Skip to main content

Leveraging Modeling Approaches: Reaction Networks and Rules

  • Conference paper
  • First Online:
Book cover Advances in Systems Biology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 736))

Abstract

We have witnessed an explosive growth in research involving mathematical models and computer simulations of intracellular molecular interactions, ranging from metabolic pathways to signaling and gene regulatory networks. Many software tools have been developed to aid in the study of such biological systems, some of which have a wealth of features for model building and visualization, and powerful capabilities for simulation and data analysis. Novel high-resolution and/or high-throughput experimental techniques have led to an abundance of qualitative and quantitative data related to the spatiotemporal distribution of molecules and complexes, their interactions kinetics, and functional modifications. Based on this information, computational biology researchers are attempting to build larger and more detailed models. However, this has proved to be a major challenge. Traditionally, modeling tools require the explicit specification of all molecular species and interactions in a model, which can quickly become a major limitation in the case of complex networks – the number of ways biomolecules can combine to form multimolecular complexes can be combinatorially large. Recently, a new breed of software tools has been created to address the problems faced when building models marked by combinatorial complexity. These have a different approach for model specification, using reaction rules and species patterns. Here we compare the traditional modeling approach with the new rule-based methods. We make a case for combining the capabilities of conventional simulation software with the unique features and flexibility of a rule-based approach in a single software platform for building models of molecular interaction networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Slepchenko BM, Schaff JC, Macara I, Loew LM (2003) Quantitative cell biology with the virtual cell. Trends Cell Biol 13(11):570–576

    Article  CAS  PubMed  Google Scholar 

  2. Moraru II, Schaff JC, Slepchenko BM et al (2008) Virtual cell modelling and simulation software environment. IET Syst Biol 2(5):352–362

    Article  CAS  PubMed  Google Scholar 

  3. Funahashi A (2003) The ERATO systems biology workbench and systems biology markup language: an integrated environment and standardization for systems biology. Tanpakushitsu Kakusan Koso 48(7):810–816

    PubMed  Google Scholar 

  4. Hoops S, Sahle S, Gauges R et al (2006) COPASI – a COmplex PAthway SImulator. Bioinformatics 22(24):3067–3074

    Article  CAS  PubMed  Google Scholar 

  5. Kholodenko BN, Demin OV, Moehren G, Hoek JB (1999) Quantification of short term signaling by the epidermal growth factor receptor. J Biol Chem 274(42):30169–30181

    Article  CAS  PubMed  Google Scholar 

  6. Hatakeyama M, Kimura S, Naka T et al (2003) A computational model on the modulation of mitogen-activated protein kinase (MAPK) and Akt pathways in heregulin-induced ErbB signalling. Biochem J 373(Pt 2):451–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schoeberl B, Eichler-Jonsson C, Gilles ED, Muller G (2002) Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors. Nat Biotechnol 20(4):370–375

    Article  PubMed  Google Scholar 

  8. Blinov ML, Ruebenacker O, Schaff JC, Moraru II (2010) Modeling without borders: creating and annotating VCell models using the web. Lecture Notes Bionform 6053:3–17

    CAS  Google Scholar 

  9. Blinov ML, Faeder JR, Goldstein B, Hlavacek WS (2006) A network model of early events in epidermal growth factor receptor signaling that accounts for combinatorial complexity. Biosystems 83(2–3):136–151

    Article  CAS  PubMed  Google Scholar 

  10. Mayer B, Blinov M, Loew L (2009) Molecular machines or pleiomorphic ensembles: signaling complexes revisited. J Biol 8(9):81

    Article  PubMed  PubMed Central  Google Scholar 

  11. Schulze WX, Deng L, Mann M (2005) Phosphotyrosine interactome of the ErbB-receptor kinase family. Mol Syst Biol 1:2005.0008

    Article  PubMed Central  Google Scholar 

  12. Hlavacek WS, Faeder JR, Blinov ML, Posner RG, Hucka M, Fontana W (2006) Rules for modeling signal-transduction systems. Sci STKE 2006(344):re6

    Google Scholar 

  13. Blinov ML, Faeder JR, Goldstein B, Hlavacek WS (2004) BioNetGen: software for rule-based modeling of signal transduction based on the interactions of molecular domains. Bioinformatics 20(17):3289–3291

    Article  CAS  PubMed  Google Scholar 

  14. Faeder JR, Blinov ML, Goldstein B, Hlavacek WS (2005) Rule-based modeling of biochemical networks. Complexity 10:22–41

    Article  Google Scholar 

  15. Pawson T, Nash P (2003) Assembly of cell regulatory systems through protein interaction domains. Science 300(5618):445–452

    Article  CAS  PubMed  Google Scholar 

  16. Faeder JR, Blinov ML, Goldstein B, Hlavacek WS (2005) Combinatorial complexity and dynamical restriction of network flows in signal transduction. Syst Biol 2(1):5–15

    Article  CAS  Google Scholar 

  17. Lok L, Brent R (2005) Automatic generation of cellular reaction networks with Moleculizer 1.0. Nat Biotechnol 23(1):131–136

    Article  CAS  PubMed  Google Scholar 

  18. Yang J, Monine MI, Faeder JR, Hlavacek WS (2008) Kinetic Monte Carlo method for rule-based modeling of biochemical networks. Phys Rev E: Stat Nonlinear Soft Matter Phys 78(3 Pt 1):031910

    Article  Google Scholar 

  19. Colvin J, Monine MI, Faeder JR, Hlavacek WS, Von Hoff DD, Posner RG (2009) Simulation of large-scale rule-based models. Bioinformatics 25(7):910–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Colvin J, Monine MI, Gutenkunst RN, Hlavacek WS, Von Hoff DD, Posner RG (2010) RuleMonkey: software for stochastic simulation of rule-based models. BMC Bioinform 11:404

    Article  Google Scholar 

  21. Faeder JR, Blinov ML, Hlavacek WS (2009) Rule-based modeling of biochemical systems with BioNetGen. Meth Mol Biol 500:113–167

    Article  CAS  Google Scholar 

  22. Danos V, Feret J, Fontana W, Krivine J (2007) Scalable simulation of cellular signaling networks. Lect Notes Comput Sci 4807:139–157

    Article  Google Scholar 

  23. Blinov ML, Yang J, Faeder JR, Hlavacek WS (2006) Graph theory for rule-based modeling of biochemical networks. Trans Comput Syst Biol Vii 4230:89–106

    Article  Google Scholar 

  24. Blinov ML, Yang J, Faeder JR, Hlavacek WS (2006) Depicting signaling cascades. Nat Biotechnol 24(2):137–138

    Article  CAS  PubMed  Google Scholar 

  25. Le Novere N, Hucka M, Mi H et al (2009) The systems biology graphical notation. Nat Biotechnol 27(8):735–741

    Article  PubMed  Google Scholar 

  26. Kohn KW (2001) Molecular interaction maps as information organizers and simulation guides. Chaos 11(1):84–97

    Article  CAS  PubMed  Google Scholar 

  27. Chylek LA, Hu B, Blinov ML et al (2011) Guidelines for visualizing and annotating rule-based models. Mol Biosyst 7(10):2779–2795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kohn KW, Aladjem MI, Kim S, Weinstein JN, Pommier Y (2006) Depicting combinatorial complexity with the molecular interaction map notation. Mol Syst Biol 2:51

    Article  PubMed  PubMed Central  Google Scholar 

  29. Xu W, Smith AM, Faeder JR, Marai GE (2011) RuleBender: a visual interface for rule-based modeling. Bioinformatics 27(12):1721–1722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. An GC, Faeder JR (2009) Detailed qualitative dynamic knowledge representation using a BioNetGen model of TLR-4 signaling and preconditioning. Math Biosci 217(1):53–63

    Article  CAS  PubMed  Google Scholar 

  31. Faeder JR, Hlavacek WS, Reischl I, Blinov ML, Metzger H, Redondo A, Wofsy C, Goldstein B (2003) Investigation of early events in Fc epsilon RI-mediated signaling using a detailed mathematical model. J Immunol 170(7):3769–3781

    Article  CAS  PubMed  Google Scholar 

  32. Lipniacki T, Hat B, Faeder JR, Hlavacek WS (2008) Stochastic effects and bistability in T cell receptor signaling. J Theor Biol 254(1):110–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mu F, Williams RF, Unkefer CJ, Unkefer PJ, Faeder JR, Hlavacek WS (2007) Carbon-fate maps for metabolic reactions. Bioinformatics 23(23):3193–3199

    Article  CAS  PubMed  Google Scholar 

  34. Nag A, Monine MI, Blinov ML, Goldstein B (2010) A detailed mathematical model predicts that serial engagement of IgE-FcepsilonRI complexes can enhance Syk activation in mast cells. J Immunol 185(6):3268–3276

    Article  CAS  PubMed  Google Scholar 

  35. Le Novere N, Shimizu TS (2001) STOCHSIM: modelling of stochastic biomolecular processes. Bioinformatics 17(6):575–576

    Article  PubMed  Google Scholar 

  36. Meier-Schellersheim M, Klauschen F, Angermann B (2009) Computational modeling of signaling networks for eukaryotic chemosensing. Meth Mol Biol 571:507–526

    Article  CAS  Google Scholar 

  37. Hucka M, Finney A, Sauro HM et al (2003) The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19(4):524–531

    Article  CAS  PubMed  Google Scholar 

  38. Demir E, Cary MP, Paley S et al (2010) The BioPAX community standard for pathway data sharing. Nat Biotechnol 28(9):935–942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael L. Blinov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this paper

Cite this paper

Blinov, M.L., Moraru, I.I. (2012). Leveraging Modeling Approaches: Reaction Networks and Rules. In: Goryanin, I.I., Goryachev, A.B. (eds) Advances in Systems Biology. Advances in Experimental Medicine and Biology, vol 736. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7210-1_30

Download citation

Publish with us

Policies and ethics