Skip to main content

Why and How to Expand the Role of Systems Biology in Pharmaceutical Research and Development

  • Conference paper
  • First Online:
  • 2777 Accesses

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 736))

Abstract

Seen from the perspective of funding organizations, investors, and the general public, the productivity of our world-wide biomedical research enterprise is declining despite increased investment. This opinion piece suggests a cause and a solution. The cause is the enormous complexity of human biology and pathophysiology. The unsolved human diseases involve so many interacting variables that single research laboratories headed by skilled principal investigators doing innovative experimental work cannot be expected to assemble the reductionist pieces into an integrated working model. Systems biology offers a solution, but it will require teamwork. Co-equal teams of experimental and computational biologists can construct multiscale differential equation models and test them against experimental data. A successful model provides actionable evidence-based guidance to the entire research and development team. These integrative biology teams may, for historical and cultural reasons, be unsustainable in academia, but they seem naturally suited to modern pharmaceutical research and development. One way to organize such teams and their workflow is described in detail.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Beard DA, Kushmerick MJ (2009) Strong inference for systems biology. PLoS Comput Biol 5(8):e1000459. doi:10.1371/journal.pcbi.1000459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Phair RD, Misteli T (2001) Kinetic modelling approaches to in vivo imaging. Nat Rev Mol Cell Biol 2(12):898–907

    Article  CAS  PubMed  Google Scholar 

  3. Teusink B, Westerhoff HV, Bruggeman FJ (2010) Comparative systems biology: from bacteria to man. Wiley Interdiscip Rev Syst Biol Med 2(5):518–532. doi:10.1002/wsbm.74

    Article  CAS  PubMed  Google Scholar 

  4. Lelandais G, Devaux F (2010) Comparative functional genomics of stress responses in yeasts. OMICS 14(5):501–515

    Article  CAS  PubMed  Google Scholar 

  5. Chuang H-Y, Hofree M, Ideker T (2010) A decade of systems biology. Annu Rev Cell Dev Biol 26:721–744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Greene CS, Troyanskaya OG (2010) Integrative systems biology for data-driven knowledge discovery. Semin Nephrol 30(5):443–454

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kohl P, Crampin EJ, Quinn TA, Noble D (2010) Systems biology: an approach. Clin Pharmacol Ther 88(1):25–33

    Article  CAS  PubMed  Google Scholar 

  8. Kitano H (2002) Systems biology: a brief overview. Science 295(5560):1662–1664

    Article  CAS  PubMed  Google Scholar 

  9. Auffray C, Imbeaud S, Roux-Rouquié M, Hood L (2003) From functional genomics to systems biology: concepts and practices. C R Biol 326(10–11):879–892

    Article  CAS  PubMed  Google Scholar 

  10. Dobson PD, Smallbone K, Jameson D, Simeonidis E, Lanthaler K, Pir P, Lu C, Swainston N, Dunn WB, Fisher P, Hull D, Brown M, Oshota O, Stanford NJ, Kell DB, King RD, Oliver SG, Stevens RD, Mendes P (2010) Further developments towards a genome-scale metabolic model of yeast. BMC Syst Biol 4(1):145. doi:10.1186/1752–0509–4–145

    Article  PubMed  PubMed Central  Google Scholar 

  11. Snow CP (1959) Two cultures. Science 130(3373):419

    CAS  PubMed  Google Scholar 

  12. Le Novère N, Hucka M, Mi H, Moodie S, Schreiber F, Sorokin A, Demir E, Wegner K, Aladjem MI, Wimalaratne SM, Bergman FT, Gauges R, Ghazal P, Kawaji H, Li L, Matsuoka Y, Villéger A, Boyd SE, Calzone L, Courtot M, Dogrusoz U, Freeman TC, Funahashi A, Ghosh S, Jouraku A, Kim S, Kolpakov F, Luna A, Sahle S, Schmidt E, Watterson S, Wu G, Goryanin I, Kell DB, Sander C, Sauro H, Snoep JL, Kohn K, Kitano H (2009) The systems biology graphical notation. Nat Biotechnol 27(8):735–741

    Article  PubMed  Google Scholar 

  13. Freeman TC, Raza S, Theocharidis A, Ghazal P (2010) The mEPN scheme: an intuitive and flexible graphical system for rendering biological pathways. BMC Syst Biol 4:65–65. doi:10.1186/1752–0509–4–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kohn KW, Aladjem MI, Weinstein JN, Pommier Y (2006) Molecular interaction maps of bioregulatory networks: a general rubric for systems biology. Mol Biol Cell 17(1):1–13. doi:10.1091/mbc.E05–09–0824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wimalaratne SM, Halstead MDB, Lloyd CM, Cooling MT, Crampin EJ, Nielsen PF (2009) A method for visualizing CellML models. Bioinformatics 25(22):3012–3019

    Article  CAS  PubMed  Google Scholar 

  16. Le Novere N, Bornstein B, Broicher A, Courtot M, Donizelli M, Dharuri H, Li L, Sauro H, Schilstra M, Shapiro B, Snoep JL, Hucka M (2006) BioModels database: a free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems. Nucleic Acids Res 34(Database issue):D689–D691

    Article  CAS  PubMed  Google Scholar 

  17. Lloyd CM, Lawson JR, Hunter PJ, Nielsen PF (2008) The CellML model repository. Bioinformatics 24(18):2122–2123

    Article  CAS  PubMed  Google Scholar 

  18. Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H, Arkin AP, Bornstein BJ, Bray D, Cornish-Bowden A, Cuellar AA, Dronov S, Gilles ED, Ginkel M, Gor V, Goryanin II, Hedley WJ, Hodgman TC, Hofmeyr JH, Hunter PJ, Juty NS, Kasberger JL, Kremling A, Kummer U, Le Novere N, Loew LM, Lucio D, Mendes P, Minch E, Mjolsness ED, Nakayama Y, Nelson MR, Nielsen PF, Sakurada T, Schaff JC, Shapiro BE, Shimizu TS, Spence HD, Stelling J, Takahashi K, Tomita M, Wagner J, and Wang J (2003) The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19:524–531

    Article  CAS  PubMed  Google Scholar 

  19. Lloyd CM, Halstead MDB, Nielsen PF (2004) CellML: its future, present and past. Prog Biophys Mol Biol 85(2–3):433–450

    Article  CAS  PubMed  Google Scholar 

  20. Popper KR (1965) The logic of scientific discovery, vol 479. Harper & Roy, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert D. Phair .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this paper

Cite this paper

Phair, R.D. (2012). Why and How to Expand the Role of Systems Biology in Pharmaceutical Research and Development. In: Goryanin, I.I., Goryachev, A.B. (eds) Advances in Systems Biology. Advances in Experimental Medicine and Biology, vol 736. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7210-1_31

Download citation

Publish with us

Policies and ethics