Skip to main content

The E2F Pathway in Cardiac Development and Disease

  • Chapter
  • First Online:
Genes and Cardiovascular Function

Abstract

Regulation of the cardiac cell cycle is an important and unique process in myocardial development. During embryonic growth cardiomyocytes rapidly proliferate, but shortly after birth they enter a final round of the cell cycle after which they permanently withdraw and cardiac growth depends on physiological hypertrophy. When the heart becomes stressed, it undergoes pathological hypertrophy to compensate for increased load on the heart. This process appears to involve the induction of genes involved in regulating the fetal gene program as well as the cell cycle which is largely controlled by the E2F family of transcription factors. In this review we summarize the current understanding of the E2F pathway and its contribution to normal and pathological cardiac development and growth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pasumarthi KBS, Field LJ. Cardiomyocyte cell cycle regulation. Circ Res. 2002;90:1044–54.

    Article  PubMed  CAS  Google Scholar 

  2. Frey N, Olson EN. Cardiac hypertrophy: the good, the bad, and the ugly. Annu Rev Physiol. 2003;65:45–79.

    Article  PubMed  CAS  Google Scholar 

  3. Li JM, Poolman RA, Brooks G. Role of G1 phase cyclins and cyclin-dependent kinases during cardiomyocyte hypertrophic growth in rats. J Phys. 1998;275:H814–22.

    CAS  Google Scholar 

  4. Ahuga P, Sdek P, Maclellan R. Cardiac myocyte cell cycle control in development, disease, and regeneration. Physiol Rev. 2007;87:521–44.

    Article  Google Scholar 

  5. Sherr CJ. G1 phase progression: cycling on cue. Cell. 1994;79:551–5.

    Article  PubMed  CAS  Google Scholar 

  6. Sherr CJ, Roberts JM. Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev. 1995;9:149–1163.

    Article  Google Scholar 

  7. Lim JM, Brooks G. Downregulation of cyclin dependant kinase inhibitors p21 and p27 in pressure-overload hypertrophy. Am J Physiol Heart Circ Physiol. 1997;273:H1358–67.

    Google Scholar 

  8. Berthet C, Klarmann KD, Hilton MB, et al. Combined loss of Cdk2 and Cdk4 results in embryonic lethality and Rb hypophosphorylation. Dev Cell. 2006;10:563–73.

    Article  PubMed  CAS  Google Scholar 

  9. Soonpa MH, Koh GY, Pajak L, et al. Cyclin D1 overexpression promotes cardiomyocyte DNA synthesis and multinucleation in transgenic mice. J Clin Invest. 1997;99:2644–54.

    Article  Google Scholar 

  10. Liao HS, Kang PM, Nagashima H, et al. Cardiac-specific overexpression of cyclin- dependent kinase 2 increases smaller mononuclear cardiomyocytes. Circ Res. 2001;88:443.

    PubMed  CAS  Google Scholar 

  11. Ishida S, Huang E, Zuzan H, et al. Role for E2F in control of both DNA replication and mitotic functions as revealed from DNA microarray analysis. Mol Cell Biol. 2001;21:4684–99.

    Article  PubMed  CAS  Google Scholar 

  12. Muller H, Bracken A, Vernell R, et al. E2Fs regulate the expression of genes involved in differentiation, development, proliferation, and apoptosis. Genes Dev. 2008;15:267–85.

    Article  Google Scholar 

  13. Ren B, Cam H, Takahashi Y, et al. E2F integrates cell cycle progression with DNA repair, replication, and G(2)/M checkpoints. Genes Dev. 2002;16:245–56.

    Article  PubMed  CAS  Google Scholar 

  14. Tao Y, Kasszatly RF, Cress WD, et al. Subunit composition determines E2F DNA binding site specificity. Mol Cell Biol. 1997;17:6994–7007.

    PubMed  CAS  Google Scholar 

  15. Helin K, Wu CL, Fattaey AR, et al. Heterodimerization of the transcription factors E2F-1 and DP-1 leads to cooperative trans-activation. Genes Dev. 1993;7:1850–61.

    Article  PubMed  CAS  Google Scholar 

  16. Di Stefano L, Rugaard Jensen M, Helin K. E2F7, a novel E2F featuring DP-independent repression of a subset of E2F-regulated genes. EMBO J. 2003;22:6289–98.

    Article  PubMed  Google Scholar 

  17. Baidehi M, Jing L, de Bruin A, et al. Cloning and characterization of mouse E2F8, a novel mammalian E2F family member capable of blocking cellular proliferation. J Biol Chem. 2005;280:18211–20.

    Google Scholar 

  18. Johnson DG, Schneider-Broussard R. Identification of E2F-3B, an alternative form of E2F-3 lacking a conserved N-terminal region. Front Biosci. 1998;3:447–58.

    Google Scholar 

  19. Flemington EK, Speck SH, Kaelin Jr WG. E2F-1 mediated transactivation is inhibited by complex formation with the retinoblastoma susceptibility gene product. Proc Natl Acad Sci USA. 1993;90:6914–8.

    Article  PubMed  CAS  Google Scholar 

  20. Kitagawa M, Higashi H, Suzuki-Takahashi I, et al. Phosphorylation of E2F-1 by cyclin A-cdk2. Oncogene. 1995;10:229–36.

    PubMed  CAS  Google Scholar 

  21. Krek W, Ewen ME, Shirodkar S, et al. Negative regulation of the growth-promoting transcription factor E2F-1 by a stably bound cyclin-A dependant protein kinase. Cell. 1994;78:161–72.

    Article  PubMed  CAS  Google Scholar 

  22. Takahashi Y, Rayman J, Dynlacht B. Analysis of promoter binding by the E2F and pRB families in vivo: distinct E2F proteins mediate activation and repression. Genes Dev. 2000;14:804–16.

    PubMed  CAS  Google Scholar 

  23. Mariconti L, Pellegrini B, Cantoni R, et al. The E2F family of transcription factors from Arabidopsis thaliana. Novel and conserved components of the retinoblastoma/E2F pathway in plants. J Biol Chem. 2002;277:9911–19.

    Article  PubMed  CAS  Google Scholar 

  24. Trimarchi JM, Fairchild B, Wen J, et al. The E2F6 transcription factor is a component of the mammalian Bmi1-containing polycomb complex. Proc Natl Acad Sci USA. 2001;98:1519–24.

    Article  PubMed  CAS  Google Scholar 

  25. Attwooll C, Oddi S, Cartwright P, et al. A novel repressive E2F6 complex containing the polycomb group protein, EPC1, that interacts with EZH2 in a proliferation-specific manner. J Biol Chem. 2005;280:1199–208.

    Article  PubMed  CAS  Google Scholar 

  26. Ohtani K, Nevins JR. Functional properties of a Drosophila homolog of the E2F1 gene. Mol Cell Biol. 1994;14:1603–12.

    PubMed  CAS  Google Scholar 

  27. Ceol C, Horvitz H. dpl-1 DP and efl-1 E2F act with lin-35 Rb to antagonize ras signaling in C. elegans vulval development. Mol Cell. 2001;7:461–73.

    Article  PubMed  CAS  Google Scholar 

  28. Ramirrez P, Xie Q, Boniotti M, et al. The cloning of plant E2F, a retinoblastoma-binding protein, reveals unique and conserved features with animal G(1)/S regulators. Nucleic Acids Res. 1999;27:3527–33.

    Article  Google Scholar 

  29. Lees JA, Saito M, Vidal M, et al. The retinoblastoma protein binds to an E2F family of transcription factors. Mol Cell Biol. 1993;13:7813–25.

    PubMed  CAS  Google Scholar 

  30. Moberg K, Starz MA, Lees JA. E2F-4 switches from p130 to p107 and pRb in response to cell cycle reentry. Mol Cell Biol. 1996;16:1436–49.

    PubMed  CAS  Google Scholar 

  31. Ginsberg D, Vairo G, Chittenden T, et al. E2F-4, a new member of the E2F transcription factor family, interacts with p107. Genes Dev. 1994;8:2665–79.

    Article  PubMed  CAS  Google Scholar 

  32. Brehm A, Miska EA, McCance DJ, et al. Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature. 1998;391:597–601.

    Article  PubMed  CAS  Google Scholar 

  33. Ferreira R, Magnaghi-Jaulin L, Robin P, et al. The three members of the pocket proteins family share the ability to repress E2F activity through recruitment of a histone deacetylase. Proc Natl Acad Sci USA. 1998;95:10493–8.

    Article  PubMed  CAS  Google Scholar 

  34. Marzio G, Wagener C, Gutirrez MA, et al. E2F family members are differentially regulated by reversible acetylation. J Biol Chem. 2000;275:10887–92.

    Article  PubMed  CAS  Google Scholar 

  35. Taubert S, Forrini C, Frank SR, et al. E2D-dependent histone acetylation and recruitment of the Tip60 acetyltransferase complex to chromatin in late G1. Mol Cell Biol. 2004;24:4546–56.

    Article  PubMed  CAS  Google Scholar 

  36. Giangrande PH, Zhu W, Schlisio S, et al. A role for E2F6 in distinguishing G1/S- and G2/M-specific transcription. Genes Dev. 2004;18:2941–51.

    Article  PubMed  CAS  Google Scholar 

  37. Lukas J, Petersen BO, Holm K, et al. Deregulated expression of E2F family members induces S-phase entry and overcomes p16INK4A-mediated growth suppression. Mol Cell Biol. 1996;16:1047–57.

    PubMed  CAS  Google Scholar 

  38. Wu L, Timmers C, Maiti B, et al. The E2F1-3 transcription factors are essential for cellular proliferation. Nature. 2003;414:457–62.

    Article  Google Scholar 

  39. Johnson Ohanti K, Nevins JR. Autoregulatory control of E2F1 expression in response to positive and negative regulators of cell cycle progression. Genes Dev. 1994;8:1514–25.

    Article  Google Scholar 

  40. Leone G, DeGregori J, Yan Z, et al. E2F3 activity is regulated during the cell cycle and is required for the induction of S phase. Genes Dev. 1998;12:2120–30.

    Article  PubMed  CAS  Google Scholar 

  41. Slansky JE, Farnham PJ. Introduction to the E2F family: protein structure and gene regulation. Curr Top Microbiol Immunol. 1996;208:1–30.

    PubMed  CAS  Google Scholar 

  42. Field SJ, Tsai F, Kuo F, et al. E2F-1 functions in mice to promote apoptosis and suppress proliferation. Cell. 1996;85:549–61.

    Article  PubMed  CAS  Google Scholar 

  43. Yamasaki L, Jacks T, Bronson R, et al. Tumor induction and tissue atrophy in mice lacking E2F-1. Cell. 1996;85:537–48.

    Article  PubMed  CAS  Google Scholar 

  44. Cloud JE, Rogers C, Reza TL, et al. Mutant mouse models reveal the relative roles of E2F1 and E2F3 in vivo. Mol Cell Biol. 2002;22:2663–72.

    Article  PubMed  CAS  Google Scholar 

  45. Han S, Park K, Bae BN, et al. E2F1 expression is related with the poor survival of lymph node-positive breast cancer patients treated with fluorouracil, doxorubicin and cyclophosphamide. Breast Cancer Res Treat. 2003;82:11–6.

    Article  PubMed  CAS  Google Scholar 

  46. Reimer D, Sadr S, Wiedemair A, et al. Expression of the E2F family of transcription factors and its clinical relevance in ovarian cancer. Ann NY Acad Sci. 2006;1091:270–81.

    Article  PubMed  CAS  Google Scholar 

  47. Xiao Q, Li L, Xie Y, et al. Transcription factor E2F-1 is upregulated in human gastric cancer tissues and its overexpression suppresses gastric tumor cell proliferation. Cell Oncl. 2007;29:335–49.

    CAS  Google Scholar 

  48. Yamasaki L, Bronson R, Williams BO, et al. Loss of E2F-1 reduces tumorigenesis and extends the lifespan of Rb (+/−) mice. Nat Genet. 1998;18:360–4.

    Article  PubMed  CAS  Google Scholar 

  49. Haupt Y, Maya R, Kazaz A, et al. Mdm2 promotes the rapid degradation of p53. Nature. 1997;387:296–9.

    Article  PubMed  CAS  Google Scholar 

  50. Hiebart SW, Packham G, Strom DK, et al. E2F1:Dp1 induces p53 and overrides survival factors to trigger apoptosis. Mol Cell Biol. 1995;5:6864–74.

    Google Scholar 

  51. Hsieh J, Yap D, O’Connor DJ, et al. Novel function of the cyclin A binding site of E2F in Regulating p-53 induced apoptosis in response to DNA Damage. Mol Cell Biol. 2002;22:78–93.

    Article  PubMed  CAS  Google Scholar 

  52. Rogers Kt, Higgons PDR, Milla MM, et al. DP-2, a heterodimeric partner of E2F: identification and characterization ofn DP-2 proteins expressed in vivo. Proc Nat Acad Sci USA. 1996;93:7594–9.

    Article  PubMed  CAS  Google Scholar 

  53. Murga M, Fernandez-Capetillo O, Field SJ, et al. Mutation of E2F2 in mice causes enhanced T lymphocyte proliferation, leading to the development of autoimmunity. Immunity. 2001;15:959–70.

    Article  PubMed  CAS  Google Scholar 

  54. Humbert PO, Verona R, Trimarchi JM, et al. E2F3 is critical for normal cellular proliferation. Genes Dev. 2000;14:690–703.

    PubMed  CAS  Google Scholar 

  55. King JJ, Moskowitz I, Burgon P, et al. E2F3 plays an essential role in cardiac development and function. Cell Cycle. 2008;7:3775–37780.

    Article  PubMed  CAS  Google Scholar 

  56. Tsai SY, Opavsky R, Sharma N, et al. Mouse development with a single E2F activator. Nature. 2008;458:137–1142.

    Google Scholar 

  57. Lindeman GJ, Dagnino L, Gaubatz S, et al. A specific, non-proliferative role for e2F-5 in choroid plexus function revealed by gene targeting. Genes Dev. 1998;12:1092–8.

    Article  PubMed  CAS  Google Scholar 

  58. Verona R, Moberg K, Estes S, et al. E2F activity is regulated by cell cycle-dependent changes in subcellular localization. Mol Cell Biol. 1997;17:7268–82.

    PubMed  CAS  Google Scholar 

  59. Ebelt H, Hufnagel N, Neuhaus P, et al. Divergent siblings: E2F2 and E2F4 but not E2F1 and E2F3 induce DNA synthesis in cardiomyocytes without activation of apoptosis. Circ Res. 2005;96:509–17.

    Article  PubMed  CAS  Google Scholar 

  60. Kinross KM, Clark AJ, Iazzolino RM, et al. E2f4 regulates fetal erythropoiesis through the promotion of cellular proliferation. Blood. 2006;108:886–95.

    Article  PubMed  CAS  Google Scholar 

  61. Bruce JL, Hurford RK, Classon M, et al. Requirements for cell cycle arrest by p16(INK4A). Mol Cell. 2000;6:737–42.

    Article  PubMed  CAS  Google Scholar 

  62. Gaubatz S, Lindeman GJ, Ishida S, et al. E2F4 and E2F5 play an essential role in pocket protein-­mediated G1 control. Mol Cell. 2000;6:729–35.

    Article  PubMed  CAS  Google Scholar 

  63. Humbert PO, Rogers C, Ganiastas S, et al. E2F4 is essential for normal erythrocyte maturation and neonate viability. Mol Cell. 2004;6:281–91.

    Article  Google Scholar 

  64. Rempel R, Saenez-Robels M, Storms R, et al. Loss of E2F4 activity leads to abnormal development of multiple cellular lineages. Mol Cell. 2000;6:293–306.

    Article  PubMed  CAS  Google Scholar 

  65. Kothandaraman N, Bajic VB, Brendan PNK, et al. E2F5 status significantly improves malignancy diagnosis of epithelial ovarian cancer. BMC Cancer. 2010;10:1–13.

    Article  Google Scholar 

  66. Polanowska J, Le Cam L, Orsetti B, et al. Human E2F5 gene is oncogenic in primary rodent cells and is amplified in human breast tumors. Gen Chromo Cancer. 2000;28:126–30.

    Article  CAS  Google Scholar 

  67. Gaubatz S, Wood JG, Livingston JM. Unusual proliferation arrest and transcriptional control properties of a newly discovered E2F family member, E2F-6. Proc Natl Acad Sci USA. 1998;95:9190–5.

    Article  PubMed  CAS  Google Scholar 

  68. Cartwright P, Muller H, Wagner C, et al. E2F-6: a novel member of the E2F family is an inhibitor of E2F-dependent transcription. Oncogene. 1998;17:611–23.

    Article  PubMed  CAS  Google Scholar 

  69. Lyons T, Salih M, Tuana BS. Activatings E2Fs mediate transcriptional regulation of human E2F6 repressor. Am J Physiol Cell Physiol. 2006;290:C189–99.

    Article  PubMed  CAS  Google Scholar 

  70. Sparmann A, van Lohuizen M. Polycomb silencers control cell fate, development and cancer. Nat Rev Cancer. 2006;6:846–56.

    Article  PubMed  CAS  Google Scholar 

  71. Storre J, Elsasser H, Fuchs M, et al. Homeotic transformations of the axial skeleton that accompany a ­targeted deletion of E2f6. EMBO Rep. 2002;3:695–700.

    Article  PubMed  CAS  Google Scholar 

  72. Ogawa H, Ishiguro K, Gaubatz S, Livingston DM, Nakatani Y. A complex with chromatin modifiers that occupies E2F- and myc-responsive genes in G0 cells. Science. 2002;296:1132–6.

    Article  PubMed  CAS  Google Scholar 

  73. Xu X, Bedia M, Jin V, et al. A comprehensive ChIP-chip analysis of E2F1, E2F4, and E2F6 in normal and tumor cells reveals interchangeable roles of E2F family members. Genome Res. 2007;17:1550–61.

    Article  PubMed  CAS  Google Scholar 

  74. Christensen J, Cloos P, Toftegaard U. Characterization of E2F8, a novel E2F-like cell-cycle regulated repressor of E2F-activated transcription. Nucleic Acids Res. 2005;33:5458–70.

    Article  PubMed  CAS  Google Scholar 

  75. Li J, Ran C, Li E, Gordon F, et al. Synergistic function of E2F7 and E2F8 is essential for cell survival and embryonic development. Dev Cell. 2007;14:62–75.

    Article  CAS  Google Scholar 

  76. Moon NS, Dyson N. E2F7 and E2F8 keep the E2F family in balance. Dev Cell. 2008;14:1–3.

    Article  PubMed  CAS  Google Scholar 

  77. Deng Q, Wang Q, Zong WY. E2F8 Contributes to human hepatocellular carcinoma via regulating cell proliferation. Cancer Res. 2010;70:782–91.

    Article  PubMed  CAS  Google Scholar 

  78. Tashiro E, Tsuchiya A, Imoto M. Functions of cyclin D1 as an oncogene and regulation of cyclin D1 expression. Cancer Sci. 2007;98:629–35.

    Article  PubMed  CAS  Google Scholar 

  79. Kirshenbaum LA, Abdellatif M, Chakraborty S, et al. Human E2F-1 reactivates cell cycle progression in ventricular myocytes and represses cardiac gene transcription. Dev Biol. 1996;179:402–11.

    Article  PubMed  CAS  Google Scholar 

  80. Agah R, Kirschebaum LA, Abdellatif M, et al. Adenoviral delivery of E2F-1 directs cell cycle reentry and p53-independent apoptosis in post mitotic adult myocardium In Vivo. J Clin Invest. 1997;100:2722–8.

    Article  PubMed  CAS  Google Scholar 

  81. Wang C, Youle RJ. The role of mitochondria in apoptosis. Annu Rev Genet. 2009;43:95–118.

    Article  PubMed  CAS  Google Scholar 

  82. Kubli DA, Quinsay MN, Huang C, et al. Bnip3 functions as a mitochondrial sensor of oxidative stress during myocardial ischemia and reperfusion. Am J Physiol Heart Circ Physiol. 2008;295:H2025–31.

    Article  PubMed  CAS  Google Scholar 

  83. Regula KM, Ens K, Kirschenbaum LA. Inducible expression of BNIP3 provokes mitochondrial defects and hypoxia mediated cell death of ventricular myocytes. Circ Res. 2002;91:226–31.

    Article  PubMed  CAS  Google Scholar 

  84. Yurkova N, Shaw J, Blackie K, et al. The cell cycle factor E2F-1 activates Bnip3 and the intrinsic death pathway in ventricular myocytes. Circ Res. 2008;102:472–9.

    Article  PubMed  CAS  Google Scholar 

  85. Vara D, Bicknell KA, Coxon CH, et al. Inhibition of E2F abrogates the development of cardiac myocyte hypertrophy. J Biol Chem. 2003;278:21388–94.

    Article  PubMed  CAS  Google Scholar 

  86. Movassagh M, Bicknell KA, Brooks G. Characterization and regulation of E2F-6 and E2F-6b in the rat heart: a potential target for myocardial regeneration? J Pharm Pharmacol. 2006;58:73–82.

    Article  PubMed  CAS  Google Scholar 

  87. Ebelt H, Zhang Y, Kampke A, et al. E2F2 expression induces proliferation of terminally differentiated ­cardiomyocytes in vivo. Cardiovasc Res. 2008;80:219–26.

    Article  PubMed  CAS  Google Scholar 

  88. Dirlam A, Spike BT, MaCleod KF. Deregulated E2f-2 underlies cell cycle and maturation defects in retinoblastoma null erythroblasts. Mol Cell Biol. 2007;27:8713–28.

    Article  PubMed  CAS  Google Scholar 

  89. van Amerongen MJ, Diehl F, Novoyatleva T, et al. E2F4 is required for cardiomyocytes proliferation. Cardiovasc Res. 2010;86:92–102.

    PubMed  Google Scholar 

  90. MacLellan WR, Garcia A, Oh H, et al. Overlapping roles of pocket proteins in the myocardium are unmasked by germline specific deletion of p130 plus heart specific deletion of Rb. Mol Cell Biol. 2005;25:2486–97.

    Article  PubMed  CAS  Google Scholar 

  91. Berman SD, West JC, Danielian PS, et al. Mutation of p107 exacerbates the consequences of Rb loss in embryonic tissues and causes cardiac and blood vessel defects. Proc Nat Acad Sci USA. 2009;106:14932–6.

    Article  PubMed  CAS  Google Scholar 

  92. Wohlschlaeger J, Jurgen Smitz K, Takeda A, et al. Reversible regulation of the retinoblastoma protein/E2F-1 pathway during “reverse cardiac remodeling” after ventricular unloading. J Heart Lung Transplant. 2010;29:117–24.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Funded by CIHR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balwant S. Tuana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rueger, J., Tuana, B.S. (2011). The E2F Pathway in Cardiac Development and Disease. In: Ostadal, B., Nagano, M., Dhalla, N. (eds) Genes and Cardiovascular Function. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7207-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7207-1_4

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-7206-4

  • Online ISBN: 978-1-4419-7207-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics