Modeling Signaling Networks Using High-throughput Phospho-proteomics

  • Camille Terfve
  • Julio Saez-RodriguezEmail author
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 736)


Cellular communication and information processing is performed by complex, dynamic, and context specific signaling networks. Mathematical modeling is a very useful tool to make sense of this complexity. Building a model relies on two main ingredients: data and an adequate model formalism. In the case of signaling networks, we build mainly upon data at the proteome level, in particular about the phosphorylation of proteins. In this chapter we review recent developments in both data acquisition and computational analysis. We describe two approaches, antibody based technologies and mass spectrometry (MS), along with their main features and limitations. We then go on to describe some model formalisms that have been applied to such high-throughput phospho-proteomics data sets. We consider a variety of formalisms from clustering and data mining approaches to differential equation-based mechanistic models, rule-based, and logic based models, and on through Bayesian network inference and linear regressions.


Bayesian Network Signaling Network Partial Little Square Regression Multiple Input Multiple Output Phosphopeptide Enrichment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Aldridge BB, Burke JM, Lauffenburger DA, Sorger PK (2006) Physicochemical modelling of cell signalling pathways. Nat Cell Biol 8(11):1195–1203, DOI 10.1038/ncb1497, URL
  2. 2.
    Alexopoulos LG, Saez-Rodriguez J, Espelin CW (2009) High-throughput protein-based technologies and computational models for drug development, efficacy, and toxicity. John Wiley and Sons, Inc., New Jersey, pp 29–52. DOI 10.1002/9780470431818.ch2, URL
  3. 3.
    Alexopoulos LG, Saez-Rodriguez J, Cosgrove BD, Lauffenburger DA, Sorger PK (2010) Networks inferred from biochemical data reveal profound differences in toll-like receptor and inflammatory signaling between normal and transformed hepatocytes. Mol Cell Proteom MCP 9(9):1849–1865, DOI 10.1074/mcp.M110.000406, URL, PMID: 20460255
  4. 4.
    Bansal M, Belcastro V, Ambesi-Impiombato A, di Bernardo D (2007) How to infer gene networks from expression profiles. Mol Syst Biol 3:78, DOI 10.1038/msb4100120, URL, PMID: 17299415
  5. 5.
    Birtwistle MR, Kholodenko BN (2009) Endocytosis and signalling: a meeting with mathematics. Mol Oncol 3(4):308–320, DOI 10.1016/j.molonc.2009.05.009, URL, PMID: 19596615Google Scholar
  6. 6.
    Bodenmiller B, Wanka S, Kraft C, Urban J, Campbell D, Pedrioli PG, Gerrits B, Picotti P, Lam H, Vitek O, Brusniak M, Roschitzki B, Zhang C, Shokat KM, Schlapbach R, Colman-Lerner A, Nolan GP, Nesvizhskii AI, Peter M, Loewith R, von Mering C, Aebersold R (2010) Phosphoproteomic analysis reveals interconnected system-wide responses to perturbations of kinases and phosphatases in yeast. Sci Signal 3(153):rs4, DOI 10.1126/scisignal.2001182, URL, PMID: 21177495Google Scholar
  7. 7.
    Borisov NM, Markevich NI, Hoek JB, Kholodenko BN (2005) Signaling through receptors and scaffolds: independent interactions reduce combinatorial complexity. Biophys J 89(2):951–966, DOI 10.1529/biophysj.105.060533, URL, PMID: 15923229Google Scholar
  8. 8.
    Brosch M, Choudhary J (2010) Scoring and validation of tandem MS peptide identification methods. Meth Mol Biol (Clifton, NJ) 604:43–53, DOI 10.1007/978-1-60761-444-9{ _}4, URL, PMID: 20013363
  9. 9.
    Chen WW, Schoeberl B, Jasper PJ, Niepel M, Nielsen UB, Lauffenburger DA, Sorger PK (2009) Input–output behavior of ErbB signaling pathways as revealed by a mass action model trained against dynamic data. Mol Syst Biol 5:239, DOI 10.1038/msb.2008.74, URL, PMID: 19156131
  10. 10.
    Choudhary C, Mann M (2010) Decoding signalling networks by mass spectrometry-based proteomics. Nat Rev Mol Cell Biol 11(6):427–439, DOI 10.1038/nrm2900, URL
  11. 11.
    Ciaccio MF, Wagner JP, Chuu C, Lauffenburger DA, Jones RB (2010) Systems analysis of EGF receptor signaling dynamics with microwestern arrays. Nat Meth 7(2):148–155, DOI 10.1038/nmeth.1418, URL Google Scholar
  12. 12.
    Conzelmann H, Saez-Rodriguez J, Sauter T, Kholodenko BN, Gilles ED (2006) A domain-oriented approach to the reduction of combinatorial complexity in signal transduction networks. BMC Bioinformatics 7:34, DOI 10.1186/1471-2105-7-34, URL, PMID: 16430778
  13. 13.
    Cutillas P, Jorgensen C (2011) Biological signalling activity measurements using mass spectrometry. Biochem J 434(2):189–199, DOI 10.1042/BJ20101974, URL
  14. 14.
    Danos V, Feret J, Fontana W, Harmer R, Krivine J, Biosystems P, Suprieure EN, Polytechnique E (2007) Rule-based modelling of cellular signalling. Proc of the 18th Int Conf on Concurrency Theory (CONCUR07), Lecture Notes in Computer Science 4703:17–41, URL
  15. 15.
    Diella F, Cameron S, Gemund C, Linding R, Via A, Kuster B, Sicheritz-Ponten T, Blom N, Gibson T (2004) Phospho.ELM: a database of experimentally verified phosphorylation sites in eukaryotic proteins. BMC Bioinformatics 5(1):79, DOI 10.1186/1471-2105-5-79, URL
  16. 16.
    Duvenaud D, Eaton D, Murphy K, Schmidt M (2009) Causal learning without DAGs. JMLR J Mach Learn Res URL Scholar
  17. 17.
    Faeder JR, Blinov ML, Hlavacek WS (2009) Rule-based modeling of biochemical systems with BioNetGen. Meth Mol Biol (Clifton, NJ) 500:113–167, DOI 10.1007/978-1-59745-525-1{ _}5, URL, PMID: 19399430Google Scholar
  18. 18.
    Feret J, Danos V, Krivine J, Harmer R, Fontana W (2009) Internal coarse-graining of molecular systems. Proc Natl Acad Sci USA 106(16):6453–6458, DOI 10.1073/pnas.0809908106, URL, PMID: 19346467Google Scholar
  19. 19.
    Gat-Viks I, Shamir R (2007) Refinement and expansion of signaling pathways: the osmotic response network in yeast. Genome Res 17(3):358–367, DOI 10.1101/gr.5750507, URL, PMID: 17267811Google Scholar
  20. 20.
    Gaudet S, Janes KA, Albeck JG, Pace EA, Lauffenburger DA, Sorger PK (2005) A compendium of signals and responses triggered by prodeath and prosurvival cytokines. Mol Cell Proteom MCP 4(10):1569–1590, DOI 10.1074/mcp.M500158-MCP200, URL, PMID: 16030008
  21. 21.
    Gnad F, Ren S, Cox J, Olsen JV, Macek B, Oroshi M, Mann M (2007) PHOSIDA (phosphorylation site database): management, structural and evolutionary investigation, and prediction of phosphosites. Genome Biol 8(11):R250, DOI 10.1186/gb-2007-8-11-r250, URL, PMID: 18039369
  22. 22.
    Gouw JW, Krijgsveld J, Heck AJR (2010) Quantitative proteomics by metabolic labeling of model organisms. Mol Cell Proteom MCP 9(1):11–24, DOI 10.1074/mcp.R900001-MCP200, URL, PMID: 19955089Google Scholar
  23. 23.
    Gstaiger M, Aebersold R (2009) Applying mass spectrometry-based proteomics to genetics, genomics and network biology. Nat Rev Genet 10(9):617–627, DOI 10.1038/nrg2633, URL
  24. 24.
    Harrison C (2008) High-content screening: integrating information. Nat Rev Drug Discov 7(2):121, DOI 10.1038/nrd2522, URL Google Scholar
  25. 25.
    Hlavacek WS, Faeder JR, Blinov ML, Posner RG, Hucka M, Fontana W (2006) Rules for modeling signal-transduction systems. Science’s STKE: Signal Transduct Knowl Environ 2006(344):re6, DOI 10.1126/stke.3442006re6, URL, PMID: 16849649
  26. 26.
    Hornbeck PV, Chabra I, Kornhauser JM, Skrzypek E, Zhang B (2004) PhosphoSite: a bioinformatics resource dedicated to physiological protein phosphorylation. Proteomics 4(6):1551–1561, DOI 10.1002/pmic.200300772, URL, PMID: 15174125Google Scholar
  27. 27.
    Huang PH, Mukasa A, Bonavia R, Flynn RA, Brewer ZE, Cavenee WK, Furnari FB, White FM (2007) Quantitative analysis of EGFRvIII cellular signaling networks reveals a combinatorial therapeutic strategy for glioblastoma. Proc Natl Acad Sci USA 104(31):12,867–12,872, DOI 10.1073/pnas.0705158104, URL, PMID: 17646646Google Scholar
  28. 28.
    Hyduke DR, Palsson B (2010) Towards genome-scale signalling-network reconstructions. Nat Rev Genet 11(4):297–307, DOI 10.1038/nrg2750, URL Google Scholar
  29. 29.
    Janes KA, Albeck JG, Gaudet S, Sorger PK, Lauffenburger DA, Yaffe MB (2005) A systems model of signaling identifies a molecular basis set for cytokine-induced apoptosis. Science (New York, NY) 310(5754):1646–1653, DOI 10.1126/science.1116598, URL, PMID: 16339439
  30. 30.
    Jensen ON (2006) Interpreting the protein language using proteomics. Nat Rev Mol Cell Biol 7(6):391–403, DOI 10.1038/nrm1939, URL, PMID: 16723975Google Scholar
  31. 31.
    de Jong H (2002) Modeling and simulation of genetic regulatory systems: a literature review. J Comput Biol: J Comput Mol Cell Biol 9(1):67–103, DOI 10.1089/10665270252833208, URL, PMID: 11911796Google Scholar
  32. 32.
    Jorgensen C, Linding R (2010) Simplistic pathways or complex networks? Curr Opin Genet Dev 20(1):15–22, DOI 10.1016/j.gde.2009.12.003, URL, PMID: 20096559
  33. 33.
    Jorgensen C, Sherman A, Chen GI, Pasculescu A, Poliakov A, Hsiung M, Larsen B, Wilkinson DG, Linding R, Pawson T (2009) Cell-specific information processing in segregating populations of eph receptor ephrin-expressing cells. Science (New York, NY) 326(5959):1502–1509, DOI 10.1126/science.1176615, URL, PMID: 20007894
  34. 34.
    Joughin BA, Cheung E, Karuturi RKM, Saez-Rodriguez J, Lauffenburger DA, Liu ET (2010) Cellular regulatory networks, systems biomedicine – Chapter 4. Academic Press, San Diego, pp 57–108, DOI 10.1016/B978-0-12-372550-9.00004-3, URL
  35. 35.
    Kauffman S (1969) Homeostasis and differentiation in random genetic control networks. Nature 224(5215):177–178, URL, PMID: 5343519
  36. 36.
    Kholodenko BN (2006) Cell-signalling dynamics in time and space. Nat Rev Mol Cell Biol 7(3):165–176, DOI 10.1038/nrm1838, URL, PMID: 16482094Google Scholar
  37. 37.
    Krueger M, Kratchmarova I, Blagoev B, Tseng Y, Kahn CR, Mann M (2008) Dissection of the insulin signaling pathway via quantitative phosphoproteomics. Proc Natl Acad Sci USA 105(7):2451–2456, DOI 10.1073/pnas.0711713105, URL, PMID: 18268350Google Scholar
  38. 38.
    Krutzik PO, Clutter MR, Trejo A, Nolan GP (2011) Fluorescent cell barcoding for multiplex flow cytometry. In: Robinson JP, Darzynkiewicz Z, Dobrucki J, Hyun WC, Nolan JP, Orfao A, Rabinovitch PS (eds) Current protocols in cytometry. John Wiley & Sons, Inc., Hoboken, NJ, USA, URL
  39. 39.
    Li P, Zhang C, Perkins EJ, Gong P, Deng Y (2007) Comparison of probabilistic boolean network and dynamic bayesian network approaches for inferring gene regulatory networks. BMC Bioinformatics 8 Suppl 7:S13, DOI 10.1186/1471-2105-8-S7-S13, URL, PMID: 18047712
  40. 40.
    Linding R, Jensen LJ, Ostheimer GJ, van Vugt MATM, Jorgensen C, Miron IM, Diella F, Colwill K, Taylor L, Elder K, Metalnikov P, Nguyen V, Pasculescu A, Jin J, Park JG, Samson LD, Woodgett JR, Russell RB, Bork P, Yaffe MB, Pawson T (2007) Systematic discovery of in vivo phosphorylation networks. Cell 129(7):1415–1426, DOI 10.1016/j.cell.2007.05.052, URL, PMID: 17570479Google Scholar
  41. 41.
    Malmstrm J, Lee H, Aebersold R (2007) Advances in proteomic workflows for systems biology. Curr Opin Biotechnol 18(4):378–384, DOI 10.1016/j.copbio.2007.07.005, URL, PMID: 17698335Google Scholar
  42. 42.
    Margolin AA, Nemenman I, Basso K, Wiggins C, Stolovitzky G, Favera RD, Califano A (2006) ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics 7 Suppl 1:S7, DOI 10.1186/1471-2105-7-S1-S7, URL, PMID: 16723010
  43. 43.
    Markowetz F (2010) How to understand the cell by breaking it: network analysis of gene perturbation screens. PLoS Comput Biol 6(2):e1000,655, DOI 10.1371/journal.pcbi.1000655, URL, PMID: 20195495
  44. 44.
    Markowetz F, Spang R (2007) Inferring cellular networks – A review. BMC Bioinformatics 8 Suppl 6:S5, DOI 10.1186/1471-2105-8-S6-S5, URL, PMID: 17903286
  45. 45.
    Matsuoka S, Ballif BA, Smogorzewska A, McDonald ER, Hurov KE, Luo J, Bakalarski CE, Zhao Z, Solimini N, Lerenthal Y, Shiloh Y, Gygi SP, Elledge SJ (2007) ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science (New York, NY) 316(5828):1160–1166, DOI 10.1126/science.1140321, URL, PMID: 17525332
  46. 46.
    Miller ML, Jensen LJ, Diella F, Jorgensen C, Tinti M, Li L, Hsiung M, Parker SA, Bordeaux J, Sicheritz-Ponten T, Olhovsky M, Pasculescu A, Alexander J, Knapp S, Blom N, Bork P, Li S, Cesareni G, Pawson T, Turk BE, Yaffe MB, Brunak S, Linding R (2008) Linear motif atlas for phosphorylation-dependent signaling. Sci Signal 1(35):ra2, DOI 10.1126/scisignal.1159433, URL, PMID: 18765831
  47. 47.
    Morris MK, Saez-Rodriguez J, Sorger PK, Lauffenburger DA (2010) Logic-based models for the analysis of cell signaling networks. Biochemistry 49(15):3216–3224, DOI 10.1021/bi902202q, URL, PMID: 20225868
  48. 48.
    Morris MK, Saez-Rodriguez J, Clarke DC, Sorger PK, Lauffenburger DA (2011) Training signaling pathway maps to biochemical data with constrained fuzzy logic: quantitative analysis of liver cell responses to inflammatory stimuli. PLoS Comput Biol 7(3):e1001,099, DOI 10.1371/journal.pcbi.1001099, URL
  49. 49.
    Mukherjee S, Speed TP (2008) Network inference using informative priors. Proc Natl Acad Sci 105(38):14,313–14,318, DOI 10.1073/pnas.0802272105, URL Google Scholar
  50. 50.
    Naegle KM, Gymrek M, Joughin BA, Wagner JP, Welsch RE, Yaffe MB, Lauffenburger DA, White FM (2010) PTMScout, a web resource for analysis of high throughput post-translational proteomics studies. Mol Cell Proteom MCP 9(11):2558–2570, DOI 10.1074/mcp.M110.001206, URL, PMID: 20631208
  51. 51.
    Nelander S, Wang W, Nilsson B, She Q, Pratilas C, Rosen N, Gennemark P, Sander C (2008) Models from experiments: combinatorial drug perturbations of cancer cells. Mol Syst Biol 4:216, DOI 10.1038/msb.2008.53, URL, PMID: 18766176
  52. 52.
    Nesvizhskii AI, Aebersold R (2005) Interpretation of shotgun proteomic data: the protein inference problem. Mol Cell Proteom MCP 4(10):1419–1440, DOI 10.1074/mcp.R500012-MCP200, URL, PMID: 16009968Google Scholar
  53. 53.
    Olsen JV, Mann M (2011) Effective representation and storage of mass Spectrometry-Based proteomic data sets for the scientific community. Sci Signal 4(160):pe7, DOI 10.1126/scisignal.2001839, URL;4/16%0/pe7Google Scholar
  54. 54.
    Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P, Mann M (2006) Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127(3):635–648, DOI 10.1016/j.cell.2006.09.026, URL, PMID: 17081983Google Scholar
  55. 55.
    Ong S, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteom 1(5):376 –386, DOI 10.1074/mcp.M200025-MCP200, URL
  56. 56.
    Picotti P, Bodenmiller B, Mueller LN, Domon B, Aebersold R (2009) Full dynamic range proteome analysis of s. cerevisiae by targeted proteomics. Cell 138(4):795–806, DOI 10.1016/j.cell.2009.05.051, URL, PMID: 19664813Google Scholar
  57. 57.
    Prill RJ, Marbach D, Saez-Rodriguez J, Sorger PK, Alexopoulos LG, Xue X, Clarke ND, Altan-Bonnet G, Stolovitzky G (2010) Towards a rigorous assessment of systems biology models: the DREAM3 challenges. PloS One 5(2):e9202, DOI 10.1371/journal.pone.0009202, URL, PMID: 20186320
  58. 58.
    Rosario AMD, White FM (2010) Quantifying oncogenic phosphotyrosine signaling networks through systems biology. Curr Opin Genet Dev 20(1):23–30, DOI 10.1016/j.gde.2009.12.005, URL, PMID: 20074929Google Scholar
  59. 59.
    Sachs K, Perez O, Pe’er D, Lauffenburger DA, Nolan GP (2005) Causal Protein-Signaling networks derived from multiparameter Single-Cell data. Science 308(5721):523 –529, DOI 10.1126/science.1105809, URL Google Scholar
  60. 60.
    Saez-Rodriguez J, Goldsipe A, Muhlich J, Alexopoulos LG, Millard B, Lauffenburger DA, Sorger PK (2008) Flexible informatics for linking experimental data to mathematical models via DataRail. Bioinformatics 24(6):840 –847, DOI 10.1093/bioinformatics/btn018, URL Google Scholar
  61. 61.
    Saez-Rodriguez J, Alexopoulos LG, Epperlein J, Samaga R, Lauffenburger DA, Klamt S, Sorger PK (2009) Discrete logic modelling as a means to link protein signalling networks with functional analysis of mammalian signal transduction. Mol Syst Biol 5:331, DOI 10.1038/msb.2009.87, URL, PMID: 19953085
  62. 62.
    Saez-Rodriguez J, Alexopoulos LG, Stolovitzky G (2011) Setting the standards for signal transduction research. Sci Signal 4(160):pe10, DOI 10.1126/scisignal.2001844, URL;4/16%0/pe10Google Scholar
  63. 63.
    Santos SDM, Verveer PJ, Bastiaens PIH (2007) Growth factor-induced MAPK network topology shapes erk response determining PC-12 cell fate. Nat Cell Biol 9(3):324–330, DOI 10.1038/ncb1543, URL, PMID: 17310240
  64. 64.
    Smith RD, Anderson GA, Lipton MS, Pasa-Tolic L, Shen Y, Conrads TP, Veenstra TD, Udseth HR (2002) An accurate mass tag strategy for quantitative and high-throughput proteome measurements. Proteomics 2(5):513–523, DOI 10.1002/1615-9861(200205)2:5⟨513::AID-PROT513⟩3.0.CO;2-W, URL, PMID: 11987125Google Scholar
  65. 65.
    Sneddon MW, Faeder JR, Emonet T (2011) Efficient modeling, simulation and coarse-graining of biological complexity with NFsim. Nat Meth 8(2):177–183, DOI 10.1038/nmeth.1546, URL, PMID: 21186362Google Scholar
  66. 66.
    Steen H, Mann M (2004) The ABC’s (and XYZ’s) of peptide sequencing. Nat Rev Mol Cell Biol 5(9):699–711, DOI 10.1038/nrm1468, URL, PMID: 15340378Google Scholar
  67. 67.
    Tan CSH, Jrgensen C, Linding R (2010) Roles of “junk phosphorylation” in modulating biomolecular association of phosphorylated proteins? Cell Cycle (Georgetown, Tex) 9(7):1276–1280, URL, PMID: 20234177
  68. 68.
    Tanner SD, Ornatsky O, Bandura DR, Baranov VI (2007) Multiplex bio-assay with inductively coupled plasma mass spectrometry: towards a massively multivariate single-cell technology. Spectrochim Acta B 62(3):188–195, DOI 10.1016/j.sab.2007.01.008, URL Scholar
  69. 69.
    Taylor CF, Field D, Sansone S, Aerts J, Apweiler R, Ashburner M, Ball CA, Binz P, Bogue M, Booth T, Brazma A, Brinkman RR, Clark AM, Deutsch EW, Fiehn O, Fostel J, Ghazal P, Gibson F, Gray T, Grimes G, Hancock JM, Hardy NW, Hermjakob H, Julian RK, Kane M, Kettner C, Kinsinger C, Kolker E, Kuiper M, Novere NL, Leebens-Mack J, Lewis SE, Lord P, Mallon A, Marthandan N, Masuya H, McNally R, Mehrle A, Morrison N, Orchard S, Quackenbush J, Reecy JM, Robertson DG, Rocca-Serra P, Rodriguez H, Rosenfelder H, Santoyo-Lopez J, Scheuermann RH, Schober D, Smith B, Snape J, Stoeckert CJ, Tipton K, Sterk P, Untergasser A, Vandesompele J, Wiemann S (2008) Promoting coherent minimum reporting guidelines for biological and biomedical investigations: the MIBBI project. Nat Biotechnol 26(8):889–896, DOI 10.1038/nbt.1411, URL Google Scholar
  70. 70.
    Thompson A, Schfer J, Kuhn K, Kienle S, Schwarz J, Schmidt G, Neumann T, Hamon C (2003) Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem 75(8):1895–1904, DOI 10.1021/ac0262560, URL
  71. 71.
    Vignali DA (2000) Multiplexed particle-based flow cytometric assays. J Immunol Meth 243(1–2):243–255, URL, PMID: 10986418
  72. 72.
    Vizcano JA, Ct R, Reisinger F, Foster JM, Mueller M, Rameseder J, Hermjakob H, Martens L (2009) A guide to the proteomics identifications database proteomics data repository. Proteomics 9(18):4276–4283, DOI 10.1002/pmic.200900402, URL, PMID: 19662629Google Scholar
  73. 73.
    Vogel C, de Sousa Abreu R, Ko D, Le S, Shapiro BA, Burns SC, Sandhu D, Boutz DR, Marcotte EM, Penalva LO (2010) Sequence signatures and mRNA concentration can explain two-thirds of protein abundance variation in a human cell line. Mol Syst Biol 6, DOI 10.1038/msb.2010.59, URL
  74. 74.
    Watterson S, Marshall S, Ghazal P (2008) Logic models of pathway biology. Drug Discov Today 13(9–10):447–456, DOI 10.1016/j.drudis.2008.03.019, URL, PMID: 18468563Google Scholar
  75. 75.
    Wolf-Yadlin A, Sevecka M, MacBeath G (2009) Dissecting protein function and signaling using protein microarrays. Curr Opin Chem Biol 13(4):398–405, DOI 10.1016/j.cbpa.2009.06.027, URL, PMID: 19660979Google Scholar
  76. 76.
    Wu F, Wang P, Zhang J, Young LC, Lai R, Li L (2010) Studies of phosphoproteomic changes induced by nucleophosmin-anaplastic lymphoma kinase (ALK) highlight deregulation of tumor necrosis factor (TNF)/Fas/TNF-related apoptosis-induced ligand signaling pathway in ALK-positive anaplastic large cell lymphoma. Mol Cell Proteom MCP 9(7):1616–1632, DOI 10.1074/mcp.M000153-MCP201, URL, PMID: 20393185

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.European Bioinformatics Institute (EMBL–EBI), Wellcome Trust Genome CampusCambridgeUK
  2. 2.EMBL–EBI and European Molecular Biology Laboratory (EMBL), Genome Biology UnitHeidelbergGermany

Personalised recommendations