Modeling Morphodynamic Phenotypes and Dynamic Regimes of Cell Motion

  • Mihaela Enculescu
  • Martin FalckeEmail author
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 736)


Many cellular processes and signaling pathways converge onto cell morphology and cell motion, which share important components. The mechanisms used for propulsion could also be responsible for shape changes, if they are capable of generating the rich observed variety of dynamic regimes. Additionally, the analysis of cell shape changes in space and time promises insight into the state of the cytoskeleton and signaling pathways controlling it. While this has been obvious for some time by now, little effort has been made to systematically and quantitatively explore this source of information. First pioneering experimental work revealed morphodynamic phenotypes which can be associated with dynamic regimes like oscillations and excitability. Here, we review the current state of modeling of morphodynamic phenotypes, the experimental results and discuss the ideas on the mechanisms driving shape changes which are suggested by modeling.


Actin Filament Actin Polymerization Retrograde Flow Actin Network Velocity Oscillation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abraham et al(1999)Abraham, Krishnamurthi, Taylor, and Lanni.
    Abraham V, Krishnamurthi D, Taylor D, Lanni F (1999) The actin-based nanomachine at the leading edge of migrating cells. Biophys J 77:1721–1732PubMedCrossRefGoogle Scholar
  2. Alt and Dembo(1999).
    Alt W, Dembo M (1999) Cytoplasm dynamics and cell motion: two phase flow models. MathBiosci 156:207–228Google Scholar
  3. Ananthakrishnan and Ehrlicher(2007).
    Ananthakrishnan R, Ehrlicher A (2007) The forces behind cell movement. Int J Biol Sci 3(5):303–317PubMedGoogle Scholar
  4. Atilgan et al(2005)Atilgan, Wirtz, and Sun.
    Atilgan E, Wirtz D, Sun S (2005) Morphology of the lamellipodium and organization of actin filaments at the leading edge of crawling cells. Biophys J 89:3589–3602PubMedCrossRefGoogle Scholar
  5. Atilgan et al(2006)Atilgan, Wirtz, and Sun.
    Atilgan E, Wirtz D, Sun S (2006) Mechanics and dynamics of actin-driven thin membrane protrusions. Biophys J 90:65–76PubMedCrossRefGoogle Scholar
  6. Bamburg(1999).
    Bamburg J (1999) Proteins of the adf/cofilin family: essential regulators of actin dynamics. Ann Rev Cell Dev Biol 15:185–230CrossRefGoogle Scholar
  7. Baumgartner et al(2006)Baumgartner, Sillman, Blackwood, Srivastava, Madson, Schilling, Wright, and Barber.
    Baumgartner M, Sillman A, Blackwood E, Srivastava J, Madson N, Schilling J, Wright J, Barber D (2006) The nck-interacting kinase phosphorylates erm proteins for formation of lamellipodium by growth factors. PNAS 103:13391–13396PubMedCrossRefGoogle Scholar
  8. Bear et al(2002)Bear, Svitkina, Krause, Schafer, Loureiro, Strasser, Maly, Chaga, Cooper, Borisy, and Gertler.
    Bear JE, Svitkina TM, Krause M, Schafer DA, Loureiro JJ, Strasser GA, Maly IV, Chaga OY, Cooper JA, Borisy GG, Gertler FB (2002) Antagonism between ena/vasp proteins and actin filament capping regulates fibroblast motility. Cell 109(4):509–521PubMedCrossRefGoogle Scholar
  9. Bernheim-Groswasser et al(2005)Bernheim-Groswasser, Prost, and Sykes.
    Bernheim-Groswasser A, Prost J, Sykes C (2005) Mechanism of actin-based motility: a dynamic state diagram. Biophys J 89:1411–1419PubMedCrossRefGoogle Scholar
  10. Bindschadler and McGrath(2007).
    Bindschadler M, McGrath J (2007) Relationships betwenn actin regulatory mechanisms and measurable state variables. Annals Biomed Eng 35:995–1011CrossRefGoogle Scholar
  11. Bindschadler et al(2004)Bindschadler, Osborn, Dewey, and McGrath.
    Bindschadler M, Osborn E, Dewey C, McGrath J (2004) A mechanistic model of the actin cycle. Biophys J 86:2720–2739PubMedCrossRefGoogle Scholar
  12. Boukellal et al(2004)Boukellal, Campas, Joanny, Prost, and Sykes.
    Boukellal H, Campas O, Joanny J, Prost J, Sykes C (2004) Soft listeria: actin-based propulsion of liquid drops. Phys Rev E 69:061906CrossRefGoogle Scholar
  13. Bugyi et al(2010)Bugyi, Didry, and Carlier.
    Bugyi B, Didry D, Carlier M (2010) How tropomyosin regulates lamellipodial actin-based motility: a combined biochemical and reconstituted motility approach. EMBO J 29:14–26PubMedCrossRefGoogle Scholar
  14. Carlier and Pantaloni(2007).
    Carlier M, Pantaloni D (2007) Control of actin assembly dynamics in cell motility. J Biol Chem 282(32):23005–23009PubMedCrossRefGoogle Scholar
  15. Carlier et al(1999)Carlier, Ressad, and Pantaloni.
    Carlier M, Ressad F, Pantaloni D (1999) Control of actin dynamics in cell motility – role of adf/cofilin. J Biol Chem 274:33827–33830PubMedCrossRefGoogle Scholar
  16. Carlsson(2001).
    Carlsson A (2001) Growth of branched actin networks against obstacles. Biophys J 81: 1907–1923PubMedCrossRefGoogle Scholar
  17. Carlsson(2003).
    Carlsson A (2003) Growth velocities of branched actin networks. Biophys J 84:2907–2918PubMedCrossRefGoogle Scholar
  18. Carlsson(2004).
    Carlsson A (2004) Structure of autocatalitically branched actin solutions. Phys Rev Lett 92(23):239102CrossRefGoogle Scholar
  19. Carlsson(2005).
    Carlsson A (2005) The effect of branching on the critical concentration and average filament length of actin. Biophys J 89(1):130–140PubMedCrossRefGoogle Scholar
  20. Carlsson(2006a).
    Carlsson A (2006a) Contractile stress generation by actomyosin gels. Phys Rev E 74:051912CrossRefGoogle Scholar
  21. Carlsson(2006b).
    Carlsson A (2006b) Stimulation of actin polymerization by filament severing. Biophys J 90:413–422PubMedCrossRefGoogle Scholar
  22. Carlsson(2010).
    Carlsson A (2010) Dendritic actin filament nucleation causes traveling waves and patches. Phys Rev Lett 104:228102PubMedCrossRefGoogle Scholar
  23. Carlsson and Sept(2008).
    Carlsson A, Sept D (2008) Mathematical modeling of cell migration. Biophys Tools Biol: Vol 1 In Vitro Techniques 84:911Google Scholar
  24. Carlsson et al(2004)Carlsson, Wear, and Cooper.
    Carlsson A, Wear M, Cooper J (2004) End versus side branching by arp2/3 complex. Biophys J 86:1074–1081PubMedCrossRefGoogle Scholar
  25. Casteo and Jay(1999).
    Casteo L, Jay D (1999) Radixin is involved in lamellipodial stability during nerve growth cone motility. Mol Biol Cell 5:1511–1520Google Scholar
  26. Chauvière et al(2010)Chauvière, Preziosi, and Verdier.
    Chauvière A, Preziosi L, Verdier C (eds) (2010) Cell mechanics. From single scale-based models to multiscale modeling. Taylor & Francis Group, Chapman & Hall/CRC Mathematical and Computational Biology Series, Boca RatonGoogle Scholar
  27. Co et al(2007)Co, Wong, Gierke, Chang, and Taunton.
    Co C, Wong D, Gierke S, Chang V, Taunton J (2007) Mechanism of actin network attachment to moving membranes: barbed end capture by n-wasp wh2 domains. Cell 128:901–913PubMedCrossRefGoogle Scholar
  28. Cooper and Sept(2008).
    Cooper JA, Sept D (2008) New insights into mechanism and regulation of actin capping protein. Int Rev Cell Mol Biol, 267:183–206PubMedCrossRefGoogle Scholar
  29. Danuser(2005).
    Danuser G (2005) Coupling the dynamics of two actin networks – new views on the mechanics of cell protrusion. Biochem Soc Trans 33:1250–1253PubMedCrossRefGoogle Scholar
  30. Danuser(2009).
    Danuser G (2009) Testing the lamella hypothesis: the next steps on the agenda. J Cell Sci 122:1950–1962CrossRefGoogle Scholar
  31. Dawes et al(2006)Dawes, Ermentrout, Cytrynbaum, and Edelstein-Keshet.
    Dawes A, Ermentrout G, Cytrynbaum E, Edelstein-Keshet L (2006) Actin filament branching and protrusion velocity in a simple 1d model of a motile cell. J Theor Biol 242:265–279PubMedCrossRefGoogle Scholar
  32. Dayel et al(2009)Dayel, Akin, Landeryou, Risca, Mogilner, and Mullins.
    Dayel M, Akin O, Landeryou M, Risca V, Mogilner A, Mullins R (2009) In silico reconstitution of actin-based symmetry breaking and motility. PLoS Biol 7:e1000201PubMedCrossRefGoogle Scholar
  33. Delatour et al(2008)Delatour, Shekhar, Reymann, Didry, Lê, Romet-Lemonne, Helfer, and Carlier.
    Delatour V, Shekhar S, Reymann AC, Didry D, Lê KHD, Romet-Lemonne G, Helfer E, Carlier MF (2008) Actin-based propulsion of functionalized hard versus fluid spherical objects. New J Phys 10(2):025001CrossRefGoogle Scholar
  34. Delorme et al(2007)Delorme, Machacek, DerMardirossian, Anderson, Wittmann, Hanein, Waterman-Storer, Danuser, and Bokoch.
    Delorme V, Machacek M, DerMardirossian C, Anderson K, Wittmann T, Hanein D, Waterman-Storer C, Danuser G, Bokoch G (2007) Cofilin activity downstream of pak1 regulates cell protrusion efficiency by organizing lamellipodium and lamella actin networks. Dev Cell 13:646–662PubMedCrossRefGoogle Scholar
  35. Denker and Barber(2002).
    Denker S, Barber D (2002) Cell migration requires both ion translocation and cytoskeletal anchoring by the Na–H exchanger NHE1. J Cell Biol 159:1087–1096PubMedCrossRefGoogle Scholar
  36. Denker et al(2000)Denker, Huang, Orlowski, Furthmayr, and Barber.
    Denker S, Huang D, Orlowski J, Furthmayr H, Barber D (2000) Direct Binding of the Na H Exchanger NHE1 to ERM Proteins Regulates the Cortical Cytoskeleton and Cell Shape Independently of H +  Translocation. Mol Cell 6:1425–1436PubMedCrossRefGoogle Scholar
  37. DiMilla et al(1991)DiMilla, Barbee, and Lauffenburger.
    DiMilla PA, Barbee K, Lauffenburger DA (1991) Mathematical model for the effects of adhesion and mechanics on cell migration speed. Biophys J 60:15–37PubMedCrossRefGoogle Scholar
  38. DiNubile and Huang(1997).
    DiNubile MJ, Huang S (1997) High concentrations of phosphatidylinositol-4,5-bisphosphate may promote actin filament growth by three potential mechanisms: inhibiting capping by neutrophil lysates, severing actin filaments and removing capping protein-[beta]2 from barbed ends. Biochim Biophys Acta (BBA) – Mol Cell Res 1358(3):261–278Google Scholar
  39. Doebereiner et al(2004)Doebereiner, Dubin-Thaler, Giannone, Xenias, and Sheetz.
    Doebereiner HG, Dubin-Thaler B, Giannone G, Xenias H, Sheetz M (2004) Dynamic phase transitions in cell spreading. Phys Rev Lett 93(10):108105CrossRefGoogle Scholar
  40. Doebereiner et al(2006)Doebereiner, Dubin-Thaler, Hofman, Xenias, Sims, Giannone, Dustin, Wiggins, and Sheetz.
    Doebereiner HG, Dubin-Thaler B, Hofman J, Xenias H, Sims T, Giannone G, Dustin M, Wiggins C, Sheetz M (2006) Lateral membrane waves constitute a universal dynamic pattern of motile cells. Phys Rev Lett 97(3):038102CrossRefGoogle Scholar
  41. Eden et al(2002)Eden, Rohatgi, Pdtelejnikov, Mann, and Kirschner.
    Eden S, Rohatgi R, Pdtelejnikov A, Mann M, Kirschner M (2002) Mechaniscm of regulation of wave1-induced actin nucleation by rac1 and nck. Nature 418:790–793PubMedCrossRefGoogle Scholar
  42. Enculescu and Falcke(2011).
    Enculescu M, Falcke M (2011) Actin-based propusion of spatially extended objects. New J Phys 13:053040CrossRefGoogle Scholar
  43. Enculescu et al(2008)Enculescu, Gholami, and Falcke.
    Enculescu M, Gholami A, Falcke M (2008) Dynamic regimes and bifurcation in a model of actin-based motility. Phys Rev E 78:031915CrossRefGoogle Scholar
  44. Enculescu et al(2010)Enculescu, Sabouri-Ghomi, Danuser, and Falcke.
    Enculescu M, Sabouri-Ghomi M, Danuser G, Falcke M (2010) Modeling of protrusion phenotypes driven by the actin-membrane interaction. Biophys J 98:1–11CrossRefGoogle Scholar
  45. Faber, M. et al(2010)Faber, M., Enculescu, M., and Falcke, M.
    Faber, M, Enculescu, M, Falcke, M (2010) Filament capping and nucleation in actin-based motility. Eur Phys J Special Topics 191:147–158, DOI 10.1140/epjst/e2010-01347-3, URL
  46. Fievet et al(2004)Fievet, Gautreau, Roy, Del Maestro, Mangeat, Louvard, and Arpin.
    Fievet B, Gautreau A, Roy C, Del Maestro L, Mangeat P, Louvard D, Arpin M (2004) Phosphoionositide binding and phosphorylation act sequentially in the activation mechanism of ezrin. J Cell Biol 164:653–659PubMedCrossRefGoogle Scholar
  47. Fievet et al(2007)Fievet, Louvard, and Arpin.
    Fievet B, Louvard D, Arpin M (2007) Erm proteins in epithelial cell organization and functions. BBA – Mol Cell Res 1773:653–660Google Scholar
  48. Friedel et al(2004)Friedel, Hegerfeld, and Tusch.
    Friedel P, Hegerfeld Y, Tusch M (2004) Collective cell migration in morphogenesis and cancer. Int J Dev Biol 48:441–449CrossRefGoogle Scholar
  49. Fuhrmann et al(2007)Fuhrmann, Ks, and Stevens.
    Fuhrmann J, Ks J, Stevens A (2007) Initiation of cytoskeletal asymmetry for cell polymerization and movement. J Theor Biol 249:278–288PubMedCrossRefGoogle Scholar
  50. Gautreau et al(2000)Gautreau, Louvard, and Arpin.
    Gautreau A, Louvard D, Arpin M (2000) Morphogenic effects of ezrin require a phosphorylation-induced transition from oligomers to monomers at the plasma membrane. J Cell Biol 150:193–203PubMedCrossRefGoogle Scholar
  51. Gerbal et al(2000a)Gerbal, Chaikin, Rabin, and Prost.
    Gerbal F, Chaikin P, Rabin Y, Prost J (2000a) An elastic analysis of listeria monocytogenes propulsion. Biophys J 79:2259–2275PubMedCrossRefGoogle Scholar
  52. Gerbal et al(2000b)Gerbal, Laurent, Ott, Carlier, Chaikin, and Prost.
    Gerbal F, Laurent V, Ott A, Carlier M, Chaikin P, Prost J (2000b) Measurement of the elasticity of the actin tail of listeria monocytogenes. Eur Biophys J with Biophys Lett 29:134–140CrossRefGoogle Scholar
  53. Gholami et al(2006)Gholami, Wilhelm, and Frey.
    Gholami A, Wilhelm J, Frey E (2006) Entropic forces generated by grafted semiflexible polymers. Phys Rev E 74(4):041803CrossRefGoogle Scholar
  54. Gholami et al(2008)Gholami, Falcke, and Frey.
    Gholami A, Falcke M, Frey E (2008) Velocity oscillations in actin-based motility. New J of Phys 10:033022CrossRefGoogle Scholar
  55. Ghosh et al(2004)Ghosh, Sonx, Mouneimne, Sidani, Lawrence, and Condeelis.
    Ghosh M, Sonx X, Mouneimne G, Sidani M, Lawrence D, Condeelis J (2004) Cofilin promotes actin polymerization and defines the direction of cell motility. Science 304: 743–746PubMedCrossRefGoogle Scholar
  56. Giannone et al(2004)Giannone, Dubin-Thaler, Doebereiner, Kieffer, Bresnick, and Sheetz.
    Giannone G, Dubin-Thaler J, Doebereiner HG, Kieffer N, Bresnick A, Sheetz M (2004) Periodic lamellipodial contractions correlate with rearward actin waves. Cell 116: 431–443PubMedCrossRefGoogle Scholar
  57. Giannone et al(2007)Giannone, Dubin-Thaler, Rossier, Cai, Chaga, Jiang, Beaver, Dobereiner, Freund, Borisy, and Sheetz.
    Giannone G, Dubin-Thaler B, Rossier O, Cai Y, Chaga O, Jiang G, Beaver W, Dobereiner H, Freund Y, Borisy G, Sheetz M (2007) Lamellipodial actin mechanically links myosin activity with adhesion-site formation. Cell 128:561–575PubMedCrossRefGoogle Scholar
  58. Gracheva and Othmer(2004).
    Gracheva MA, Othmer HG (2004) A continuum model of motility in ameboid cells. Bull Math Biol 66:167–193PubMedCrossRefGoogle Scholar
  59. Grimm et al(2003)Grimm, Verkhovsky, Mogilner, and Meister.
    Grimm H, Verkhovsky A, Mogilner A, Meister JJ (2003) Analysis of actin dynamics at the leading edge of crawling cells: implications for the shape of keratocyte lamellipodia. Eur Biophys J 32:563–577PubMedCrossRefGoogle Scholar
  60. Grinstien et al(1993)Grinstien, Woodside, Waddell, Downey, Orlowski, Pouyssegur, Wong, and Foskett.
    Grinstien S, Woodside M, Waddell T, Downey G, Orlowski J, Pouyssegur J, Wong D, Foskett J (1993) Focal localozation of the nhe-1 isoform of the na1/h1 antiport: assesment of effects on intracellular ph. EMBO J 12:5209–5218Google Scholar
  61. Hartwig et al(1989)Hartwig, Chambers, and Stossel.
    Hartwig JH, Chambers KA, Stossel TP (1989) Association of gelsolin with actin filaments and cell membranes of macrophages and platelets. J Cell Biol 108(2):467–479PubMedCrossRefGoogle Scholar
  62. Hartwig et al(1995)Hartwig, Bokoch, Carpenter, Janmey, Taylor, Toker, and Stossel.
    Hartwig JH, Bokoch GM, Carpenter CL, Janmey PA, Taylor LA, Toker A, Stossel TP (1995) Thrombin receptor ligation and activated Rac uncap actin filament barbed ends through phosphoinositide synthesis in permeabilized human platelets. Cell 82(4):643–653PubMedCrossRefGoogle Scholar
  63. Heinemann et al(2011)Heinemann, Doschke, and Radmacher.
    Heinemann F, Doschke H, Radmacher M (2011) Keratocyte lamellipodial protrusion is characterized by a concave force–velocity relation. Biophys J 100(6):1420–1427PubMedCrossRefGoogle Scholar
  64. Higgs and Pollard(2001).
    Higgs H, Pollard T (2001) Regulation of actin filament network formation through arp2/3 complex: activation by a diverse array of proteins. Ann Rev Biochem 70:649–676PubMedCrossRefGoogle Scholar
  65. Huang et al(2006)Huang, DerMardirossian, and Bokoch.
    Huang T, DerMardirossian C, Bokoch G (2006) Cofilin phosphytases and regulation of actin dynamics. Curr Op Cell Biol 18:26–31PubMedCrossRefGoogle Scholar
  66. Ichetovkin et al(2002)Ichetovkin, Grant, and Condeelis.
    Ichetovkin I, Grant W, Condeelis J (2002) Cofilin produces newly polymerized actin filaments that are preferred for dendritic nucleation by the arp2/3 complex. Curr Biol 12:79–84PubMedCrossRefGoogle Scholar
  67. Ikenoya et al(2002)Ikenoya, Hidaka, Hosoya, Suzuki, Yamamoto, and Sasaki.
    Ikenoya M, Hidaka H, Hosoya T, Suzuki M, Yamamoto N, Sasaki Y (2002) Inhibition of rhokinase-induced myristoylated alanine-rich c kinase substrate (marcks) phosphorylation in human neuronal cells by h-1152, a novel and specific rho-kinase inhibitor. J Neurochem 81: 9–16PubMedCrossRefGoogle Scholar
  68. Janmey and Stossel(1987).
    Janmey PA, Stossel TPS (1987) Modulation of gelsolin function by phosphatidylinositol 4,5-bisphosphate. Nature 325:362–364PubMedCrossRefGoogle Scholar
  69. Ji et al(2008)Ji, Lim, and Danuser.
    Ji L, Lim J, Danuser G (2008) Fluctuations of intracellular forces during cell protrusion. Nat Cell Biol 10(12):1393–1400PubMedCrossRefGoogle Scholar
  70. John et al(2008)John, Peyla, Kassner, Prost, and Misbah.
    John K, Peyla P, Kassner K, Prost J, Misbah C (2008) Nonlinear study of symmetry breaking in actin gels: implications for cellular motility. Phys Rev Lett 100(6):068101PubMedCrossRefGoogle Scholar
  71. Kahsai et al(2010)Kahsai, Zhu, and Fenteany.
    Kahsai A, Zhu S, Fenteany G (2010) G protein-coupled receptor kinase 2 activates radixin, regulating membrane protrusion and motility in epithelial cells. BBA – Mol Cell Res 1803:300–310Google Scholar
  72. Keren and Theriot(2008).
    Keren K, Theriot J (2008) Biophysical Aspects of actin-based cell motility in fish epithelial keratocytes. In: Cell motility, Springer New York, pp 31–58Google Scholar
  73. Keren et al(2008)Keren, Pincus, Allen, Barnhart, Marriott, Mogilner, and Theriot.
    Keren K, Pincus Z, Allen G, Barnhart E, Marriott G, Mogilner A, Theriot A (2008) Mechanism of shape determination in motile cells. Nature 453:485–U1CrossRefGoogle Scholar
  74. Klein et al(2000)Klein, Seeger, Schuricht, Alper, and Schwab.
    Klein M, Seeger P, Schuricht B, Alper S, Schwab A (2000) Polarization of \(\mathrm{N{a}^{+}/{H}^{+}}\) and \(\mathrm{C{l}^{-}/HC{O}_{3}^{-}}\) exchangers in migrating renal epithelial cells. J Gen Physiol 115:599–608PubMedCrossRefGoogle Scholar
  75. Koester et al(2008)Koester, Auinger, Vinzenz, Rottner, and Small.
    Koester S, Auinger S, Vinzenz M, Rottner K, Small J (2008) Differentially oriented populations of actin filaments generated in lamellipodia collaborate in pushing and pausing at the cell front. Nat Cell Biol 10:306–313CrossRefGoogle Scholar
  76. Kruse et al(2004)Kruse, Joanny, Jlicher, Prost, and Sekimoto.
    Kruse K, Joanny J, Jlicher F, Prost J, Sekimoto K (2004) Asters, vortices, and rotating spirals in actove gels of polar filaments. Phys Rev Lett 92(7):078101PubMedCrossRefGoogle Scholar
  77. Kruse et al(2005)Kruse, Joanny, Jlicher, Prost, and Sekimoto.
    Kruse K, Joanny J, Jlicher F, Prost J, Sekimoto K (2005) Generic theory of active polar gels: a paradigm for cytoskeletal dynamics. Eur Phys J E 16:5–16PubMedCrossRefGoogle Scholar
  78. Kruse et al(2006)Kruse, Joanny, Jlicher, and Prost.
    Kruse K, Joanny J, Jlicher F, Prost J (2006) Contractility and retrograde flow in lamellipodium motion. Phys Biol 3:130–137PubMedCrossRefGoogle Scholar
  79. Kuhn and Pollard(2007).
    Kuhn JR, Pollard TD (2007) Single molecule kinetic analysis of actin filament capping. J Biol Chem 282(38):28014–28024PubMedCrossRefGoogle Scholar
  80. Kuo and McGrath(2000).
    Kuo S, McGrath J (2000) Steps and fluctuations of listeria monocytogenes during actin-based motility. Nature 407:1026–1029PubMedCrossRefGoogle Scholar
  81. Kuusela and Alt(2009).
    Kuusela E, Alt W (2009) Continuum model of cell adhesion and migration. J Math Biol 58:135–161PubMedCrossRefGoogle Scholar
  82. Lacayo et al(2007)Lacayo, Pincus, VanDujin, Wilson, Fletcher, Gertler, Mogilner, and Theriot.
    Lacayo C, Pincus Z, VanDujin M, Wilson C, Fletcher D, Gertler F, Mogilner A, Theriot J (2007) Emergence of large-scale cell morphology and movement from local actin filament growth dynamics. PLoS Biol 5(9):2035–2052CrossRefGoogle Scholar
  83. Lagana et al(2000)Lagana, Vadnais, Le, Nguyen, Laprade, Nabi, and Noel.
    Lagana A, Vadnais J, Le P, Nguyen T, Laprade R, Nabi I, Noel J (2000) Regulation of the formation of tumor cell pseudopodia by the Na + /H +  exchanger NHE1. J Cell Sci 113: 3649–3662PubMedGoogle Scholar
  84. Lai et al(2008)Lai, Bosse, Szczodrak, Benesch, Auinger, Faix, Small, Stradel, and Rottner.
    Lai F, Bosse T, Szczodrak M, Benesch S, Auinger S, Faix J, Small J, Stradel T, Rottner K (2008) Arp2/3-complex regulation in motility and host–pathogen interaction. FEBS J 275:39CrossRefGoogle Scholar
  85. Lamb et al(1997)Lamb, Ozanne, Roy, McGarry, Stipp, Mangeat, and Jay.
    Lamb R, Ozanne B, Roy C, McGarry L, Stipp C, Mangeat P, Jay D (1997) Essential functions of ezrin in maintenance of cell shape and lamellipodial extension in normal and transformed fibroblasts. Curr Biol 7:682–688PubMedCrossRefGoogle Scholar
  86. Larripa and Mogilner(2006).
    Larripa K, Mogilner A (2006) Transport of a 1d viscoelastic actin–myosin strip of gel as a model of a crawling cell. Phys A 372:113–123CrossRefGoogle Scholar
  87. Le Clainche and Carlier(2008).
    Le Clainche C, Carlier M (2008) Regulation of actin assembly associated with protrusion and adhesion in cell migration. Physiol Rev 88:89–513Google Scholar
  88. Lee and Liu(2009).
    Lee KC, Liu AJ (2009) Force–velocity relation for actin-polymerization-driven motility from brownian dynamics simulations. Biophys J 97(5):1295–1304PubMedCrossRefGoogle Scholar
  89. Lim et al(2010)Lim, Sabouri-Ghomi, Machacek, Waterman, and Danuser.
    Lim JI, Sabouri-Ghomi M, Machacek M, Waterman CM, Danuser G (2010) Protrusion and actin assembly are coupled to the organization of lamellar contractile structures. Exp Cell Res 316(13):2027–2041PubMedCrossRefGoogle Scholar
  90. Lin(2009).
    Lin Y (2009) Mechanics model for actin-based motility. Phys Rev E 79:021916CrossRefGoogle Scholar
  91. Machacek and Danuser(2006).
    Machacek M, Danuser G (2006) Morphodynamic profiling of protrusion phenotypes. Biophys J 90:1439–1442PubMedCrossRefGoogle Scholar
  92. Marcy et al(2004)Marcy, Prost, Carlier, and Sykes.
    Marcy Y, Prost J, Carlier MF, Sykes C (2004) Forces generated during actin-based propulsion: a direct measurement by micromanipulation. PNAS 101(16):5992–5997PubMedCrossRefGoogle Scholar
  93. Matsui et al(1999)Matsui, Yonemura, Tsukita, and Tsukita.
    Matsui T, Yonemura S, Tsukita S, Tsukita S (1999) Activation of erm proteins in vivo by rho involves phosphatidyl-inositol 4-phosphate 5-kinase and not rock kinases. Curr Biol 9: 1259–1262PubMedCrossRefGoogle Scholar
  94. Méré et al(2005)Méré, Chahinian, Maciver, Fattoum, Bettache, Benyamin, and Roustan.
    Méré J, Chahinian A, Maciver SK, Fattoum A, Bettache N, Benyamin Y, Roustan C (2005) Gelsolin binds to polyphosphoinositide-free lipid vesicles and simultaneously to actin microfilaments. Biochem J 386:47–56PubMedCrossRefGoogle Scholar
  95. Michalsky and Carlsson(2010).
    Michalsky P, Carlsson A (2010) The effects of filament aging and annealing on a model lamellipodium undergoing disassembly by severing. Phys Biol 7:026004CrossRefGoogle Scholar
  96. Mogilner and Edelstein-Keshet(2002).
    Mogilner A, Edelstein-Keshet L (2002) Regulation of actin dynamics in rapidly moving cells: a quantitative analysis. Biophys J 83:1237–1258PubMedCrossRefGoogle Scholar
  97. Mogilner and Oster(1996).
    Mogilner A, Oster G (1996) Cell motility drivern by actin polymerization. Biophys J 71:3030–3045PubMedCrossRefGoogle Scholar
  98. Mogilner and Oster(2003).
    Mogilner A, Oster G (2003) Force generation by actin polymerization ii: the elastic ratchet and tethered filaments. Biophys J 84:1591–1605PubMedCrossRefGoogle Scholar
  99. Nagumo et al(2001)Nagumo, Ikenoya, Sakurada, Furuya, Ikuhara, Hiraoka, and Sasaki.
    Nagumo H, Ikenoya M, Sakurada K, Furuya K, Ikuhara T, Hiraoka H, Sasaki Y (2001) Rho-associated kinase phosphorylates marcks in human neuronal cells. Biochem Biophys Res Commun 280:605–609PubMedCrossRefGoogle Scholar
  100. Nakamura et al(2000)Nakamura, Pshiro, Fukata, Amoano, Fukata, Kuroda, Matsuura, Leung, Lim, and Kaibuchi.
    Nakamura N, Pshiro N, Fukata Y, Amoano M, Fukata M, Kuroda S, Matsuura Y, Leung T, Lim K, Kaibuchi K (2000) Phosphorylation of erm proteins at filopodia induced by cdc42. Genes Cells 5:571–581PubMedCrossRefGoogle Scholar
  101. Ng et al(2001)Ng, Parsons, Hughes, Monypenny, Zicha, Gautreau, Arpin, Gschmeissner, Verveer, Bastiaens, and Parker.
    Ng T, Parsons M, Hughes W, Monypenny J, Zicha D, Gautreau A, Arpin M, Gschmeissner S, Verveer P, Bastiaens P, Parker P (2001) Ezrin is a downstream effector of trafficking pkc-integrin complexes involved in the control of cell motility. EMBO J 20:2723–2741PubMedCrossRefGoogle Scholar
  102. Novak et al(2004)Novak, Slepchenko, Mogilner, and Loew.
    Novak I, Slepchenko B, Mogilner A, Loew L (2004) Cooperativity between cell contractility and adhesion. Phys Rev Lett 93:268109PubMedCrossRefGoogle Scholar
  103. Oliver et al(2005)Oliver, King, Mckinlay, Brown, Grant, Scotchford, and Wood.
    Oliver J, King J, Mckinlay K, Brown P, Grant D, Scotchford C, Wood J (2005) Thin-film theories for two-phase reactive flow models of active cell motion. Math Med Biol 22:53–98PubMedCrossRefGoogle Scholar
  104. Oshiro et al(1998)Oshiro, Fukata, and Kaibuchi.
    Oshiro N, Fukata Y, Kaibuchi K (1998) Phosphorylation of moesin by rho-associated kinase (rho-kinase) plays a crucial role in the formation of microvilli-like structures. J Biol Chem 273:34663–34666PubMedCrossRefGoogle Scholar
  105. Paluch et al(2006)Paluch, van der Gucht, Joanny, and Sykes.
    Paluch E, van der Gucht J, Joanny JF, Sykes C (2006) Deformations in actin comets from rocketing beads. Biophys J 91(8):3113–3122PubMedCrossRefGoogle Scholar
  106. Papakonstanti et al(2007)Papakonstanti, Ridley, and Vanhaesebroeck.
    Papakonstanti E, Ridley A, Vanhaesebroeck B (2007) The p110d isoform of pi 3-kinase negatively controls rhoa and pten. EMBO J 26:3050–3061PubMedCrossRefGoogle Scholar
  107. Parekh et al(2005)Parekh, Chaudhuri, Theriot, and Fletcher.
    Parekh SH, Chaudhuri O, Theriot JA, Fletcher DA (2005) Loading history determines the velocity of actin-network growth. Nat Cell Biol 7(12):1219–1223PubMedCrossRefGoogle Scholar
  108. Paskin et al(1993)Paskin, Odell, and Oster.
    Paskin C, Odell G, Oster G (1993) Cellular motions and thermal fluctuations: the Brownian ratchet. Biophs J 65:316–324CrossRefGoogle Scholar
  109. Pierres et al(2008)Pierres, Benoliel, Touchard, and Bongard.
    Pierres A, Benoliel A, Touchard D, Bongard P (2008) How cells tiptoe on adhesive surfaces before sticking. Biophys J 94:4114–4122PubMedCrossRefGoogle Scholar
  110. Pollard(2003).
    Pollard T (2003) The cytoskeleton, cellular motility and the reductionist agenda. Nature 422:741–745PubMedCrossRefGoogle Scholar
  111. Ponti et al(2004)Ponti, Machacek, Gupton, Waterman-Storer, and Danuser.
    Ponti A, Machacek M, Gupton S, Waterman-Storer C, Danuser G (2004) Two distinct actin networks drive the protrusion of migrating cells. Science 207:1782–1786CrossRefGoogle Scholar
  112. Prass et al(2006)Prass, Jacobson, Mogilner, and Radmacher.
    Prass M, Jacobson K, Mogilner A, Radmacher M (2006) Direct measurement of the lamellipodial protrusive force in a migrating cell. J Cell Biol 174:767–772PubMedCrossRefGoogle Scholar
  113. Rubinstein et al(2005)Rubinstein, Jacobson, and Moginer.
    Rubinstein B, Jacobson K, Moginer A (2005) Multiscale two-dimensional modelling of a motile simple-shaped cell. Multiscale Model Simul 3(2):413–439PubMedCrossRefGoogle Scholar
  114. Sardet et al(1993)Sardet, Counillon, Franchi, and Pouyssegur.
    Sardet C, Counillon L, Franchi A, Pouyssegur J (1993) Growth factors induce phosphorylation of the na1/h1 antiporter, glycoprotein of 110 kd. Science 247:723–726CrossRefGoogle Scholar
  115. Schafer et al(1996)Schafer, Jennings, and Cooper.
    Schafer DA, Jennings PB, Cooper JA (1996) Dynamics of capping protein and actin assembly in vitro: uncapping barbed ends by polyphosphoinositides. J Cell Biol 135(1):169–179PubMedCrossRefGoogle Scholar
  116. Schreiber et al(2010)Schreiber, Stewart, and Duke.
    Schreiber CH, Stewart M, Duke T (2010) Simulation of cell motility that reproduces the force–velocity relationship. Proc Natl Acad Sci 107(20):9141–9146PubMedCrossRefGoogle Scholar
  117. Sheetz et al(2006)Sheetz, Sable, and Dobereiner.
    Sheetz M, Sable J, Dobereiner HG (2006) Continous membrane-cytoskeleton adhesion requires continous accomodation to lipid and cytoskeleton dynamics. Annu Rev Biophys Biomol Struct 35:417–434PubMedCrossRefGoogle Scholar
  118. Shiraishi et al(2006)Shiraishi, Tanabe, Saito, and Sasaki.
    Shiraishi M, Tanabe A, Saito N, Sasaki Y (2006) Unphosphorylated marcks is involved in neurite initiation induced by insulin-like growth factor-l in sh-sy5y cells. J Cell Physiol 209:1029–1038PubMedCrossRefGoogle Scholar
  119. Shlomovitz and Gov(2007).
    Shlomovitz R, Gov N (2007) Membrane waves driven by actin and myosin. Phys Rev Lett 98:168103PubMedCrossRefGoogle Scholar
  120. Shlomovitz and Gov(2008).
    Shlomovitz R, Gov N (2008) Exciting cytoskeleton-membrane waves. Phys Rev E 78:041911Google Scholar
  121. Small and Resch(2005).
    Small J, Resch G (2005) The comings and goings of actin: coupling protrusion and retraction in cell motility. Curr Op Cell Biol 17:517–523PubMedCrossRefGoogle Scholar
  122. Small et al(1995)Small, Herzog, and Anderson.
    Small J, Herzog M, Anderson K (1995) Actin filament organization in the fish keratocyte lamellipodium. J Cell Biol 129(5):1275–1286PubMedCrossRefGoogle Scholar
  123. Small et al(2008)Small, Auinger, Nemethova, Koestler, Goldie, Hoenger, and Resch.
    Small J, Auinger S, Nemethova M, Koestler S, Goldie K, Hoenger A, Resch G (2008) Unravelling the structure of the lamellipodium. J Microsc-Oxford 231:479–485CrossRefGoogle Scholar
  124. Small et al(2002)Small, Stradal, Vignal, and Rottner.
    Small JV, Stradal T, Vignal E, Rottner K (2002) The lamellipodium: where motility begins. Trends Cell Biol 12(3):112–120PubMedCrossRefGoogle Scholar
  125. Smith et al(2006)Smith, Diez, Klemm, Schewkunow, and Goldmann.
    Smith J, Diez G, Klemm A, Schewkunow V, Goldmann W (2006) Capz-lipid membrane interactions: a computer analysis. Theor Biol Med Model 3(1):30PubMedCrossRefGoogle Scholar
  126. Stolarska et al(2009)Stolarska, Y, and Othmer.
    Stolarska M, Y K, Othmer H (2009) Multi-scale models of cell and tissue dynamics. Phyl Trans Roy Soc A 367:3525–3553Google Scholar
  127. Stradal and Scita(2006).
    Stradal T, Scita G (2006) Protein complexes regulation arp2/3-mediated actin assembly. Curr Op Cell Biol 18:4–10PubMedCrossRefGoogle Scholar
  128. Stradal et al(2004)Stradal, Rottner, Disanza, Confalonieri, Innocenti, and Scita.
    Stradal T, Rottner K, Disanza A, Confalonieri S, Innocenti M, Scita G (2004) Regulation of actin dynamics by wasp and wave family proteins. Trends Cell Biol 14:303–311PubMedCrossRefGoogle Scholar
  129. Sun et al(1999)Sun, Yamamoto, Mejillano, and Yin.
    Sun HQ, Yamamoto M, Mejillano M, Yin HL (1999) Gelsolin, a multifunctional actin regulatory protein. J Biol Chem 274(47):33179–33182PubMedCrossRefGoogle Scholar
  130. Svitkina(2007).
    Svitkina T (2007) N-wasp generates a buzz at membranes on the move. Cell 128:828–830PubMedCrossRefGoogle Scholar
  131. Svitkina et al(1997)Svitkina, Verkhovsky, McQuade, and Borisy.
    Svitkina TM, Verkhovsky AB, McQuade KM, Borisy GG (1997) Analysis of the actin-myosin II system in fish epidermal keratocytes: mechanism of cell body translocation. J Cell Biol 139:397–415PubMedCrossRefGoogle Scholar
  132. Tatsumi et al(2005)Tatsumi, Mabuchi, Katano, Matsumura, Abe, Hidaka, Suzuki, Sasaki, Minami, and Ito.
    Tatsumi S, Mabuchi T, Katano T, Matsumura S, Abe T, Hidaka H, Suzuki M, Sasaki Y, Minami T, Ito S (2005) Involvement of rho-kinase in inflammatory and neuropathic pain through phosphorylation of myristoylated alanine-rich c-kinase substrate (marcks). Neurosci 131:491–498CrossRefGoogle Scholar
  133. Timpson and Daly(2005).
    Timpson P, Daly R (2005) Distinction at the leading edge of the cell. Bioessays 27:349–352PubMedCrossRefGoogle Scholar
  134. Trichet et al(2007a)Trichet, Campàs, and Sykes.
    Trichet L, Campàs O, Sykes C (2007a) Vasp governs actin dynamics by modulating filament anchoring. Biophys J 92:1081–1089PubMedCrossRefGoogle Scholar
  135. Trichet et al(2007b)Trichet, Campas, Sykes, and Palastino.
    Trichet L, Campas O, Sykes C, Palastino J (2007b) Vasp governs actin dynamics by modulating filament anchoring. Biophys J 92:1081–1089PubMedCrossRefGoogle Scholar
  136. Tsukita et al(1989)Tsukita, Hieda, and Tsukita.
    Tsukita S, Hieda Y, Tsukita S (1989) A new 82-kd barbed end-capping protein (radixin) localized in the cell-to-cell adherens junction: purification and characterization. J Cell Biol 108:2369–2382PubMedCrossRefGoogle Scholar
  137. Urban et al(2010)Urban, Jacob, Nemethova, Resch, and Small.
    Urban W, Jacob S, Nemethova M, Resch G, Small J (2010) Electron tomography reveals unbranched networks of actin filaments in lamellipodia. Nat Cell Biol 12:429–435PubMedCrossRefGoogle Scholar
  138. Vallotton and Small(2009).
    Vallotton P, Small JV (2009) Shifting views on the leading role of the lamellipodium in cell migration: speckle tracking revisited. J Cell Sci 122(12):1955–1958PubMedCrossRefGoogle Scholar
  139. Verkhovsky et al(2003)Verkhovsky, Chaga, Schaub, Svitkina, J-J, and Borisy.
    Verkhovsky A, Chaga O, Schaub S, Svitkina T, J-J M, Borisy G (2003) Orientational order of the lamellipodial actin network as demonstrated in living motile cells. Mol Biol Cell 14: 4667–4675PubMedCrossRefGoogle Scholar
  140. Watt et al(2002)Watt, Kular, Fleming, Downes, and Lucocq.
    Watt S, Kular G, Fleming I, Downes C, Lucocq J (2002) Subcellular localozation of phosphytidylinositol 4,5-biphosphate using the pleckstrin homology domain of phospholipase cd1. Biochem J 363:657–666PubMedCrossRefGoogle Scholar
  141. Wedlich(2004).
    Wedlich D (ed) (2004) Cell Migration in Development and Disease. Wiley-VCH Verlag GmbH & Co. KGaA, WeinheimGoogle Scholar
  142. Weichsel and Schwarz(2010).
    Weichsel J, Schwarz US (2010) Two competing orientation patterns explain experimentally observed anomalies in growing actin networks. Proc Natl Acad Sci 107(14):6304–6309PubMedCrossRefGoogle Scholar
  143. Wolgemuth(2005).
    Wolgemuth C (2005) Lamellipodial contractions during crawling and spreading. Biophys J 89:1643–1649PubMedCrossRefGoogle Scholar
  144. Yamaguchi et al(2009)Yamaguchi, Shiraishi, Fukami, Tanabe, Ikeda-Matsuo, Naito, and Sasaki.
    Yamaguchi H, Shiraishi M, Fukami K, Tanabe A, Ikeda-Matsuo Y, Naito Y, Sasaki Y (2009) MARCKS regulates lamellipodia formation induced by IGF-I via association with PIP2 and β-actin at membrane microdomains. J Cell Physiol 220:748–755PubMedCrossRefGoogle Scholar
  145. Yin and Stossel(1979).
    Yin HL, Stossel TP (1979) Control of cytoplasmic actin gel-sol transformation by gelsolin, a calcium-dependent regulatory protein. Nature 281:583–586PubMedCrossRefGoogle Scholar
  146. Yin et al(1981)Yin, Albrecht, and Fattoum.
    Yin HL, Albrecht JH, Fattoum A (1981) Identification of gelsolin, a Ca2 + -dependent regulatory protein of actin gel–sol transformation, and its intracellular distribution in a variety of cells and tissues. J Cell Biol 91(3):901–906PubMedCrossRefGoogle Scholar
  147. Zimmermann et al(2010)Zimmermann, Enculescu, and Falcke.
    Zimmermann J, Enculescu M, Falcke M (2010) Leading edge - gel coupling in lamellipodium motion. Phys Rev E 82(5):051925CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Institute for Theoretical PhysicsTechnische Universität BerlinBerlinGermany
  2. 2.Mathematical Cell PhysiologyMax-Delbrück-Center for Molecular MedicineBerlinGermany

Personalised recommendations