Proteome-Wide Screens in Saccharomyces cerevisiae Using the Yeast GFP Collection

  • Yolanda T. ChongEmail author
  • Michael J. CoxEmail author
  • Brenda AndrewsEmail author
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 736)


The budding yeast is a simple and genetically tractable eukaryotic organism. It remains a leading system for functional genomic work and has been the focus of many pioneering efforts, including the systematic construction and analysis of gene deletion mutants. Over the past decade, many large-scale studies have made use of the deletion and other mutant collections to assay genetic interactions, chemical sensitivities, and other phenotypes, contributing enormously to our understanding of gene function. The deletion mutant collection has also been used in cell biological surveys to identify genes that control cell and organelle morphology. One valuable approach for systematic definition of gene function and biological pathways involves global assessment of the localization patterns of the proteins they encode and how these patterns are altered in response to environmental or genetic perturbation. However, proteome-wide, cell biological screens are extremely challenging, from both a technical and computational perspective. The yeast GFP collection, an elegant and unique strain set, is ideal for studying both protein localization and abundance across the proteome ( In this chapter, we outline how the yeast GFP collection has been used to date and discuss approaches for conducting future surveys of the proteome.


Green Fluorescent Protein Automate Image Analysis Green Fluorescent Protein Signal Single Cell Resolution Synthetic Lethal Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Huh WK, Falvo JV, Gerke LC, Carroll AS, Howson RW, Weissman JS, O’Shea EK (2003) Global analysis of protein localization in budding yeast. Nature 425(6959):686–691. doi:10.1038/nature02026 nature02026 [pii]PubMedCrossRefGoogle Scholar
  2. 2.
    Noree C, Sato BK, Broyer RM, Wilhelm JE (2010) Identification of novel filament-forming proteins in Saccharomyces cerevisiae and Drosophila melanogaster. J Cell Biol 190(4): 541–551. doi:jcb.201003001 [pii] 10.1083/jcb.201003001Google Scholar
  3. 3.
    Newman JR, Ghaemmaghami S, Ihmels J, Breslow DK, Noble M, DeRisi JL, Weissman JS (2006) Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise. Nature 441(7095):840–846. doi:nature04785 [pii] 10.1038/nature04785Google Scholar
  4. 4.
    Benanti JA, Cheung SK, Brady MC, Toczyski DP (2007) A proteomic screen reveals SCFGrr1 targets that regulate the glycolytic-gluconeogenic switch. Nat Cell Biol 9(10):1184–1191. doi:ncb1639 [pii] 10.1038/ncb1639PubMedCrossRefGoogle Scholar
  5. 5.
    Springer M, Weissman JS, Kirschner MW (2010) A general lack of compensation for gene dosage in yeast. Mol Syst Biol 6:368. doi:msb201019 [pii] 10.1038/msb.2010.19PubMedCrossRefGoogle Scholar
  6. 6.
    DeLuna A, Springer M, Kirschner MW, Kishony R (2010) Need-based up-regulation of protein levels in response to deletion of their duplicate genes. PLoS Biol 8(3):e1000347. doi:10.1371/journal.pbio.1000347PubMedCrossRefGoogle Scholar
  7. 7.
    Shin CS, Kim SY, Huh WK (2009) TORC1 controls degradation of the transcription factor Stp1, a key effector of the SPS amino-acid-sensing pathway in Saccharomyces cerevisiae. J Cell Sci 122(Pt 12):2089–2099. doi:122/12/2089 [pii] 10.1242/jcs.047191Google Scholar
  8. 8.
    Narayanaswamy R, Levy M, Tsechansky M, Stovall GM, O’Connell JD, Mirrielees J, Ellington AD, Marcotte EM (2009) Widespread reorganization of metabolic enzymes into reversible assemblies upon nutrient starvation. Proc Natl Acad Sci USA 106(25):10147–10152. doi:0812771106 [pii] 10.1073/pnas.0812771106PubMedCrossRefGoogle Scholar
  9. 9.
    Narayanaswamy R, Niu W, Scouras AD, Hart GT, Davies J, Ellington AD, Iyer VR, Marcotte EM (2006) Systematic profiling of cellular phenotypes with spotted cell microarrays reveals mating-pheromone response genes. Genome Biol 7(1):R6. doi:gb-2006–7–1-r6 [pii] 10.1186/gb-2006–7–1-r6PubMedCrossRefGoogle Scholar
  10. 10.
    Narayanaswamy R, Moradi EK, Niu W, Hart GT, Davis M, McGary KL, Ellington AD, Marcotte EM (2009) Systematic definition of protein constituents along the major polarization axis reveals an adaptive reuse of the polarization machinery in pheromone-treated budding yeast. J Proteome Res 8(1):6–19. doi:10.1021/pr800524g 10.1021/pr800524g [pii]PubMedCrossRefGoogle Scholar
  11. 11.
    Carpenter AE, Jones TR, Lamprecht MR, Clarke C, Kang IH, Friman O, Guertin DA, Chang JH, Lindquist RA, Moffat J, Golland P, Sabatini DM (2006) CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol 7(10):R100. doi:gb-2006–7–10-r100 [pii] 10.1186/gb-2006–7–10-r100PubMedCrossRefGoogle Scholar
  12. 12.
    Tong AH, Evangelista M, Parsons AB, Xu H, Bader GD, Page N, Robinson M, Raghibizadeh S, Hogue CW, Bussey H, Andrews B, Tyers M, Boone C (2001) Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294(5550):2364–2368. doi:10.1126/science.1065810 294/5550/2364 [pii]PubMedCrossRefGoogle Scholar
  13. 13.
    Vizeacoumar FJ, van Dyk N, F SV, Cheung V, Li J, Sydorskyy Y, Case N, Li Z, Datti A, Nislow C, Raught B, Zhang Z, Frey B, Bloom K, Boone C, Andrews BJ (2010) Integrating high-throughput genetic interaction mapping and high-content screening to explore yeast spindle morphogenesis. J Cell Biol 188(1):69–81. doi:jcb.200909013 [pii] 10.1083/jcb.200909013Google Scholar
  14. 14.
    Vizeacoumar FJ, Chong Y, Boone C, Andrews BJ (2009) A picture is worth a thousand words: genomics to phenomics in the yeast Saccharomyces cerevisiae. FEBS Lett 583(11):1656–1661. doi:S0014–5793(09)00272–5 [pii] 10.1016/j.febslet.2009.03.068Google Scholar
  15. 15.
    Collins TJ (2007) ImageJ for microscopy. Biotechniques 43(1 Suppl):25–30. doi:000112517 [pii]PubMedCrossRefGoogle Scholar
  16. 16.
    Kuijper A, Heise B (2008) An automatic cell segmentation method for differential interference contrast microscopy. IEEE Pattern Recognition, 2008 ICPR 2008 19th International Conference: 1–4, Tampa, FLGoogle Scholar
  17. 17.
    Obara B, Veeman M, Choi JH, Smith W, Manjunath BS (2010) Segmentation of ascidian notochord cells in DIC timelapse images. Microsc Res Technol 74(8):727–734. doi:10.1002/jemt.20950CrossRefGoogle Scholar
  18. 18.
    Chen SC, Zhao T, Gordon GJ, Murphy RF (2007) Automated image analysis of protein localization in budding yeast. Bioinformatics 23(13):i66–71. doi:23/13/i66 [pii] 10.1093/bioinformatics/btm206PubMedCrossRefGoogle Scholar
  19. 19.
    Jones TR, Kang IH, Wheeler DB, Lindquist RA, Papallo A, Sabatini DM, Golland P, Carpenter AE (2008) CellProfiler analyst: data exploration and analysis software for complex image-based screens. BMC Bioinform 9:482. doi:1471–2105–9–482 [pii] 10.1186/ 1471–2105–9–482CrossRefGoogle Scholar
  20. 20.
    Misselwitz B, Strittmatter G, Periaswamy B, Schlumberger MC, Rout S, Horvath P, Kozak K, Hardt WD (2010) Enhanced CellClassifier: a multi-class classification tool for microscopy images. BMC Bioinform 11:30. doi:1471–2105–11–30 [pii] 10.1186/1471–2105–11–30CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.The Donnelly Centre, Department of Molecular GeneticsUniversity of TorontoTorontoCanada

Personalised recommendations