Early Patient Stratification and Predictive Biomarkers in Drug Discovery and Development

  • Daphna Laifenfeld
  • David A. Drubin
  • Natalie L. Catlett
  • Jennifer S. Park
  • Aaron A. Van Hooser
  • Brian P. Frushour
  • David de Graaf
  • David A. Fryburg
  • Renée Deehan
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 736)

Abstract

The current drug discovery paradigm is long, costly, and prone to failure. For projects in early development, lack of efficacy in Phase II is a major contributor to the overall failure rate. Efficacy failures often occur from one of two major reasons: either the investigational agent did not achieve the required pharmacology or the mechanism targeted by the investigational agent did not significantly contribute to the disease in the tested patient population. The latter scenario can arise due to insufficient study power stemming from patient heterogeneity. If the subset of disease patients driven by the mechanism that is likely to respond to the drug can be identified and selected before enrollment begins, efficacy and response rates should improve. This will not only augment drug approval percentages, but will also minimize the number of patients at risk of side effects in the face of a suboptimal response to treatment. Here we describe a systems biology approach using molecular profiling data from patients at baseline for the development of predictive biomarker content to identify potential responders to a molecular targeted therapy before the drug is tested in humans. A case study is presented where a classifier to predict response to a TNF targeted therapy for ulcerative colitis is developed a priori and verified against a test set of patients where clinical outcomes are known. This approach will promote the tandem development of drugs with predictive response, patient selection biomarkers.

Keywords

Estrogen Stratification Tamoxifen Infliximab Trastuzumab 

References

  1. 1.
    Brown D, Superti-Furga G (2003) Rediscovering the sweet spot in drug discovery. Drug Discov Today 8(23):1067–1077PubMedCrossRefGoogle Scholar
  2. 2.
    DiMasi J (2002) The value of improving the productivity of the drug development process: faster times and better decisions. Pharmacoeconomics 20(Suppl 3):1–10PubMedCrossRefGoogle Scholar
  3. 3.
    DiMasi J, Hansen R, Grabowski H (2003) The price of innovation: new estimates of drug development costs. J Health Econ 22(2):151–185PubMedCrossRefGoogle Scholar
  4. 4.
    Early Breast Cancer Trialists’ Collaborative Group (2005) Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomized trials. Lancet 365:1687–1717CrossRefGoogle Scholar
  5. 5.
    Hofmann M, Stoss O, Gaiser T, Kneitz H, Heinmöller P, Gutjahr T, Kaufmann M, Henkel T, Rüschoff J (2008) Central HER2 IHC and FISH analysis in a trastuzumab (Herceptin) phase II monotherapy study: assessment of test sensitivity and impact of chromosome 17 polysomy. J Clin Pathol 61(1):89–94PubMedCrossRefGoogle Scholar
  6. 6.
    Karapetis CS, Khambata-Ford S, Jonker DJ, O’Callaghan CJ, Tu D, Tebbutt NC, Simes J, Chalchal H, Shapiro JD, Robitaille S, Price TJ, Shepherd L, Au HJ, Langer C, Moore MJ, Zalcberg JR (2008) K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med 359:1757–1765PubMedCrossRefGoogle Scholar
  7. 7.
    Tan P (2009) Divide and conquer: progress in the molecular stratification of cancer. Yonsei Med 50(4):464–473CrossRefGoogle Scholar
  8. 8.
    Naylor S, Cole T (2010) Overview of companion diagnostics in the pharmaceutical industry. Drug Discov World Spring Edition: 67–79Google Scholar
  9. 9.
    Arijs I, De Hertogh G, Lemaire K, Quintens R, Van Lommel L, Van Steen K, Leemans P, Cleynen I, Van Assche G, Vermeire S, Geboes K, Schuit F, Rutgeerts P (2009) Mucosal gene expression of antimicrobial peptides in inflammatory bowel disease before and after first infliximab treatment. PLoS One 4(11):e7984PubMedCrossRefGoogle Scholar
  10. 10.
    Arjis I, Li K, Toedter G, Quintens R, Van Lommel L, Van Steen K, Leemans P, De Hertogh G, Lemaire K, Ferrante M, Schnitzler F, Thorrez L, Ma K, Song XY, Maranoo C, Van Assche G, Vermeire S, Geboes K, Schuit F, Baribaud F, Rutgeerts P (2009) Mucosal gene signatures to predict response to infliximab in patients with ulcerative colitis. Gut 58(12):1612–1619CrossRefGoogle Scholar
  11. 11.
    Kang CP, Lee KW, Yoo DH, Kang C, Bae SC (2005) The influence of a polymorphism at position-857 of the tumour necrosis factor alpha gene on clinical response to etanercept therapy in rheumatoid arthritis. Rheumatology 44(4):547–552PubMedCrossRefGoogle Scholar
  12. 12.
    De Vries N, Tak PP (2005) The response to anti-TNF-alpha treatment: gene regulation at the bedside. Rheumatology 44(4):547–552CrossRefGoogle Scholar
  13. 13.
    Shetty A, Forbes A (2002) Pharmacogenomics of response to anti-tumor necrosis factor therapy in patients with Crohn’s disease. Am J Pharmacogenom 2(4):215–221CrossRefGoogle Scholar
  14. 14.
    Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh ML, Downing JR, Caligiuri MA, Bloomfield CD, Lander ES (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286(5439):531–537PubMedCrossRefGoogle Scholar
  15. 15.
    McLendon R et al (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455(7216):1061–1068CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Daphna Laifenfeld
    • 1
  • David A. Drubin
    • 1
  • Natalie L. Catlett
    • 1
  • Jennifer S. Park
    • 1
  • Aaron A. Van Hooser
    • 1
  • Brian P. Frushour
    • 1
  • David de Graaf
    • 1
  • David A. Fryburg
    • 1
  • Renée Deehan
    • 1
  1. 1.Selventa, One Alewife CenterCambridgeUSA

Personalised recommendations