Skip to main content

Scleraxis: A New Regulator of Extracellular Matrix Formation

  • Chapter
  • First Online:
Book cover Genes and Cardiovascular Function

Abstract

Scleraxis is a transcription factor that appears to play a key role in both the development of extracellular matrix-rich tissues such as tendons, and in the synthesis of matrix itself by regulating matrix gene expression. Our understanding of how scleraxis works, how its activity and expression are regulated, and the specific role it plays in disease is largely incomplete. However, enough data have accumulated to date to identify scleraxis as a critical factor in tendon formation, and ongoing studies in our laboratory have implicated scleraxis as a previously unappreciated driver of cardiac fibrosis due to its role in regulating type I collagen formation. Scleraxis may in fact behave as a master regulator of fibrillar collagen formation in multiple tissues, and the development of therapies aimed at reducing ­scleraxis function may provide a novel means to control tissue fibrosis in multiple pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schweitzer R, Chyung JH, Murtaugh LC, et al. Analysis of the tendon cell fate using Scleraxis, a specific marker for tendons and ligaments. Development. 2001;128:3855–66.

    PubMed  CAS  Google Scholar 

  2. Brent AE, Schweitzer R, Tabin CJ. A somitic compartment of tendon progenitors. Cell. 2003;113:235–48.

    Article  PubMed  CAS  Google Scholar 

  3. Cserjesi P, Brown D, Ligon KL, et al. Scleraxis: a basic helix-loop-helix protein that prefigures skeletal formation during mouse embryogenesis. Development. 1995;121:1099–110.

    PubMed  CAS  Google Scholar 

  4. Espira L, Lamoureux L, Jones SC, et al. The basic helix-loop-helix transcription factor scleraxis regulates fibroblast collagen synthesis. J Mol Cell Cardiol. 2009;47:188–95.

    Article  PubMed  CAS  Google Scholar 

  5. Kadesch T. Consequences of heteromeric interactions among helix-loop-helix proteins. Cell Growth Differ. 1993;4:49–55.

    PubMed  CAS  Google Scholar 

  6. Jan YN, Jan LY. Functional gene cassettes in development. Proc Natl Acad Sci USA. 1993;90:8305–7.

    Article  PubMed  CAS  Google Scholar 

  7. Olson EN, Klein WH. bHLH factors in muscle development: dead lines and commitments, what to leave in and what to leave out. Genes Dev. 1994;8:1–8.

    Article  PubMed  CAS  Google Scholar 

  8. Goldfarb AN, Lewandowska K. Nuclear redirection of a cytoplasmic helix-loop-helix protein via heterodimerization with a nuclear localizing partner. Exp Cell Res. 1994;214:481–5.

    Article  PubMed  CAS  Google Scholar 

  9. Littlewood TD, Evan GI. Helix-loop-helix transcription factors. 3rd ed. USA: Oxford University Press; 1998.

    Google Scholar 

  10. Chaudhary J, Skinner MK. Basic helix-loop-helix proteins can act at the E-box within the serum response element of the c-fos promoter to influence hormone-induced promoter activation in Sertoli cells. Mol Endocrinol. 1999;13:774–86.

    Article  PubMed  CAS  Google Scholar 

  11. Ephrussi A, Church GM, Tonegawa S, et al. B ­lineage–specific interactions of an immunoglobulin enhancer with cellular factors in vivo. Science. 1985;227:134–40.

    Article  PubMed  CAS  Google Scholar 

  12. Molkentin JD, Olson EN. Combinatorial control of muscle development by basic helix-loop-helix and MADS-box transcription factors. Proc Natl Acad Sci USA. 1996;93:9366–73.

    Article  PubMed  CAS  Google Scholar 

  13. Murre C, McCaw PS, Vaessin H, et al. Interactions between heterologous helix-loop-helix proteins generate complexes that bind specifically to a common DNA sequence. Cell. 1989;58:537–44.

    Article  PubMed  CAS  Google Scholar 

  14. Carlberg AL, Tuan RS, Hall DJ. Regulation of scleraxis function by interaction with the bHLH protein E47. Mol Cell Biol Res Commun. 2000;3:82–6.

    Article  PubMed  CAS  Google Scholar 

  15. Liu Y, Watanabe H, Nifuji A, et al. Overexpression of a single helix-loop-helix-type transcription factor, scleraxis, enhances aggrecan gene expression in osteoblastic osteosarcoma ROS17/2.8 cells. J Biol Chem. 1997;272:29880–5.

    Article  PubMed  CAS  Google Scholar 

  16. Muir T, Wilson-Rawls J, Stevens JD, et al. Integration of CREB and bHLH transcriptional signaling pathways through direct heterodimerization of the ­proteins: role in muscle and testis development. Mol Reprod Dev. 2008;75:1637–52.

    Article  PubMed  CAS  Google Scholar 

  17. Liu Y, Cserjesi P, Nifuji A, Olson EN, et al. Sclerotome-related helix-loop-helix type transcription factor (scleraxis) mRNA is expressed in osteoblasts and its level is enhanced by type-beta transforming growth factor. J Endocrinol. 1996;151:491–9.

    Article  PubMed  CAS  Google Scholar 

  18. Muir T, Sadler-Riggleman I, Skinner MK. Role of the basic helix-loop-helix transcription factor, scleraxis, in the regulation of Sertoli cell function and differentiation. Mol Endocrinol. 2005;19:2164–74.

    Article  PubMed  CAS  Google Scholar 

  19. Smith TG, Sweetman D, Patterson M, et al. Feedback interactions between MKP3 and ERK MAP kinase control scleraxis expression and the specification of rib progenitors in the developing chick somite. Development. 2005;132:1305–14.

    Article  PubMed  CAS  Google Scholar 

  20. Brent AE, Tabin CJ. FGF acts directly on the somitic tendon progenitors through the Ets transcription factors Pea3 and Erm to regulate scleraxis expression. Development. 2004;131:3885–96.

    Article  PubMed  CAS  Google Scholar 

  21. Zhao B, Etter L, Hinton Jr RB, et al. BMP and FGF regulatory pathways in semilunar valve precursor cells. Dev Dyn. 2007;236:971–80.

    Article  PubMed  CAS  Google Scholar 

  22. Edom-Vovard F, Schuler B, Bonnin MA, Teillet MA, Duprez D. Fgf4 positively regulates scleraxis and tenascin expression in chick limb tendons. Dev Biol. 2002;247:351–66.

    Article  PubMed  CAS  Google Scholar 

  23. Levay AK, Peacock JD, Lu Y, et al. Scleraxis is required for cell lineage differentiation and extracellular matrix remodeling during murine heart valve formation in vivo. Circ Res. 2008;103:948–56.

    Article  PubMed  CAS  Google Scholar 

  24. Brown D, Wagner D, Li X, Richardson JA, et al. Dual role of the basic helix-loop-helix transcription factor scleraxis in mesoderm formation and chondrogenesis during mouse embryogenesis. Development. 1999;126:4317–29.

    PubMed  CAS  Google Scholar 

  25. Lincoln J, Alfieri CM, Yutzey KE. Development of heart valve leaflets and supporting apparatus in chicken and mouse embryos. Dev Dyn. 2004;230:239–50.

    Article  PubMed  CAS  Google Scholar 

  26. Dubrulle J, Pourquie O. Welcome to syndetome: a new somitic compartment. Dev Cell. 2003;4:611–12.

    Article  PubMed  CAS  Google Scholar 

  27. Asou Y, Nifuji A, Tsuji K, et al. Coordinated expression of scleraxis and Sox9 genes during embryonic development of tendons and cartilage. J Orthop Res. 2002;20:827–33.

    Article  PubMed  CAS  Google Scholar 

  28. Shukunami C, Takimoto A, Oro M, et al. Scleraxis positively regulates the expression of tenomodulin, a differentiation marker of tenocytes. Dev Biol. 2006;298:234–47.

    Article  PubMed  CAS  Google Scholar 

  29. zur Nieden NI, Kempka G, Rancourt DE, et al. Induction of chondro-, osteo- and adipogenesis in embryonic stem cells by bone morphogenetic protein-2: effect of cofactors on differentiating lineages. BMC Dev Biol. 2005;5:1.

    Article  PubMed  Google Scholar 

  30. Furumatsu T, Shukunami C, Amemiya-Kudo M, Shimano H, Ozaki T. Scleraxis and E47 cooperatively regulate the Sox9-dependent transcription. Int J Biochem Cell Biol. 2010;42:148–56.

    Article  PubMed  CAS  Google Scholar 

  31. Mendias CL, Bakhurin KI, Faulkner JA. Tendons of myostatin-deficient mice are small, brittle, and hypocellular. Proc Natl Acad Sci USA. 2008;105:388–93.

    Article  PubMed  CAS  Google Scholar 

  32. Watanabe H, Kimata K, Line S, et al. Mouse cartilage matrix deficiency (cmd) caused by a 7 bp deletion in the aggrecan gene. Nat Genet. 1994;7:154–7.

    Article  PubMed  CAS  Google Scholar 

  33. Salingcarnboriboon R, Yoshitake H, Tsuji K, et al. Establishment of tendon-derived cell lines exhibiting pluripotent mesenchymal stem cell-like property. Exp Cell Res. 2003;287:289–300.

    Article  PubMed  CAS  Google Scholar 

  34. Lejard V, Brideau G, Blais F, et al. Scleraxis and NFATc regulate the expression of the pro-alpha1(I) collagen gene in tendon fibroblasts. J Biol Chem. 2007;282:17665–75.

    Article  PubMed  CAS  Google Scholar 

  35. Strezoska Z, Pestov DG, Lau LF. Functional inactivation of the mouse nucleolar protein Bop1 inhibits multiple steps in pre-rRNA processing and blocks cell cycle progression. J Biol Chem. 2002;277:29617–25.

    Article  PubMed  CAS  Google Scholar 

  36. Murchison ND, Price BA, Conner DA, et al. Regulation of tendon differentiation by scleraxis ­distinguishes force-transmitting tendons from ­muscle-anchoring tendons. Development. 2007;134:2697–708.

    Article  PubMed  CAS  Google Scholar 

  37. Kannus P. Structure of the tendon connective tissue. Scand J Med Sci Sports. 2000;10:312–20.

    Article  PubMed  CAS  Google Scholar 

  38. Liu Q, Xie H, Li WY, et al. Expression of Scleraxis in human periodontal ligament cells and gingival ­fibroblasts. Zhonghua Kou Qiang Yi Xue Za Zhi. 2006;41:556–8.

    PubMed  CAS  Google Scholar 

  39. Shi S, Bartold PM, Miura M, et al. The efficacy of mesenchymal stem cells to regenerate and repair dental structures. Orthod Craniofac Res. 2005;8:191–9.

    Article  PubMed  CAS  Google Scholar 

  40. Tomokiyo A, Maeda H, Fujii S, et al. Development of a multipotent clonal human periodontal ligament cell line. Differentiation. 2008;76:337–47.

    Article  PubMed  CAS  Google Scholar 

  41. Yokoi T, Saito M, Kiyono T, et al. Establishment of immortalized dental follicle cells for generating periodontal ligament in vivo. Cell Tissue Res. 2007;327:301–11.

    Article  PubMed  CAS  Google Scholar 

  42. Fujii S, Maeda H, Wada N, et al. Investigating a clonal human periodontal ligament progenitor/stem cell line in vitro and in vivo. J Cell Physiol. 2008;215:743–9.

    Article  PubMed  CAS  Google Scholar 

  43. Yuan YD, Miao S, Xie H. Effect of high glucose on the expression of transcription factor Scleraxis in periodontal ligament cells in vitro. Zhonghua Kou Qiang Yi Xue Za Zhi. 2008;43:668–70.

    PubMed  CAS  Google Scholar 

  44. Itaya T, Kagami H, Okada K, et al. Characteristic changes of periodontal ligament-derived cells during passage. J Periodontal Res. 2009;44:425–33.

    Article  PubMed  CAS  Google Scholar 

  45. Callewaert B, Malfait F, Loeys B, et al. Ehlers-Danlos syndromes and Marfan syndrome. Best Pract Res Clin Rheumatol. 2008;22:165–89.

    Article  PubMed  CAS  Google Scholar 

  46. Yeghiazaryan K, Turhani-Schatzmann D, Labudova O, et al. Downregulation of the transcription factor scleraxis in brain of patients with Down syndrome. J Neural Transm Suppl. 1999;57:305–14.

    PubMed  CAS  Google Scholar 

  47. Scott A, Sampaio A, Abraham T, et al. Scleraxis expression is coordinately regulated in a murine model of patellar tendon injury. J Orthop Res. 2011;29:289–96.

    Article  PubMed  Google Scholar 

  48. Yeh LC, Tsai AD, Lee JC. Bone morphogenetic protein-7 regulates differentially the mRNA expression of bone morphogenetic proteins and their receptors in rat achilles and patellar tendon cell cultures. J Cell Biochem. 2008;104:2107–22.

    Article  PubMed  CAS  Google Scholar 

  49. Espira L, Czubryt MP. Emerging concepts in cardiac matrix biology. Can J Physiol Pharmacol. 2009;87:996–1008.

    Article  PubMed  CAS  Google Scholar 

  50. Czubryt MP, McAnally J, Fishman GI, et al. Regulation of peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1 alpha ) and mitochondrial function by MEF2 and HDAC5. Proc Natl Acad Sci USA. 2003;100:1711–16.

    Article  PubMed  CAS  Google Scholar 

  51. Naitoh M, Kubota H, Ikeda M, et al. Gene expression in human keloids is altered from dermal to chondrocytic and osteogenic lineage. Genes Cells. 2005;10:1081–91.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael P. Czubryt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bagchi, R.A., Czubryt, M.P. (2011). Scleraxis: A New Regulator of Extracellular Matrix Formation. In: Ostadal, B., Nagano, M., Dhalla, N. (eds) Genes and Cardiovascular Function. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7207-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7207-1_6

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-7206-4

  • Online ISBN: 978-1-4419-7207-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics