Molecular Systems Biology of Sic1 in Yeast Cell Cycle Regulation Through Multiscale Modeling

  • Matteo BarberisEmail author
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 736)


Cell cycle control is highly regulated to guarantee the precise timing of events essential for cell growth, i.e., DNA replication onset and cell division. Failure of this control plays a role in cancer and molecules called cyclin-dependent kinase (Cdk) inhibitors (Ckis) exploit a critical function in cell cycle timing. Here we present a multiscale modeling where experimental and computational studies have been employed to investigate structure, function and temporal dynamics of the Cki Sic1 that regulates cell cycle progression in Saccharomyces cerevisiae. Structural analyses reveal molecular details of the interaction between Sic1 and Cdk/cyclin complexes, and biochemical investigation reveals Sic1 function in analogy to its human counterpart p27Kip1, whose deregulation leads to failure in timing of kinase activation and, therefore, to cancer. Following these findings, a bottom-up systems biology approach has been developed to characterize modular networks addressing Sic1 regulatory function. Through complementary experimentation and modeling, we suggest a mechanism that underlies Sic1 function in controlling temporal waves of cyclins to ensure correct timing of the phase-specific Cdk activities.


Cell Cycle Progression Granulosa Cell Tumor Phase Onset Fluorescence Lifetime Imaging Microscopy Regulate Cell Cycle Progression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



MB is supported by grants from the European Commission ENFIN (contract number LSHGCT-2005–518254) and UNICELLSYS (contract number HEALTH-2007–201142) to EK. I would like to thank Edda Klipp and Lilia Alberghina for their constant scientific support in the course of my research, and Marco Vanoni, Luca De Gioia, and Francesc Posas for stimulating discussions.


  1. 1.
    Obaya AJ, Sedivy JM (2002) Regulation of cyclin-Cdk activity in mammalian cells. Cell Mol Life Sci 59(1):126–142PubMedCrossRefGoogle Scholar
  2. 2.
    Morgan DO (1995) Principles of CDK regulation. Nature 374(6518):131–134PubMedCrossRefGoogle Scholar
  3. 3.
    De Clercq A, Inze D (2006) Cyclin-dependent kinase inhibitors in yeast, animals, and plants: a functional comparison. Crit Rev Biochem Mol Biol 41(5):293–313PubMedCrossRefGoogle Scholar
  4. 4.
    Sherr CJ, Roberts JM (1995) Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev 9(10):1149–1163PubMedCrossRefGoogle Scholar
  5. 5.
    Sherr CJ, Roberts JM (1999) CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 13(12):1501–1512PubMedCrossRefGoogle Scholar
  6. 6.
    Tsihlias J, Kapusta L, Slingerland J (1999) The prognostic significance of altered cyclin-dependent kinase inhibitors in human cancers. Annu Rev Med 50:401–423PubMedCrossRefGoogle Scholar
  7. 7.
    Besson A, Dowdy SF, Roberts JM (2008) CDK inhibitors: cell cycle regulators and beyond. Dev Cell 14(2):159–169PubMedCrossRefGoogle Scholar
  8. 8.
    Chu IM, Hengst L, Slingerland JM (2008) The Cdk inhibitor p27 in human cancer: prognostic potential and relevance to anticancer therapy. Nat Rev Cancer 8(4):253–267PubMedCrossRefGoogle Scholar
  9. 9.
    Abukhdeir AM, Park BH (2008) P21 and p27: roles in carcinogenesis and drug resistance. Expert Rev Mol Med 10:e19PubMedCrossRefGoogle Scholar
  10. 10.
    Hershko DD (2008) Oncogenic properties and prognostic implications of the ubiquitin ligase Skp2 in cancer. Cancer 112(7):1415–1424PubMedCrossRefGoogle Scholar
  11. 11.
    Mishra A, Godavarthi SK, Jana NR (2009) UBE3A/E6-AP regulates cell proliferation by promoting proteasomal degradation of p27. Neurobiol Dis 36(1):26–34PubMedCrossRefGoogle Scholar
  12. 12.
    Slingerland J, Pagano M (2000) Regulation of the cdk inhibitor p27 and its deregulation in cancer. J Cell Physiol 183(1):10–17PubMedCrossRefGoogle Scholar
  13. 13.
    Lloyd RV, Erickson LA, Jin L, Kulig E, Qian X, Cheville JC, Scheithauer BW (1999) p27kip1: a multifunctional cyclin-dependent kinase inhibitor with prognostic significance in human cancers. Am J Pathol 154(2):313–323PubMedCrossRefGoogle Scholar
  14. 14.
    Belletti B, Nicoloso MS, Schiappacassi M, Chimienti E, Berton S, Lovat F, Colombatti A, Baldassarre G (2005) p27(kip1) functional regulation in human cancer: a potential target for therapeutic designs. Curr Med Chem 12(14):1589–1605PubMedCrossRefGoogle Scholar
  15. 15.
    Polyak K, Lee MH, Erdjument-Bromage H, Koff A, Roberts JM, Tempst P, Massagué J (1994) Cloning of p27Kip1, a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals. Cell 78(1):59–66PubMedCrossRefGoogle Scholar
  16. 16.
    Toyoshima H, Hunter T (1994) p27, a novel inhibitor of G1 cyclin-Cdk protein kinase activity, is related to p21. Cell 78(1):67–74PubMedCrossRefGoogle Scholar
  17. 17.
    Coats S, Flanagan WM, Nourse J, Roberts JM (1996) Requirement of p27Kip1 for restriction point control of the fibroblast cell cycle. Science 272(5263):877–880PubMedCrossRefGoogle Scholar
  18. 18.
    Ray A, James MK, Larochelle S, Fisher RP, Blain SW (2009) p27Kip1 inhibits cyclin D-cyclin-dependent kinase 4 by two independent modes. Mol Cell Biol 29(4):986–999PubMedCrossRefGoogle Scholar
  19. 19.
    LaBaer J, Garrett MD, Stevenson LF, Slingerland JM, Sandhu C, Chou HS, Fattaey A, Harlow E (1997) New functional activities for the p21 family of CDK inhibitors. Genes Dev 11(7):847–862PubMedCrossRefGoogle Scholar
  20. 20.
    Cheng M, Olivier P, Diehl JA, Fero M, Roussel MF, Roberts JM, Sherr CJ (1999) The p21(Cip1) and p27(Kip1) CDK ‘inhibitors’ are essential activators of cyclin D-dependent kinases in murine fibroblasts. EMBO J 18(6):1571–83PubMedCrossRefGoogle Scholar
  21. 21.
    Fero ML, Randel E, Gurley KE, Roberts JM, Kemp CJ (1998) The murine gene p27Kip1 is haplo-insufficient for tumour suppression. Nature 396(6707):177–180PubMedCrossRefGoogle Scholar
  22. 22.
    Loda M, Cukor B, Tam SW, Lavin P, Fiorentino M, Draetta GF, Jessup JM, Pagano M (1997) Increased proteasome-dependent degradation of the cyclin-dependent kinase inhibitor p27 in aggressive colorectal carcinomas. Nat Med 3(2):231–234PubMedCrossRefGoogle Scholar
  23. 23.
    Slingerland J, Pagano M (2000) Regulation of the cdk inhibitor p27 and its deregulation in cancer. J Cell Physiol 183(1):10–17PubMedCrossRefGoogle Scholar
  24. 24.
    Coqueret O (2003) New roles for p21 and p27 cell-cycle inhibitors: a function for each cell compartment? Trends Cell Biol 13(2):65–70PubMedCrossRefGoogle Scholar
  25. 25.
    Futcher B (1996) Cyclins and the wiring of the yeast cell cycle. Yeast 12(16):1635–1646PubMedCrossRefGoogle Scholar
  26. 26.
    Nasmyth K (1996) At the heart of the budding yeast cell cycle. Trends Genet 12(10): 405–412PubMedCrossRefGoogle Scholar
  27. 27.
    Cross FR, Yuste-Rojas M, Gray S, Jacobson MD (1999). Specialization and targeting of B-type cyclins. Mol Cell 4(1):11–9PubMedCrossRefGoogle Scholar
  28. 28.
    Murray AW (2004) Recycling the cell cycle: cyclins revisited. Cell 116(2):221–234PubMedCrossRefGoogle Scholar
  29. 29.
    Bloom J, Cross FR (2007) Multiple levels of cyclin specificity in cell-cycle control. Nat Rev Mol Cell Biol 8(2):149–160PubMedCrossRefGoogle Scholar
  30. 30.
    Chang F, Herskowitz I (1990) Identification of a gene necessary for cell cycle arrest by a negative growth factor of yeast: FAR1 is an inhibitor of a G1 cyclin, CLN2. Cell 63(5):999–1011PubMedCrossRefGoogle Scholar
  31. 31.
    Peter M, Herskowitz I (1994) Direct inhibition of the yeast cyclin-dependent kinase Cdc28-Cln by Far1. Science 265(5176):1228–1231PubMedCrossRefGoogle Scholar
  32. 32.
    Mendenhall MD (1993) An inhibitor of p34CDC28 protein kinase activity from Saccharomyces cerevisiae. Science 259(5092):216–219Google Scholar
  33. 33.
    Schwob E, Bohm T, Mendenhall MD, Nasmyth K (1994) The B-type cyclin kinase inhibitor p40SIC1 controls the G1 to S transition in S. cerevisiae. Cell 79(2):233–244Google Scholar
  34. 34.
    Alberghina L, Martegani E, Mariani L, Bortolan G (1983–1984) A bimolecular mechanism for the cell size control of the cell cycle. Biosystems 16(3–4):297–305Google Scholar
  35. 35.
    Alberghina L, Porro D, Cazzador L (2001) Towards a blueprint of the cell cycle. Oncogene 20(9):1128–1134PubMedCrossRefGoogle Scholar
  36. 36.
    Deshaies RJ (1997) Phosphorylation and proteolysis: partners in the regulation of cell division in budding yeast. Curr Opin Genet Dev 7(1):7–16PubMedCrossRefGoogle Scholar
  37. 37.
    Zachariae W, Nasmyth K (1999) Whose end is destruction: cell division and the anaphase-promoting complex. Genes Dev 13(16):2039–2058PubMedCrossRefGoogle Scholar
  38. 38.
    Knapp D, Bhoite L, Stillman DJ, Nasmyth K (1996) The transcription factor Swi5 regulates expression of the cyclin kinase inhibitor p40SIC1. Mol Cell Biol 16(10):5701–5707PubMedGoogle Scholar
  39. 39.
    Toyn JH, Johnson AL, Donovan JD, Toone WM, Johnston LH (1997) The Swi5 transcription factor of Saccharomyces cerevisiaehas a role in exit from mitosis through induction of the cdk-inhibitor Sic1 in telophase. Genetics 145(1):85–96PubMedGoogle Scholar
  40. 40.
    Aerne BL, Johnson AL, Toyn JH, Johnston LH (1998) Swi5 controls a novel wave of cyclin synthesis in late mitosis. Mol Biol Cell 9(4):945–956PubMedGoogle Scholar
  41. 41.
    Schneider BL, Yang QH, Futcher AB (1996) Linkage of replication to start by the Cdk inhibitor Sic1. Science 272(5261):560–562PubMedCrossRefGoogle Scholar
  42. 42.
    Verma R, Annan RS, Huddleston MJ, Carr SA, Reynard G, Deshaies RJ (1997) Phosphorylation of Sic1p by G1 Cdk required for its degradation and entry into S phase. Science 278(5337):455–460PubMedCrossRefGoogle Scholar
  43. 43.
    Thornton BR, Toczyski DP (2003) Securin and B-cyclin/CDK are the only essential targets of the APC. Nat Cell Biol 5(12):1090–1094PubMedCrossRefGoogle Scholar
  44. 44.
    Nash P, Tang X, Orlicky S, Chen Q, Gertler FB, Mendenhall MD, Sicheri F, Pawson T, Tyers M (2001) Multisite phosphorylation of a CDK inhibitor sets a threshold for the onset of DNA replication. Nature 414(6863):514–521PubMedCrossRefGoogle Scholar
  45. 45.
    Skowyra D, Craig KL, Tyers M, Elledge SJ, Harper JW (1997) F-box proteins are receptors that recruit phosphorylated substrates to the SCF ubiquitin–ligase complex. Cell 91(2): 209–219PubMedCrossRefGoogle Scholar
  46. 46.
    Feldman RM, Correll CC, Kaplan KB, Deshaies RJ (1997) A complex of Cdc4p, Skp1p, and Cdc53p/cullin catalyzes ubiquitination of the phosphorylated CDK inhibitor Sic1p. Cell 91(2):221–230PubMedCrossRefGoogle Scholar
  47. 47.
    Verma R, Feldman RM, Deshaies RJ (1997) SIC1 is ubiquitinated in vitro by a pathway that requires CDC4, CDC34, and cyclin/CDK activities. Mol Biol Cell 8(8):1427–1437PubMedGoogle Scholar
  48. 48.
    Verma R, McDonald H, Yates JR 3rd, Deshaies RJ (2001) Selective degradation of ubiquitinated Sic1 by purified 26S proteasome yields active S phase cyclin-Cdk. Mol Cell 8(2):439–448PubMedCrossRefGoogle Scholar
  49. 49.
    Rossi RL, Zinzalla V, Mastriani A, Vanoni M, Alberghina L (2005) Subcellular localization of the cyclin dependent kinase inhibitor Sic1 is modulated by the carbon source in budding yeast. Cell Cycle 4(12):1798–1807PubMedCrossRefGoogle Scholar
  50. 50.
    Lengronne A, Schwob E (2002) The yeast CDK inhibitor Sic1 prevents genomic instability by promoting replication origin licensing in late G(1). Mol Cell 9(5):1067–1078PubMedCrossRefGoogle Scholar
  51. 51.
    Caburet S, Conti C, Bensimon A (2002) Combing the genome for genomic instability. Trends Biotechnol 20(8):344–350PubMedCrossRefGoogle Scholar
  52. 52.
    Nugroho TT Mendenhall MD (1994) An inhibitor of yeast cyclindependent protein kinase plays an important role in ensuring the genomic integrity of daughter cells. Mol Cell Biol 14(5):3320–3328PubMedGoogle Scholar
  53. 53.
    See WL, Miller JP, Squatrito M, Holland E, Resh MD, Koff A (2010) Defective DNA double-strand break repair underlies enhanced tumorigenesis and chromosomal instability in p27-deficient mice with growth factor-induced oligodendrogliomas. Oncogene 29(12):1720–1731PubMedCrossRefGoogle Scholar
  54. 54.
    Schwob E (2004) Flexibility and governance in eukaryotic DNA replication. Curr Opin Microbiol 7(6):680–690PubMedCrossRefGoogle Scholar
  55. 55.
    Han JD (2008) Understanding biological functions through molecular networks. Cell Res 18(2):224–237PubMedCrossRefGoogle Scholar
  56. 56.
    Kitano H (2002) Looking beyond the details: a rise in system-oriented approaches in genetics and molecular biology. Curr Genet 41(1):1–10PubMedCrossRefGoogle Scholar
  57. 57.
    Westerhoff HV, Alberghina L (2005) Systems biology: did we know it all along? In: Alberghina L, Westerhoff HV (eds) Systems biology definitions and perspectives. Springer BerlinGoogle Scholar
  58. 58.
    Papin JA, Hunter T, Palsson BO, Subramaniam S (2005) Reconstruction of cellular signaling networks and analysis of their properties. Nat Rev Mol Cell Biol 6(2):99–111PubMedCrossRefGoogle Scholar
  59. 59.
    Hartwell LH, Hopfield JJ, Leibler S, Murray AW (1999) From molecular to modular cell biology. Nature 402(6761 Suppl):C47–C52PubMedCrossRefGoogle Scholar
  60. 60.
    Gavin AC, Bosche M, Krause R, Grandi P, Marzioch M, Bauer A, Schultz J, Rick JM, Michon AM, Cruciat CM, Remor M, Hofert C, Schelder M, Brajenovic M, Ruffner H, Merino A, Klein K, Hudak M, Dickson D, Rudi T, Gnau V, Bauch A, Bastuck S, Huhse B, Leutwein C, Heurtier MA, Copley RR, Edelmann A, Querfurth E, Rybin V, Drewes G, Raida M, Bouwmeester T, Bork P, Seraphin B, Kuster B, Neubauer G, Superti-Furga G (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415(6868):141–147PubMedCrossRefGoogle Scholar
  61. 61.
    Gandhi TK, Zhong J, Mathivanan S, Karthick L, Chandrika KN, Mohan SS, Sharma S, Pinkert S, Nagaraju S, Periaswamy B, Mishra G, Nandakumar K, Shen B, Deshpande N, Nayak R, Sarker M, Boeke JD, Parmigiani G, Schultz J, Bader JS, Pandey A (2006) Analysis of the human protein interactome and comparison with yeast, worm and fly interaction datasets. Nat Genet 38(3):285–293PubMedCrossRefGoogle Scholar
  62. 62.
    Bertin N, Simonis N, Dupuy D, Cusick ME, Han JD, Fraser HB, Roth FP, Vidal M (2007) Confirmation of organized modularity in the yeast interactome. PLoS Biol 5(6):e153PubMedCrossRefGoogle Scholar
  63. 63.
    Han JD, Bertin N, Hao T, Goldberg DS, Berriz GF, Zhang LV, Dupuy D, Walhout AJ, Cusick ME, Roth FP, Vidal M (2004) Evidence for dynamically organized modularity in the yeast protein–protein interaction network. Nature 430(6995):88–93PubMedCrossRefGoogle Scholar
  64. 64.
    de Lichtenberg U, Jensen LJ, Brunak S, Bork P (2005) Dynamic complex formation during the yeast cell cycle. Science 307(5710):724–727PubMedCrossRefGoogle Scholar
  65. 65.
    Csikasz-Nagy A, Battogtokh D, Chen KC, Novak B, Tyson JJ (2006) Analysis of a generic model of eukaryotic cell-cycle regulation. Biophys J 90(12):4361–4379PubMedCrossRefGoogle Scholar
  66. 66.
    Fauré A, Naldi A, Chaouiya C, Thieffry D (2006) Dynamical analysis of a generic Boolean model for the control of the mammalian cell cycle. Bioinformatics 22(14):e124–131PubMedCrossRefGoogle Scholar
  67. 67.
    Singhania R, Sramkoski RM, Jacobberger JW, Tyson JJ (2011) A hybrid model of mammalian cell cycle regulation. PLoS Comput Biol 7(2):e1001077PubMedCrossRefGoogle Scholar
  68. 68.
    Kohn KW (1998) Functional capabilities of molecular network components controlling the mammalian G1/S cell cycle phase transition. Oncogene 16(8):1065–1075PubMedCrossRefGoogle Scholar
  69. 69.
    Aguda BD, Tang Y (1999) The kinetic origins of the restriction point in the mammalian cell cycle. Cell Prolif 32(5):321–335PubMedCrossRefGoogle Scholar
  70. 70.
    Qu Z, Weiss JN, MacLellan WR (2003) Regulation of the mammalian cell cycle: a model of the G1-to-S transition. Am J Physiol Cell Physiol 284(2):C349-C364PubMedGoogle Scholar
  71. 71.
    Swat M, Kel A, Herzel H (2004) Bifurcation analysis of the regulatory modules of the mammalian G1/S transition. Bioinformatics 20(10):1506–1511PubMedCrossRefGoogle Scholar
  72. 72.
    Novak B, Tyson JJ (2004) A model for restriction point control of the mammalian cell cycle. J Theor Biol 230(4):563–579PubMedCrossRefGoogle Scholar
  73. 73.
    Haberichter T, Madge B, Christopher RA, Yoshioka N, Dhiman A, Miller R, Gendelman R, Aksenov SV, Khalil IG, Dowdy SF (2007) A systems biology dynamical model of mammalian G1 cell cycle progression. Mol Syst Biol 3:84PubMedCrossRefGoogle Scholar
  74. 74.
    Alfieri R, Barberis M, Chiaradonna F, Gaglio D, Milanesi L, Vanoni M, Klipp E, Alberghina L (2009) Towards a systems biology approach to mammalian cell cycle: modeling the entrance into S phase of quiescent fibroblasts after serum stimulation. BMC Bioinformatics 10 (Suppl 12):S16PubMedCrossRefGoogle Scholar
  75. 75.
    Chen KC, Csikasz-Nagy A, Gyorffy B, Val J, Novak B, Tyson JJ (2000) Kinetic analysis of a molecular model of the budding yeast cell cycle. Mol Biol Cell 11(1):369–391PubMedGoogle Scholar
  76. 76.
    Chen KC, Calzone L, Csikasz-Nagy A, Cross FR, Novak B, Tyson JJ (2004) Integrative analysis of cell cycle control in budding yeast. Mol Biol Cell 15(8):3841–3862PubMedCrossRefGoogle Scholar
  77. 77.
    Allen NA, Chen KC, Shaffer CA, Tyson JJ, Watson LT (2006) Computer evaluation of network dynamics models with application to cell cycle control in budding yeast. Syst Biol (Stevenage) 153(1):13–21Google Scholar
  78. 78.
    Barik D, Baumann WT, Paul MR, Novak B, Tyson JJ (2010) A model of yeast cell-cycle regulation based on multisite phosphorylation. Mol Syst Biol 6:405PubMedCrossRefGoogle Scholar
  79. 79.
    Li F, Long T, Lu Y, Ouyang Q, Tang C (2004) The yeast cell-cycle network is robustly designed. Proc Natl Acad Sci USA 101(14): 4781–4786PubMedCrossRefGoogle Scholar
  80. 80.
    Irons DJ (2009) Logical analysis of the budding yeast cell cycle. J Theor Biol 257(4):543–559PubMedCrossRefGoogle Scholar
  81. 81.
    Fauré A, Naldi A, Lopez F, Chaouiya C, Ciliberto A, Thieffry D (2009) Modular logical modelling of the budding yeast cell cycle. Mol BioSyst 5(12):1787–1796PubMedCrossRefGoogle Scholar
  82. 82.
    Braunewell S, Bornholdt S (2007) Superstability of the yeast cell-cycle dynamics: ensuring causality in the presence of biochemical stochasticity. J Theor Biol 245(4):638–643PubMedCrossRefGoogle Scholar
  83. 83.
    Palmisano A, Mura I, Priami C (2009) From ODES to language-based, executable models of biological systems. Pac Symp Biocomput 14:239–250Google Scholar
  84. 84.
    Barberis M, Beck C, Amoussouvi A, Schreiber G, Diener C, Herrmann A, Klipp E (2011) Low number of SIC1 mRNA molecules ensures low noise level in cell cycle progression of budding yeast. Mol BioSyst 7(10):2804–2812PubMedCrossRefGoogle Scholar
  85. 85.
    Lovrics A, Csikasz-Nagy A, Zsely IG, Zador J, Turanyi T, Novak B (2006) Time scale and dimension analysis of a budding yeast cell cycle model. BMC Bioinform 7:494CrossRefGoogle Scholar
  86. 86.
    Ciliberto A, Lukács A, Tóth A, Tyson JJ, Novák B (2005) Rewiring the exit from mitosis. Cell Cycle 4(8):1107–1112PubMedCrossRefGoogle Scholar
  87. 87.
    Queralt E, Lehane C, Novak B, Uhlmann F (2006) Downregulation of PP2A(Cdc55) phosphatase by separase initiates mitotic exit in budding yeast. Cell 125(4):719–732PubMedCrossRefGoogle Scholar
  88. 88.
    Tóth A, Queralt E, Uhlmann F, Novák B (2007) Mitotic exit in two dimensions. J Theor Biol 248(3):560–573PubMedCrossRefGoogle Scholar
  89. 89.
    Vinod PK, Freire P, Rattani A, Ciliberto A, Uhlmann F, Novak B (2011) Computational modelling of mitotic exit in budding yeast: the role of separase and Cdc14 endocycles. J R Soc Interface 8(61):1128–1141PubMedCrossRefGoogle Scholar
  90. 90.
    Ball DA, Ahn TH, Wang P, Chen KC, Cao Y, Tyson JJ, Peccoud J, Baumann WT (2011) Stochastic exit from mitosis in budding yeast: model predictions and experimental observations. Cell Cycle 10(6):999–1009PubMedCrossRefGoogle Scholar
  91. 91.
    Alarcón T, Tindall MJ (2007) Modelling cell growth and its modulation of the G1/S transition. Bull Math Biol 69(1):197–214PubMedCrossRefGoogle Scholar
  92. 92.
    Barberis M, Klipp E, Vanoni M, Alberghina L (2007) Cell size at S phase initiation: an emergent property of the G1/S network. PLoS Comput Biol 3(4):e64PubMedCrossRefGoogle Scholar
  93. 93.
    Bruggeman FJ, Westerhoff HV (2007) The nature of systems biology. Trends Microbiol 15(1):45–50PubMedCrossRefGoogle Scholar
  94. 94.
    Barberis M, De Gioia L, Ruzzene M, Sarno S, Coccetti P, Fantucci P, Vanoni M, Alberghina L (2005) The yeast cyclindependent kinase inhibitor Sic1 and mammalian p27Kip1 are functional homologues with a structurally conserved inhibitory domain. Biochem J 387(Pt 3):639–647PubMedGoogle Scholar
  95. 95.
    Barberis M, Pagano MA, Gioia LD, Marin O, Vanoni M, Pinna LA, Alberghina L (2005) CK2 regulates in vitro the activity of the yeast cyclin-dependent kinase inhibitor Sic1. Biochem Biophys Res Commun 336(4):1040–1048PubMedCrossRefGoogle Scholar
  96. 96.
    Barberis M, Klipp E (2007) Insights into the network controlling the G1/S transition in budding yeast. Genome Inform 18:85–99PubMedCrossRefGoogle Scholar
  97. 97.
    Barberis M, Linke C, Adrover MA, Lehrach H, Posas F, Krobitsch S, Klipp E (2011) Sic1 plays a role in timing and oscillatory behaviour of B-type cyclins. Biotechnol Adv, doi:10.1016/j.biotechadv.2011.09.004PubMedGoogle Scholar
  98. 98.
    Archambault V, Li CX, Tackett AJ, Wasch R, Chait BT, Rout MP, Cross FR (2003) Genetic and biochemical evaluation of the importance of Cdc6 in regulating mitotic exit. Mol Biol Cell 14(11):4592–4604PubMedCrossRefGoogle Scholar
  99. 99.
    Coccetti P, Rossi RL, Sternieri F, Porro D, Russo GL, di Fonzo A, Magni F, Vanoni M, Alberghina L (2004) Mutations of the CK2 phosphorylation site of Sic1 affect cell size and S-Cdk kinase activity in Saccharomyces cerevisiae. Mol Microbiol 51(2):447–460Google Scholar
  100. 100.
    Cross FR, Schroeder L, Bean JM (2007) Phosphorylation of the Sic1 inhibitor of B-type cyclins in Saccharomyces cerevisiaeis not essential but contributes to cell cycle robustness. Genetics 176(3):1541–1555PubMedCrossRefGoogle Scholar
  101. 101.
    Aloy P, Russell RB (2006) Structural systems biology: modelling protein interactions. Nat Rev Mol Cell Biol 7(3):188–197PubMedCrossRefGoogle Scholar
  102. 102.
    Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL, Franklin G, Li S, Albala JS, Lim J, Fraughton C, Llamosas E, Cevik S, Bex C, Lamesch P, Sikorski RS, Vandenhaute J, Zoghbi HY, Smolyar A, Bosak S, Sequerra R, Doucette-Stamm L, Cusick ME, Hill DE, Roth FP, Vidal M (2005) Towards a proteome-scale map of the human protein–protein interaction network. Nature 437(7062):1173–1178PubMedCrossRefGoogle Scholar
  103. 103.
    Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, Goehler H, Stroedicke M, Zenkner M, Schoenherr A, Koeppen S, Timm J, Mintzlaff S, Abraham C, Bock N, Kietzmann S, Goedde A, Toksöz E, Droege A, Krobitsch S, Korn B, Birchmeier W, Lehrach H, Wanker EE (2005) A human protein–protein interaction network: a resource for annotating the proteome. Cell 122(6):957–968PubMedCrossRefGoogle Scholar
  104. 104.
    Uetz P, Giot L, Cagney G, Mansfield TA, Judson RS, Knight JR, Lockshon D, Narayan V, Srinivasan M, Pochart P, Qureshi-Emili A, Li Y, Godwin B, Conover D, Kalbfleisch T, Vijayadamodar G, Yang M, Johnston M, Fields S, Rothberg JM (2000) A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403(6770): 623–627Google Scholar
  105. 105.
    Ito T, Chiba T, Ozawa R, Yoshida M, Hattori M, Sakaki Y (2001) A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci USA 98(8): 4569–4574PubMedCrossRefGoogle Scholar
  106. 106.
    Yu H, Braun P, Yildirim MA, Lemmens I, Venkatesan K, Sahalie J, Hirozane-Kishikawa T, Gebreab F, Li N, Simonis N, Hao T, Rual JF, Dricot A, Vazquez A, Murray RR, Simon C, Tardivo L, Tam S, Svrzikapa N, Fan C, de Smet AS, Motyl A, Hudson ME, Park J, Xin X, Cusick ME, Moore T, Boone C, Snyder M, Roth FP, Barabási AL, Tavernier J, Hill DE, Vidal M (2008) High-quality binary protein interaction map of the yeast interactome network. Science 322(5898):104–110PubMedCrossRefGoogle Scholar
  107. 107.
    Aloy P, Böttcher B, Ceulemans H, Leutwein C, Mellwig C, Fischer S, Gavin AC, Bork P, Superti-Furga G, Serrano L, Russell RB (2004) Structure-based assembly of protein complexes in yeast. Science 303(5666):2026–2029PubMedCrossRefGoogle Scholar
  108. 108.
    Aloy P, Pichaud M, Russell RB (2005) Protein complexes: structure prediction challenges for the 21st century. Curr Opin Struct Biol 15(1):15–22PubMedCrossRefGoogle Scholar
  109. 109.
    Aloy P, Russell RB (2004) Ten thousand interactions for the molecular biologist. Nat Biotechnol 22(10):1317–1321PubMedCrossRefGoogle Scholar
  110. 110.
    Aloy P, Ceulemans H, Stark A, Russell RB (2003) The relationship between sequence and interaction divergence in proteins. J Mol Biol 332(5):989–998PubMedCrossRefGoogle Scholar
  111. 111.
    Aloy P, Russell RB (2002) Interrogating protein interaction networks through structural biology. Proc Natl Acad Sci USA 99(9):5896–5901PubMedCrossRefGoogle Scholar
  112. 112.
    Lu L, Lu H, Skolnick J (2002) MULTIPROSPECTOR: an algorithm for the prediction of protein–protein interactions by multimeric threading. Proteins 49(3):350–364PubMedCrossRefGoogle Scholar
  113. 113.
    Lu L, Arakaki AK, Lu H, Skolnick J (2003) Multimeric threading-based prediction of protein–protein interactions on a genomic scale: application to the Saccharomyces cerevisiaeproteome. Genome Res 13(6A):1146–1154Google Scholar
  114. 114.
    Mosca R, Pons C, Fernández-Recio J, Aloy P (2009) Pushing structural information into the yeast interactome by high-throughput protein docking experiments. PLoS Comput Biol 5(8):e1000490PubMedCrossRefGoogle Scholar
  115. 115.
    Sánchez-Díaz A, González I, Arellano M, Moreno S (1998) The Cdk inhibitors p25rum1 and p40SIC1 are functional homologues that play similar roles in the regulation of the cell cycle in fission and budding yeast. J Cell Sci 111(Pt 6):843–851PubMedGoogle Scholar
  116. 116.
    Peter M, Herskovitz I (1994) Joining the complex: cyclin-dependent kinase inhibitory proteins and the cell cycle. Cell 79(2):181–184PubMedCrossRefGoogle Scholar
  117. 117.
    Hodge A, Mendenhall M (1999) The cyclin-dependent kinase inhibitory domain of the yeast Sic1 protein is contained within the C-terminal 70 amino acids. Mol Gen Genet 262(1):55–64PubMedCrossRefGoogle Scholar
  118. 118.
    Russo AA, Jeffrey PD, Patten AK, Massagué J, Pavletich NP (1996) Crystal structure of the p27Kip1 cyclin-dependent-kinase inhibitor bound to the cyclin A-Cdk2 complex. Nature 382(6589):325–331PubMedCrossRefGoogle Scholar
  119. 119.
    Barberis M (2000) Phenotypic analysis of Ser201/Glu and Ser201/Ala mutants in Saccharomyces cerevisiaeand their functional interpretation on the basis of a three-dimensional model of Clb5/Cdc28/p40Sic1 complex built by homology. Dissertation, University of Milano-Bicocca, MilanGoogle Scholar
  120. 120.
    Heiner AP, Berendsen HJ, van Gunsteren WF (1992) MD simulation of subtilisin BPN’ in a crystal environment. Proteins 14(4):451–464PubMedCrossRefGoogle Scholar
  121. 121.
    Rost B, Sander C (1993) Prediction of protein secondary structure at better than 70% accuracy. J Mol Biol 232(2):584–599PubMedCrossRefGoogle Scholar
  122. 122.
    Rost B, Sander C, Schneider R (1994) PHD – an automatic mail server for protein secondary structure prediction. Comput Appl Biosci 10(1):53–60PubMedGoogle Scholar
  123. 123.
    Rost B (1996) PHD: predicting one-dimensional protein structure by profile-based neural networks. Methods Enzymol 266:525–539PubMedCrossRefGoogle Scholar
  124. 124.
    Dauber-Osguthorpe P, Roberts VA, Osguthorpe DJ, Wolff J, Genest M, Hagler AT (1988) Structure and energetics of ligand binding to proteins: Escherichia coli dihydrofolate reductase-trimethoprim, a drug-receptor system. Proteins 4(1): 31–47PubMedCrossRefGoogle Scholar
  125. 125.
    Cross FR, Jacobson MD (2000) Conservation and function of a potential substrate-binding domain in the yeast Clb5 B-type cyclin. Mol Cell Biol 20(13):4782–4790PubMedCrossRefGoogle Scholar
  126. 126.
    Schulman BA, Lindstrom DL, Harlow E (1998) Substrate recruitment to cyclin-dependent kinase 2 by a multipurpose docking site on cyclin A. Proc Natl Acad Sci USA 95(18): 10453–10458PubMedCrossRefGoogle Scholar
  127. 127.
    Morgan DO (1996) Under arrest at atomic resolution. Nature 382(6589):295–296PubMedCrossRefGoogle Scholar
  128. 128.
    Spolar RS, Record MT Jr (1994) Coupling of local folding to site-specific binding of proteins to DNA. Science 263(5148):777–784PubMedCrossRefGoogle Scholar
  129. 129.
    Malmqvist M (1999) BIACORE: an affinity biosensor system for characterization of biomolecular interactions. Biochem Soc Trans 27(2):335–340PubMedGoogle Scholar
  130. 130.
    Lacy ER, Wang Y, Post J, Nourse A, Webb W, Mapelli M, Musacchio A, Siuzdak G, Kriwacki RW (2005) Molecular basis for the specificity of p27 toward cyclin-dependent kinases that regulate cell division. J Mol Biol 349(4):764–773PubMedCrossRefGoogle Scholar
  131. 131.
    Lacy ER, Filippov I, Lewis WS, Otieno S, Xiao L, Weiss S, Hengst L, Kriwacki RW (2004) p27 binds cyclin-CDK complexes through a sequential mechanism involving binding-induced protein folding. Nat Struct Mol Biol 11(4):358–364PubMedCrossRefGoogle Scholar
  132. 132.
    Besson A, Hwang HC, Cicero S, Donovan SL, Gurian-West M, Johnson D, Clurman BE, Dyer MA, Roberts JM (2007) Discovery of an oncogenic activity in p27Kip1 that causes stem cell expansion and a multiple tumor phenotype. Genes Dev 21(14):1731–1746PubMedCrossRefGoogle Scholar
  133. 133.
    Johnsson B, Löfås S, Lindquist G (1991) Immobilization of proteins to a carboxymethyldextran-modified gold surface for biospecific interaction analysis in surface plasmon resonance sensors. Anal Biochem 198(2):268–277PubMedCrossRefGoogle Scholar
  134. 134.
    Bienkiewicz EA, Adkins JN, Lumb KJ (2002) Functional consequences of preorganized helical structure in the intrinsically disordered cell-cycle inhibitor p27(Kip1). Biochemistry 41(3):752–759PubMedCrossRefGoogle Scholar
  135. 135.
    Galea CA, Wang Y, Sivakolundu SG, Kriwacki RW (2008) Regulation of cell division by intrinsically unstructured proteins: intrinsic flexibility, modularity, and signaling conduits. Biochemistry 47(29):7598–7609PubMedCrossRefGoogle Scholar
  136. 136.
    Hengst L, Dulic V, Slingerland JM, Lees E, Reed SI (1994) A cell cycle-regulated inhibitor of cyclin-dependent kinases. Proc Natl Acad Sci USA 91(12):5291–5295PubMedCrossRefGoogle Scholar
  137. 137.
    Bowman P, Galea CA, Lacy E, Kriwacki RW (2006) Thermodynamic characterization of interactions between p27(Kip1) and activated and non-activated Cdk2: intrinsically unstructured proteins as thermodynamic tethers. Biochim Biophys Acta 1764(2):182–189PubMedGoogle Scholar
  138. 138.
    Sivakolundu SG, Bashford D, Kriwacki RW (2005) Disordered p27Kip1 exhibits intrinsic structure resembling the Cdk2/cyclin A-bound conformation. J Mol Biol 353(5):1118–1128PubMedCrossRefGoogle Scholar
  139. 139.
    Galea CA, Nourse A, Wang Y, Sivakolundu SG, Heller WT, Kriwacki RW (2008) Role of intrinsic flexibility in signal transduction mediated by the cell cycle regulator, p27 Kip1. J Mol Biol 376(3):827–838PubMedCrossRefGoogle Scholar
  140. 140.
    Xie H, Vucetic S, Iakoucheva LM, Oldfield CJ, Dunker AK, Uversky VN, Obradovic Z (2007) Functional anthology of intrinsic disorder. 1. Biological processes and functions of proteins with long disordered regions. J Proteome Res 6(5):1882–1898Google Scholar
  141. 141.
    Vucetic S, Xie H, Iakoucheva LM, Oldfield CJ, Dunker AK, Obradovic Z, Uversky VN (2007) Functional anthology of intrinsic disorder. 2. Cellular components, domains, technical terms, developmental processes, and coding sequence diversities correlated with long disordered regions. J Proteome Res 6(5):1899–1916Google Scholar
  142. 142.
    Iakoucheva LM, Brown CJ, Lawson JD, Obradović Z, Dunker AK Intrinsic disorder in cell-signaling and cancer-associated proteins. J Mol Biol 323(3):573–584Google Scholar
  143. 143.
    Bloom J, Pagano M (2003) Deregulated degradation of the cdk inhibitor p27 and malignant transformation. Semin Cancer Biol 13(1):41–47PubMedCrossRefGoogle Scholar
  144. 144.
    Chu IM, Hengst L, Slingerland JM (2008) The Cdk inhibitor p27 in human cancer: prognostic potential and relevance to anticancer therapy. Nat Rev Cancer 8(4):253–267PubMedCrossRefGoogle Scholar
  145. 145.
    Lee J, Kim SS (2009) The function of p27 KIP1 during tumor development. Exp Mol Med 41(11):765–771PubMedCrossRefGoogle Scholar
  146. 146.
    Blagosklonny MV (2002) Are p27 and p21 cytoplasmic oncoproteins? Cell Cycle 1(6): 391–393PubMedCrossRefGoogle Scholar
  147. 147.
    Sicinski P, Zacharek S, Kim C (2007) Duality of p27Kip1 function in tumorigenesis. Genes Dev 21(14):1731–1746CrossRefGoogle Scholar
  148. 148.
    Chu I, Sun J, Arnaout A, Kahn H, Hanna W, Narod S, Sun P, Tan CK, Hengst L, Slingerland J p27 phosphorylation by Src regulates inhibition of cyclin E-Cdk2. Cell 128(2): 281–294Google Scholar
  149. 149.
    Grimmler M, Wang Y, Mund T, Cilensek Z, Keidel EM, Waddell MB, Jäkel H, Kullmann M, Kriwacki RW, Hengst L (2007) Cdk-inhibitory activity and stability of p27Kip1 are directly regulated by oncogenic tyrosine kinases. Cell 128(2):269–280PubMedCrossRefGoogle Scholar
  150. 150.
    Hidaka T, Hama S, Shrestha P, Saito T, Kajiwara Y, Yamasaki F, Sugiyama K, Kurisu K (2009) The combination of low cytoplasmic and high nuclear expression of p27 predicts a better prognosis in high-grade astrocytoma. Anticancer Res 29(2):597–603PubMedGoogle Scholar
  151. 151.
    Mittag T, Orlicky S, Choy WY, Tang X, Lin H, Sicheri F, Kay LE, Tyers M, Forman-Kay JD (2008) Dynamic equilibrium engagement of a polyvalent ligand with a single-site receptor. Proc Natl Acad Sci USA 105(46):17772–17777PubMedCrossRefGoogle Scholar
  152. 152.
    Mittag T, Marsh J, Grishaev A, Orlicky S, Lin H, Sicheri F, Tyers M, Forman-Kay JD (2010) Structure/function implications in a dynamic complex of the intrinsically disordered Sic1 with the Cdc4 subunit of an SCF ubiquitin ligase. Structure 18(4):494–506PubMedCrossRefGoogle Scholar
  153. 153.
    Brocca S, Samalíková M, Uversky VN, Lotti M, Vanoni M, Alberghina L, Grandori R (2009) Order propensity of an intrinsically disordered protein, the cyclin-dependent-kinase inhibitor Sic1. Proteins 76(3):731–746PubMedCrossRefGoogle Scholar
  154. 154.
    Brocca S, Testa L, Samalikova M, Grandori R, Lotti M (2011) Defining structural domains of an intrinsically disordered protein: Sic1, the cyclin-dependent kinase inhibitor of Saccharomyces cerevisiae. Mol Biotechnol 47(1):34–42PubMedCrossRefGoogle Scholar
  155. 155.
    Testa L, Brocca S, Samalikova M, Santambrogio C, Alberghina L, Grandori R (2011) Electrospray ionization-mass spectrometry conformational analysis of isolated domains of an intrinsically disordered protein. Biotechnol J 6(1):96–100PubMedCrossRefGoogle Scholar
  156. 156.
    Brocca S, Testa L, Sobott F, Šamalikova M, Natalello A, Papaleo E, Lotti M, De Gioia L, Doglia SM, Alberghina L, Grandori R (2011) Compact conformations of an intrinsically disordered protein: the kinase-inhibitor domain of Sic1. Biophys J 100(9):2243–2252PubMedCrossRefGoogle Scholar
  157. 157.
    Iakoucheva LM, Radivojac P, Brown CJ, O’Connor TR, Sikes JG, Obradovic Z, Dunker AK (2004) The importance of intrinsic disorder for protein phosphorylation. Nucleic Acids Res 32(3):1037–1049PubMedCrossRefGoogle Scholar
  158. 158.
    Escote X, Zapater M, Clotet J, Posas F (2004) Hog1 mediates cell-cycle arrest in G1 phase by the dual targeting of Sic1. Nat Cell Biol 6(10):997–1002PubMedCrossRefGoogle Scholar
  159. 159.
    Zapater M, Clotet J, Escoté X, Posas F (2005) Control of cell cycle progression by the stress-activated Hog1 MAPK. Cell Cycle 4(1):6–7PubMedCrossRefGoogle Scholar
  160. 160.
    Bjornsti MA, Houghton PJ (2004) The TOR pathway: a target for cancer therapy. Nat Rev Cancer 4(5):335–348PubMedCrossRefGoogle Scholar
  161. 161.
    Zinzalla V, Graziola M, Mastriani A, Vanoni M, Alberghin L (2007) Rapamycin-mediated G1 arrest involves regulation of the Cdk inhibitor Sic1 in Saccharomyces cerevisiae. Mol Microbiol 63(5):1482–1494Google Scholar
  162. 162.
    Nishizawa M, Kawasumi M, Fujino M, Toh-e A (1998) Phosphorylation of Sic1, a cyclin-dependent kinase (Cdk) inhibitor, by Cdk including Pho85 kinase is required for its prompt degradation. Mol Biol Cell 9(9):2393–2405PubMedGoogle Scholar
  163. 163.
    Sedgwick C, Rawluk M, Decesare J, Raithatha S, Wohlschlegel J, Semchuk P, Ellison M, Yates J 3rd, Stuart D (2006) Saccharomyces cerevisiaeIme2 phosphorylates Sic1 at multiple PXS/T sites but is insufficient to trigger Sic1 degradation. Biochem J 399(1):151–160PubMedCrossRefGoogle Scholar
  164. 164.
    Meggio F, Pinna LA (2003) One-thousand-and-one substrates of protein kinase CK2? FASEB J 17(3):349–368PubMedCrossRefGoogle Scholar
  165. 165.
    Tapia JC, Bolanos-Garcia VM, Sayed M, Allende CC, Allende JE (2004) Cell cycle regulatory protein p27KIP1 is a substrate and interacts with the protein kinase CK2. J Cell Biochem 91(5):865–879PubMedCrossRefGoogle Scholar
  166. 166.
    Coccetti P, Zinzalla V, Tedeschi G, Russo GL, Fantinato S, Marin O, Pinna LA, Vanoni M, Alberghina L (2006) Sic1 is phosphorylated by CK2 on Ser201 in budding yeast cells. Biochem Biophys Res Commun 346(3):786–793PubMedCrossRefGoogle Scholar
  167. 167.
    Tripodi F, Zinzalla V, Vanoni M, Alberghina L, Coccetti P (2007) In CK2 inactivated cells the cyclin dependent kinase inhibitor Sic1 is involved in cell-cycle arrest before the onset of S phase. Biochem Biophys Res Commun 359(4):921–927PubMedCrossRefGoogle Scholar
  168. 168.
    Xu X, Nakano T, Wick S, Dubay M, Brizuela L (1999) Mechanism of Cdk2/Cyclin E inhibition by p27 and p27 phosphorylation. Biochemistry 38(27):8713–8722PubMedCrossRefGoogle Scholar
  169. 169.
    Klipp E, Herwig R, Kowald A, Wierling C, Lehrach H (2005) Systems biology in practice. Concepts, implementation and application. Wiley, KGaAGoogle Scholar
  170. 170.
    Bracken C, Iakoucheva LM, Romero PR, Dunker AK (2004) Combining prediction, computation and experiment for the characterization of protein disorder. Curr Opin Struct Biol 14(5):570–576PubMedCrossRefGoogle Scholar
  171. 171.
    Du JT, Li YM, Ma QF, Qiang W, Zhao YF, Abe H, Kanazawa K, Qin XR, Aoyagi R, Ishizuka Y, Nemoto T, Nakanishi H (2005) Synthesis and conformational properties of phosphopeptides related to the human tau protein. Regul Pept 130(1–2):48–5PubMedCrossRefGoogle Scholar
  172. 172.
    Suenaga A, Kiyatkin AB, Hatakeyama M, Futatsugi N, Okimoto N, Hirano Y, Narumi T, Kawai A, Susukita R, Koishi T, Furusawa H, Yasuoka K, Takada N, Ohno Y, Taiji M, Ebisuzaki T, Hoek JB, Konagaya A, Kholodenko BN (2005) Tyr-317 phosphorylation increases Shc structural rigidity and reduces coupling of domain motions remote from the phosphorylation site as revealed by molecular dynamics simulations. J Biol Chem 279(6):4657–4662CrossRefGoogle Scholar
  173. 173.
    Sidorova JM, Breeden LL (2003) Precocious G1/S transitions and genomic instability: the origin connection. Mutat Res 532(1–2):5–19PubMedGoogle Scholar
  174. 174.
    Kitano H, Funahashi A, Matsuoka Y, Oda K (2005) Using process diagrams for the graphical representation of biological networks. Nat Biotechnol 23(8):961–966PubMedCrossRefGoogle Scholar
  175. 175.
    Fitch I, Dahmann C, Surana U, Amon A, Nasmyth K, Goetsch L, Byers B, Futcher B (1992) Characterization of four B-type cyclin genes of the budding yeast Saccharomyces cerevisiae. Mol Biol Cell 3(7):805–818Google Scholar
  176. 176.
    Koch C, Nasmyth K (1994) Cell cycle regulated transcription in yeast. Curr Opin Cell Biol 6(3):451–459PubMedCrossRefGoogle Scholar
  177. 177.
    Kholodenko BN (2006) Cell-signalling dynamics in time and space. Nat Rev Mol Cell Biol 7(3):165–176PubMedCrossRefGoogle Scholar
  178. 178.
    Bailly E, Reed SI (1999) Functional characterization of rpn3 uncovers a distinct 19S proteasomal subunit requirement for ubiquitin-dependent proteolysis of cell cycle regulatory proteins in budding yeast. Mol Cell Biol 19(10):6872–6890PubMedGoogle Scholar
  179. 179.
    Honey S, Schneider BL, Schieltz DM, Yates JR, Futcher B (2001) A novel multiple affinity purification tag and its use in identification of proteins associated with a cyclin–CDK complex. Nucleic Acids Res 29(4):E24PubMedCrossRefGoogle Scholar
  180. 180.
    Archambault V, Chang EJ, Drapkin BJ, Cross FR, Chait BT, Rout MP (2004) Targeted proteomic study of the cyclin–Cdk module. Mol Cell 14(6):699–711PubMedCrossRefGoogle Scholar
  181. 181.
    Gavin AC, Aloy P, Grandi P, Krause R, Boesche M, Marzioch M, Rau C, Jensen LJ, Bastuck S, Dümpelfeld B, Edelmann A, Heurtier MA, Hoffman V, Hoefert C, Klein K, Hudak M, Michon AM, Schelder M, Schirle M, Remor M, Rudi T, Hooper S, Bauer A, Bouwmeester T, Casari G, Drewes G, Neubauer G, Rick JM, Kuster B, Bork P, Russell RB, Superti-Furga G (2006) Proteome survey reveals modularity of the yeast cell machinery. Nature 440(7084):631–636PubMedCrossRefGoogle Scholar
  182. 182.
    Krogan NJ, Cagney G, Yu H, Zhong G, Guo X, Ignatchenko A, Li J, Pu S, Datta N, Tikuisis AP, Punna T, Peregrín-Alvarez JM, Shales M, Zhang X, Davey M, Robinson MD, Paccanaro A, Bray JE, Sheung A, Beattie B, Richards DP, Canadien V, Lalev A, Mena F, Wong P, Starostine A, Canete MM, Vlasblom J, Wu S, Orsi C, Collins SR, Chandran S, Haw R, Rilstone JJ, Gandi K, Thompson NJ, Musso G, St Onge P, Ghanny S, Lam MH, Butland G, Altaf-Ul AM, Kanaya S, Shilatifard A, O’Shea E, Weissman JS, Ingles CJ, Hughes TR, Parkinson J, Gerstein M, Wodak SJ, Emili A, Greenblatt JF (2006) Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440(7084):637–643Google Scholar
  183. 183.
    Collins SR, Kemmeren P, Zhao XC, Greenblatt JF, Spencer F, Holstege FC, Weissman JS, Krogan NJ (2007) Toward a comprehensive atlas of the physical interactome of Saccharomyces cerevisiae. Mol Cell Proteom 6(3):439–450Google Scholar
  184. 184.
    Breitkreutz A, Choi H, Sharom JR, Boucher L, Neduva V, Larsen B, Lin ZY, Breitkreutz BJ, Stark C, Liu G, Ahn J, Dewar-Darch D, Reguly T, Tang X, Almeida R, Qin ZS, Pawson T, Gingras AC, Nesvizhskii AI, Tyers M (2010) A global protein kinase and phosphatase interaction network in yeast. Science 328(5981):1043–1046PubMedCrossRefGoogle Scholar
  185. 185.
    Nair DK, Jose M, Kuner T, Zuschratter W, Hartig R (2006) FRET-FLIM at nanometer spectral resolution from living cells. Opt Express 14(25):12217–12229PubMedCrossRefGoogle Scholar
  186. 186.
    Rizzo MA, Springer GH, Granada B, Piston DW (2004) An improved cyan fluorescent protein variant useful for FRET. Nat Biotechnol 22(4):445–449PubMedCrossRefGoogle Scholar
  187. 187.
    Schreiber G, Barberis M, Scolari S, Klaus C, Herrmann A, Klipp E (2012) Unraveling interactions of cell cycle-regulating proteins Sic1 and B-type cyclins in living yeast cells: a FLIMFRET approach. FASEB J 26, doi:10.1096/fj.11-192518Google Scholar
  188. 188.
    Ubersax JA, Woodbury EL, Quang PN, Paraz M, Blethrow JD, Shah K, Shokat KM, Morgan DO (2003) Targets of the cyclin-dependent kinase Cdk1. Nature 425(6960):859–864PubMedCrossRefGoogle Scholar
  189. 189.
    Stuart D, Wittenberg C (1998) CLB5 and CLB6 are required for premeiotic DNA replication and activation of the meiotic S/M checkpoint. Genes Dev 12(17):2698–2710PubMedCrossRefGoogle Scholar
  190. 190.
    Richardson H, Lew DJ, Henze M, Sugimoto K, Reed SI (1992) Cyclin-B homologs in Saccharomyces cerevisiaefunction in S phase and in G2. Genes Dev 6(11):2021–2034PubMedCrossRefGoogle Scholar
  191. 191.
    López-Avilés S, Kapuy O, Novák B, Uhlmann F (2009) Irreversibility of mitotic exit is the consequence of systems-level feedback. Nature 459(7246):592–595PubMedCrossRefGoogle Scholar
  192. 192.
    Cross FR, Archambault V, Miller M, Klovstad M (2002) Testing a mathematical model of the yeast cell cycle. Mol Biol Cell 13(1):52–70PubMedCrossRefGoogle Scholar
  193. 193.
    Ghaemmaghami S, Huh WK, Bower K, Howson RW, Belle A, Dephoure N, O’Shea EK, Weissman JS (2003) Global analysis of protein expression in yeast. Nature 425(6959):737–741PubMedCrossRefGoogle Scholar
  194. 194.
    Thornton BR, Toczyski DP (2003) Securin and B-cyclin/CDK are the only essential targets of the APC. Nat Cell Biol 5(12):1090–1094PubMedCrossRefGoogle Scholar
  195. 195.
    Miller ME, Cross FR (2001) Cyclin specificity: how many wheels do you need on a unicycle? J Cell Sci 114 (Pt 10):1811–1820PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Institute for BiologyHumboldt University BerlinBerlinGermany
  2. 2.Max Planck Institute for Molecular GeneticsBerlinGermany

Personalised recommendations