Theoretical Aspects of Cellular Decision-Making and Information-Processing

  • Tetsuya J. KobayashiEmail author
  • Atsushi Kamimura
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 736)


Microscopic biological processes have extraordinary complexity and variety at the sub-cellular, intra-cellular, and multi-cellular levels. In dealing with such complex phenomena, conceptual and theoretical frameworks are crucial, which enable us to understand seemingly different intra- and inter-cellular phenomena from unified viewpoints. Decision-making is one such concept that has attracted much attention recently. Since a number of cellular behavior can be regarded as processes to make specific actions in response to external stimuli, decision-making can cover and has been used to explain a broad range of different cellular phenomena [Balázsi et al. (Cell 144(6):910, 2011), Zeng et al. (Cell 141(4):682, 2010)]. Decision-making is also closely related to cellular information-processing because appropriate decisions cannot be made without exploiting the information that the external stimuli contain. Efficiency of information transduction and processing by intra-cellular networks determines the amount of information obtained, which in turn limits the efficiency of subsequent decision-making. Furthermore, information-processing itself can serve as another concept that is crucial for understanding of other biological processes than decision-making. In this work, we review recent theoretical developments on cellular decision-making and information-processing by focusing on the relation between these two concepts.


Mutual Information Bayesian Inference Information Transmission Hedging Strategy Fitness Advantage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Bashar Md. Khayrul, Yoshihiro Morishita, and Ryo Yokota for fruitful discussions. This work was supported by the JST PRESTO program.


  1. 1.
    Muller-Hill B (1996) The lac operon: a short history of a genetic paradigm. Berlin, Walter de GruyterCrossRefGoogle Scholar
  2. 2.
    Vilar JMG, Guet CC, Leibler S (2003) Modeling network dynamics: the lac operon, a case study. J Cell Biol 161(3):471PubMedCrossRefGoogle Scholar
  3. 3.
    Ptashne M (1992) Genetic switch: phage lambda and higher organisms. Massachusetts, Blackwell PublishersGoogle Scholar
  4. 4.
    Acar M, Becskei A, van Oudenaarden A (2005) Enhancement of cellular memory by reducing stochastic transitions. Nature 435(7039):228PubMedCrossRefGoogle Scholar
  5. 5.
    Kalmar T, Lim C, Hayward P, Muñoz Descalzo S, Nichols J, Garcia-Ojalvo J, Martinez Arias A (2009), Regulated fluctuations in nanog expression mediate cell fate decisions in embryonic stem cells. PLoS Biol 7(7):e1000149PubMedCrossRefGoogle Scholar
  6. 6.
    Spencer SL, Gaudet S, Albeck JG, Burke JM, Sorger PK (2009) Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis. Nature 459(7245):428PubMedCrossRefGoogle Scholar
  7. 7.
    Balaban N, Merrin J, Chait R, Kowalik L, Leibler S (2004) Bacterial persistence as a phenotypic switch. Science 305(5690):1622PubMedCrossRefGoogle Scholar
  8. 8.
    Süel GM, Garcia-Ojalvo J, Liberman LM, Elowitz MB (2006) An excitable gene regulatory circuit induces transient cellular differentiation. Nature 440(7083):545PubMedCrossRefGoogle Scholar
  9. 9.
    Ben-Jacob E, Schultz D (2010) Bacteria determine fate by playing dice with controlled odds. Proc Natl Acad Sci USA 107(30):13197PubMedCrossRefGoogle Scholar
  10. 10.
    Johnston R Jr (2010) Stochastic mechanisms of cell fate specification that yield random or robust outcomes. Ann Rev Cell Dev Biol 26:689CrossRefGoogle Scholar
  11. 11.
    Kalisky T, Dekel E, Alon U (2007) Cost-benefit theory and optimal design of gene regulation functions. Phys Biol 4(4):229PubMedCrossRefGoogle Scholar
  12. 12.
    Jayaraman R (2008) Bacterial persistence: some new insights into an old phenomenon. J Biosci 33(5):795PubMedCrossRefGoogle Scholar
  13. 13.
    Dhar N, McKinney J (2007) Microbial phenotypic heterogeneity and antibiotic tolerance. Curr Opin Microbiol 10(1):30PubMedCrossRefGoogle Scholar
  14. 14.
    Donaldson-Matasci M (2008) Adaptation in a changing environment: phenotypic diversity in response to environmental uncertainty and information. Ph.D. thesis, University of WashingtonGoogle Scholar
  15. 15.
    Tanase-Nicola S, ten Wolde PR (2008) Regulatory control and the costs and benefits of biochemical noise. PLoS Comput Biol 4(8):e1000125PubMedCrossRefGoogle Scholar
  16. 16.
    Fraser D, Kaern M (2009) A chance at survival: gene expression noise and phenotypic diversification strategies. Mol Microbiol 71(6):1333PubMedCrossRefGoogle Scholar
  17. 17.
    Eldar A, Elowitz MB (2010) Functional roles for noise in genetic circuits. Nature 467(7312):167PubMedCrossRefGoogle Scholar
  18. 18.
    Kaern M, Elston TC, Blake WJ, Collins JJ (2005) Stochasticity in gene expression: from theories to phenotypes. Nat Rev Genet 6(6):451PubMedCrossRefGoogle Scholar
  19. 19.
    Samoilov MS, Price G, Arkin AP (2006) From fluctuations to phenotypes: the physiology of noise. Science’s STKE 2006(366):re17Google Scholar
  20. 20.
    Raj A, van Oudenaarden A (2008) Nature, nurture, or chance: stochastic gene expression and its consequences. Cell 135(2):216PubMedCrossRefGoogle Scholar
  21. 21.
    Shahrezaei V, Swain PS (2008) The stochastic nature of biochemical networks. Curr Opin Biotechnol 19(4):369PubMedCrossRefGoogle Scholar
  22. 22.
    Levins R (1968) Evolution in changing environments: some theoretical explorations. New Jersey, Princeton University PressGoogle Scholar
  23. 23.
    Haccou P, Iwasa Y (1995) Optimal mixed strategies in stochastic environments. Theor Population Biol 47(2):212CrossRefGoogle Scholar
  24. 24.
    Berger JO (1993) Statistical decision theory and Bayesian analysis (Springer Series in Statistics). New York, SpringerGoogle Scholar
  25. 25.
    Sasaki A, Ellner S (1995) The evolutionarily stable phenotype distribution in a random environment. Evolution 49(2):337CrossRefGoogle Scholar
  26. 26.
    Kussell E, Leibler S (2005) Phenotypic diversity, population growth, and information in fluctuating environments. Science 309(5743):2075PubMedCrossRefGoogle Scholar
  27. 27.
    de Jong IG, Haccou P, Kuipers OP (2011) Bet hedging or not? A guide to proper classification of microbial survival strategies. BioEssays 33(3):215PubMedCrossRefGoogle Scholar
  28. 28.
    Rivoire O, Leibler S (2011) The value of information for populations in varying environments. J Stat Phys 142(6):1124CrossRefGoogle Scholar
  29. 29.
    Zhang XP, Liu F, Cheng Z, Wang W (2009) Cell fate decision mediated by p53 pulses. Proc Natl Acad Sci USA 106(30):12245PubMedCrossRefGoogle Scholar
  30. 30.
    Weinberger LS, Burnett JC, Toettcher JE, Arkin AP, Schaffer DV (2005) Stochastic gene expression in a lentiviral positive-feedback loop: HIV-1 Tat fluctuations drive phenotypic diversity. Cell 122(2):169PubMedCrossRefGoogle Scholar
  31. 31.
    Singh A (2009) Noise in viral gene expression as a molecular switch for viral latency. Curr Opin Microbiol 12(4):460PubMedCrossRefGoogle Scholar
  32. 32.
    Maheshri N, O’Shea EK (2007) Living with noisy genes: how cells function reliably with inherent variability in gene expression. Ann Rev Biophys Biomol Struct 36:413CrossRefGoogle Scholar
  33. 33.
    Arias AM, Hayward P (2006) Filtering transcriptional noise during development: concepts and mechanisms. Nat Rev Genet 7(1):34PubMedCrossRefGoogle Scholar
  34. 34.
    Tkačik G, Walczak AM (2011) Information transmission in genetic regulatory networks: a review. J Phys Condens Matt 23(15):153102CrossRefGoogle Scholar
  35. 35.
    Samoilov M, Plyasunov S, Arkin A (2005) Stochastic amplification and signaling in enzymatic futile cycles through noise-induced bistability with oscillations. Proc Natl Acad Sci USA 102(7):2310PubMedCrossRefGoogle Scholar
  36. 36.
    Morishita Y, Kobayashi TJ, Aihara K (2006) An optimal number of molecules for signal amplification and discrimination in a chemical cascade. Biophys J 91(6):2072PubMedCrossRefGoogle Scholar
  37. 37.
    Gomez-Uribe C, Verghese GC, Mirny La (2007) Operating regimes of signaling cycles: statics, dynamics, and noise filtering. PLoS Comput Biol 3(12):e246PubMedCrossRefGoogle Scholar
  38. 38.
    Bialek W, Setayeshgar S (2005) Physical limits to biochemical signaling. Proc Natl Acad Sci USA 102(29):10040PubMedCrossRefGoogle Scholar
  39. 39.
    Ueda M, Shibata T (2007) Stochastic signal processing and transduction in chemotactic response of eukaryotic cells. Biophys J 93:11PubMedCrossRefGoogle Scholar
  40. 40.
    Shibata T, Ueda M (2008) Noise generation, amplification and propagation in chemotactic signaling systems of living cells. Biosystems 93(1–2):126PubMedCrossRefGoogle Scholar
  41. 41.
    Endres RG, Wingreen NS (2008) Accuracy of direct gradient sensing by single cells. Proc Natl Acad Sci USA 105(41):15749PubMedCrossRefGoogle Scholar
  42. 42.
    Rappel WJ, Levine H (2008) Receptor noise and directional sensing in eukaryotic chemotaxis. Phys Rev Lett 100(22):6CrossRefGoogle Scholar
  43. 43.
    Rappel WJ, Levine H (2008) Receptor noise limitations on chemotactic sensing. Proc Natl Acad Sci USA 105(49):19270PubMedCrossRefGoogle Scholar
  44. 44.
    Tkačik G, Walczak A, Bialek W (2009) Optimizing information flow in small genetic networks. Phys Rev E 80(3):031920CrossRefGoogle Scholar
  45. 45.
    Walczak AM, Tkačik G, Bialek W (2010) Optimizing information flow in small genetic networks. II. Feed-forward interactions. Phys Rev E 81(4):1Google Scholar
  46. 46.
    Gregor T, Tank DW, Wieschaus EF, Bialek W (2007) Probing the Limits to Positional Information. Cell 130(1):153–164PubMedCrossRefGoogle Scholar
  47. 47.
    Tkacik G, Callan CG, Bialek W (2008) Information flow and optimization in transcriptional regulation. Proc Natl Acad Sci USA 105(34):12265PubMedCrossRefGoogle Scholar
  48. 48.
    Morishita Y, Iwasa Y (2008) Optimal placement of multiple morphogen sources. Phys Rev E 77(4):1CrossRefGoogle Scholar
  49. 49.
    Brandman O, Ferrell JE, Li R, Meyer T (2005) Interlinked fast and slow positive feedback loops drive reliable cell decisions. Science (New York, NY) 310(5747):496Google Scholar
  50. 50.
    Brandman O, Meyer T (2008) Feedback loops shape cellular signals in space and time. Science (New York, NY) 322(5900):390Google Scholar
  51. 51.
    Gardiner C (2004) Handbook of stochastic methods: for physics, chemistry and the natural sciences, 3rd edn. Berlin Heidelberg New York, Springer-VerlagGoogle Scholar
  52. 52.
    van Kampen N (2007) Stochastic processes in physics and chemistry, 3rd edn. (North-Holland Personal Library) North HollandGoogle Scholar
  53. 53.
    Cover TM, Thomas JA (2006) Elements of information theory, 2nd edn. USA, Wiley-InterscienceGoogle Scholar
  54. 54.
    Ziv E, Nemenman I, Wiggins CH (2007) Optimal signal processing in small stochastic biochemical networks. PloS One 2(10):e1077PubMedCrossRefGoogle Scholar
  55. 55.
    Levine J, Kueh HY, Mirny L (2007) Intrinsic fluctuations, robustness, and tunability in signaling cycles. Biophys J 92(12):4473PubMedCrossRefGoogle Scholar
  56. 56.
    Mehta P, Goyal S, Long T, Bassler BL, Wingreen NS (2009) Information processing and signal integration in bacterial quorum sensing. Mol Syst Biol 5(325):325PubMedGoogle Scholar
  57. 57.
    Tostevin F, Ten Wolde P (2009) Mutual information between input and output trajectories of biochemical networks. Phys Rev Lett 102(21):218101PubMedCrossRefGoogle Scholar
  58. 58.
    Tostevin F, Ten Wolde P (2010) Mutual information in time-varying biochemical systems. Phys Rev E 81(6):061917CrossRefGoogle Scholar
  59. 59.
    de Ronde W, Tostevin F, Ten Wolde P (2010) Effect of feedback on the fidelity of information transmission of time-varying signals. Phys Rev E 82(3):031914CrossRefGoogle Scholar
  60. 60.
    Libby E, Perkins TJ, Swain PS (2007) Noisy information processing through transcriptional regulation. Proc Natl Acad Sci USA 104(17):7151PubMedCrossRefGoogle Scholar
  61. 61.
    Houillon A, Bessière P, Droulez J (2010) The probabilistic cell: Implementation of a probabilistic inference by the biochemical mechanisms of phototransduction. Acta Biotheor 58(2–3):103–120PubMedCrossRefGoogle Scholar
  62. 62.
    Mortimer D, Feldner J, Vaughan T, Vetter I, Pujic Z, Rosoff WJ, Burrage K, Dayan P, Richards LJ, Goodhill GJ (2009) Bayesian model predicts the response of axons to molecular gradients. Proc Natl Acad Sci USA 106(25):10296PubMedCrossRefGoogle Scholar
  63. 63.
    Mortimer D, Dayan P, Burrage K, Goodhill GJ (2010) Optimizing chemotaxis by measuring unbound – bound transitions. Phys D 239:477CrossRefGoogle Scholar
  64. 64.
    Mortimer D, Dayan P, Burrage K, Goodhill GJ (2011) Bayes-optimal chemotaxis. Neural Comput 23(2):336–373PubMedCrossRefGoogle Scholar
  65. 65.
    Oaten A (1977) Optimal foraging in patches: a case for stochasticity. Theor Population Biol 12(3):263CrossRefGoogle Scholar
  66. 66.
    Iwasa Y, Higashi M, Yamamura N (1981) Prey distribution as a factor determining the choice of optimal foraging strategy. Am Naturalist 117(5):710CrossRefGoogle Scholar
  67. 67.
    McNamara JM, Green RF, Olsson O (2006) Bayes’ theorem and its applications in animal behaviour. Oikos 112(2):243CrossRefGoogle Scholar
  68. 68.
    Knill D (1996) Perception as Bayesian inference. Berlin Heidelberg, Cambridge University PressGoogle Scholar
  69. 69.
    Doya K, Ishii S, Pouget A, Rao RP (eds.) (2006) Bayesian brain: probabilistic approaches to neural coding. The MIT PressGoogle Scholar
  70. 70.
    Körding KP, Wolpert DM (2006) Bayesian decision theory in sensorimotor control. Trends Cogn Sci 10(7):319PubMedCrossRefGoogle Scholar
  71. 71.
    Kobayashi TJ (2010) Implementation of dynamic Bayesian decision making by intracellular kinetics. Phys Rev Lett 104(22):228104PubMedCrossRefGoogle Scholar
  72. 72.
    Kobayashi TJ, Kamimura A (2011) Dynamics of intracellular information decoding. Phys Biol 8(5):055007PubMedCrossRefGoogle Scholar
  73. 73.
    Kobayashi TJ, Connection between noise-induced symmetry breaking and an information-decoding function for intracellular networks. Phys Rev Lett 106:228101Google Scholar
  74. 74.
    Donaldson-Matasci MC, Bergstrom CT, Lachmann M (2010) The fitness value of information. Oikos 119(2):219Google Scholar
  75. 75.
    Taylor S, Tishby N, Bialek W (2007) Information and fitness. Arxiv preprint arXiv:0712.4382Google Scholar
  76. 76.
    Paulsson J (2004) Summing up the noise in gene networks. Nature 427(6973):415PubMedCrossRefGoogle Scholar
  77. 77.
    Shibata T (2005) Noisy signal amplification in ultrasensitive signal transduction. Proc Natl Acad Sci USA 102(2):331PubMedCrossRefGoogle Scholar
  78. 78.
    Lestas I, Vinnicombe G, Paulsson J (2010) Fundamental limits on the suppression of molecular fluctuations. Nature 467(7312):174PubMedCrossRefGoogle Scholar
  79. 79.
    Bennett MR, Hasty J (2009) Microfluidic devices for measuring gene network dynamics in single cells. Nat Rev Genet 10(9):628PubMedCrossRefGoogle Scholar
  80. 80.
    Muzzey D, van Oudenaarden A (2009) Quantitative time-lapse fluorescence microscopy in single cells. Ann Rev Cell Dev Biol 25:301CrossRefGoogle Scholar
  81. 81.
    Leibler S, Kussell E (2010) Individual histories and selection in heterogeneous populations. Proc Natl Acad Sci USA 107(29):13183–13188PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Institute of Industrial ScienceThe University of TokyoTokyoJapan

Personalised recommendations