental Decision Making. NATO Science Series. IV. Earth and Environmental Sciences, Vol. 38. Dordrecht, the Netherlands: Kluwer Academic Publishers, pp. 385–392, 2004.

    Google Scholar 

  69. Smirnova O.A., Yonezawa M. Radioresistance in mammals induced by low-level chronic irradiation: Modeling and experimental investigations. Health Physics, v. 87(4), pp. 366–374, 2004.

    Article  Google Scholar 

  70. Smirnova O.A. Mathematical modelling the radiation effects on humoral immunity. Advances in Space Research, v. 37, pp. 1813–1822, 2006.

    Article  ADS  Google Scholar 

  71. Smirnova O.A. Radiation and Organism of Mammals: Modeling Approach. Moscow-Izhevsk: Scientific-Publishing Centre “Regular and Chaotic Dynamics,” Institute of Computer Science, 2006 (Russian).

    Google Scholar 

  72. Smirnova O.A. Mathematical modelling the radiation effects on humoral immunity. Advances in Space Research, v. 37, pp. 1813–1822, 2006.

    Article  ADS  Google Scholar 

  73. Smirnova O., Yonezawa M. Effects of chronic low-level irradiation on radiosensitivity of mammals: Modeling and experimental studies. In: Radiation Risk Estimates in Normal and Emergency Situations. Proceedings of the NATO Advanced Research Workshop on Impact of Radiation Risk Estimates in Normal and Emergency Situations, Yerevan, Armenia, September 8–11, 2005. A.A. Cigna and M. Durante (Eds.), Springer, XX, pp. 291–301, 2006.

    Google Scholar 

  74. Smirnova O.A. Effects of low-level chronic irradiation on the radiosensitivity of mammals: Mmodeling studies. Advances in Space Research, v. 40, pp. 1408–1413, 2007.

    Article  ADS  Google Scholar 

  75. Smirnova O.A. Radiation effects on small intestine epithelium system: Mathematical modeling. Proceedings of III International Symposium “Problems of Biochemistry, Radiation and Space Biology” dedicated to the centenary of Academician N.M. Sissakian’s birth, Dubna, pp. 250–256, 2007.

    Google Scholar 

  76. Smirnova O.A. Blood and small intestine cell kinetics under radiation exposures: Mathematical modeling. Advances in Space Research, v. 44, pp. 1457–1469, 2009.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga A. Smirnova .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer New York

About this chapter

Cite this chapter

Smirnova, O.A. (2010). Introduction. In: Environmental Radiation Effects on Mammals. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7213-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7213-2_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-7212-5

  • Online ISBN: 978-1-4419-7213-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics