Coarse Graining Escherichia coli Chemotaxis: From Multi-flagella Propulsion to Logarithmic Sensing

  • Tine CurkEmail author
  • Franziska Matthäus
  • Yifat Brill-Karniely
  • Jure Dobnikar
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 736)


Various sensing mechanisms in nature can be described by the Weber–Fechner law stating that the response to varying stimuli is proportional to their relative rather than absolute changes. The chemotaxis of bacteria Escherichia coli is an example where such logarithmic sensing enables sensitivity over large range of concentrations. It has recently been experimentally demonstrated that under certain conditions E. coli indeed respond to relative gradients of ligands. We use numerical simulations of bacteria in food gradients to investigate the limits of validity of the logarithmic behavior. We model the chemotactic signaling pathway reactions, couple them to a multi-flagella model for propelling and take the effects of rotational diffusion into account to accurately reproduce the experimental observations of single cell swimming. Using this simulation scheme we analyze the type of response of bacteria subject to exponential ligand profiles and identify the regimes of absolute gradient sensing, relative gradient sensing, and a rotational diffusion dominated regime. We explore dependance of the swimming speed, average run time and the clockwise (CW) bias on ligand variation and derive a small set of relations that define a coarse grained model for bacterial chemotaxis. Simulations based on this coarse grained model compare well with microfluidic experiments on E. coli diffusion in linear and exponential gradients of aspartate.


Drift Velocity Ligand Concentration Rotational Diffusion Chemotactic Response Coarse Grained Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We acknowledge the support of the following funding agencies: the Center for Modeling and Simulation in the Biosciences (BIOMS) of the University of Heidelberg (FM), the German Ministry of Education and Research (grant Nr. 03BOPAL1) (MSM), the Slovenian Research Agency (P1-0055), the European Research Council (COLSTRUCTIION 227758), and the 7th Framework Programme (ITN-COMPLOIDS 234810) (JD, JBK & TC). JD wants to acknowledge the hospitality of the Aspen Center for Physics during the summer workshop programme in August 2010.


  1. 1.
    Barkai N, Leibler S (1997) Robustness in simple biochemical networks. Nature 387:913–917PubMedCrossRefGoogle Scholar
  2. 2.
    Kollmann M, Løvdok L, Bartholomé K, Timmer J, Sourjik V (2005) Design principles of a bacterial signalling network. Nature 438:504–507PubMedCrossRefGoogle Scholar
  3. 3.
    Sourjik V, Berg HC (2002) Receptor sensitivity in bacterial chemotaxis. PNAS 99(1):123–127PubMedCrossRefGoogle Scholar
  4. 4.
    Cluzel P, Surette M, Leibler S (2000) An ultrasensitive bacterial motor revealed by monitoring signaling proteins in single cells. Science 287:1652–1655PubMedCrossRefGoogle Scholar
  5. 5.
    Bray D (1998) Receptor clustering as a mechanism to control sensitivity. Nature 393:85–88PubMedCrossRefGoogle Scholar
  6. 6.
    Alon U, Surette MG, Barkai N, Leibler S (1999) Robustness in bacterial chemotaxis. Nature 397:168–171PubMedCrossRefGoogle Scholar
  7. 7.
    Hansen CH, Endres RG, Wingreen NS (2008) Chemotaxis in Escherichia coli: a molecular model for robust precise adaptation. PLOS Comp Biol 4(1):14–27CrossRefGoogle Scholar
  8. 8.
    Kalinin YV, Jiang LL, Tu Y, Wu M (2009) Logarithmic sensing in Escherichia coli bacterial chemotaxis. Biophys J 96:2439PubMedCrossRefGoogle Scholar
  9. 9.
    Matthäus F, Jagodić M, Dobnikar J (2009) E. coli superdiffusion and chemotaxis – search strategy, precision and motility. J Biophys 97(4):946–957Google Scholar
  10. 10.
    Strong SP, Freedman B, Bialek W, Koberle R (1998) Adaptation and optimal chemotactic strategy for E. coli. Phys Rev E 57(4):4604–4616Google Scholar
  11. 11.
    Emonet T, Macal CM, North MJ, Wickersham CE, Cluzel P (2005) Agent Cell: a digital single-cell assay for bacterial chemotaxis. Bioinformatics, 21(11):2714–2721PubMedCrossRefGoogle Scholar
  12. 12.
    Bray D, Levin MD, Lipkow K (2007) The chemotactic behavior of computer-based surrogate bacteria. Curr Biol 17(4):R132–R134CrossRefGoogle Scholar
  13. 13.
    Turner L, Ryu WS, Berg HC (2000) Real-time imaging of fluorescent flagellar filaments. J Bacteriol 182(10):2793–2801PubMedCrossRefGoogle Scholar
  14. 14.
    Korobkova E, Emonet T, Park H, Cluzel P (2006) Hidden stochastic nature of a single bacterial motor. Phys Rev Lett 96(5):058105PubMedCrossRefGoogle Scholar
  15. 15.
    Staropoli JF, Alon U (2000) Computerized analysis of chemotaxis at different stages of bacterial growth. Biophys J 78:513–519PubMedCrossRefGoogle Scholar
  16. 16.
    Berg HC (2003) E. coli in motion. Biol Med Phys Biomed Eng. Springer, New YorkGoogle Scholar
  17. 17.
    Berg HC, Brown DA (1972) Chemotaxis in Escherichia coli analysed by three-dimensional tracking. Nature 239(5374):500–504PubMedCrossRefGoogle Scholar
  18. 18.
    Berg HC, Brown DA (1974) Temporal stimulation of chemotaxis in Escherichia coli. Proc Natl Acad Soc USA 71(4):1388Google Scholar
  19. 19.
    Tu Y, Shimizu TS, Berg HC (2008) Modeling the chemotactic response of Escherichia coli to time-varying stimuli. PNAS, 105(39):14855–14860PubMedCrossRefGoogle Scholar
  20. 20.
    Shimizu TS, Tu Y, Berg HC (2010) A modular gradient-sensing network for chemotaxis in Escherichia coli revealed by responses to time-varying stimuli. Mol Sys Biol 6:Art. no. 382Google Scholar
  21. 21.
    Jiang L, Ouyang Q, Tu Y (2010) Quantitative modeling of Escherichia coli chemotactic motion in environments varying in space and time. PLOS Comp Biol 6(4):e1000735CrossRefGoogle Scholar
  22. 22.
    Vladimirov N, Løvdok L, Lebiedz D, Sourjik V (2008) Dependence of bacterial chemotaxis on gradient shape and adaptation rate. PLOS Comp Biol 4(12):e1000242CrossRefGoogle Scholar
  23. 23.
    Block SM, Segall JE, Berg HC (1982) Impulse responses in bacterial chemotaxis. Cell 31:215Google Scholar
  24. 24.
    Kafri Y, daSilveira RA (2008) Steady-state chemotaxis in Escherichia coli. Phys Rev Lett 100:Art. no. 238101Google Scholar
  25. 25.
    de Gennes PG (2004) Chemotaxis; the role of internal delays. Eur Biophys J 33:691–693PubMedCrossRefGoogle Scholar
  26. 26.
    Ahmed T, Shimizu TS, Stocker R (2010) Bacterial chemotaxis in linear and nonlinear steady microfluidic gradients. Nano Lett 10:3379PubMedCrossRefGoogle Scholar
  27. 27.
    Berg HC, Turner L (1990) Chemotaxis of bacteria in glass capillary arrays. Biophys J hbox58:919–930CrossRefGoogle Scholar
  28. 28.
    Cates ME, Marenduzzo D, Pagonabarraga I, Tailleur J (2010) Arrested phase separation in reproducing bacteria creates a generic route to pattern formation. Proc Natl Acad Sci USA 107:11715–11720PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Tine Curk
    • 1
    • 2
    Email author
  • Franziska Matthäus
    • 3
  • Yifat Brill-Karniely
    • 1
  • Jure Dobnikar
    • 1
    • 4
  1. 1.Department of ChemistryUniversity of CambridgeCambridgeUK
  2. 2.Faculty of Natural Sciences and MathematicsUniversity of MariborMariborSlovenia
  3. 3.Center for Modeling and Simulation in the Biosciences (BIOMS)University of HeidelbergHeidelbergGermany
  4. 4.Department of Theoretical PhysicsJožef Stefan InstituteLjubljanaSlovenia

Personalised recommendations