Skip to main content

Gene–Environment Interactions: Their Role in Hypertension Development

  • Chapter
  • First Online:
Genes and Cardiovascular Function

Abstract

Essential hypertension is a major risk factor for several cardiovascular diseases, the etiology of which is not yet completely understood. The problem is that blood pressure (BP) is a typical quantitative trait with multifactorial determination. The interactions of multiple genetic and environmental factors as well as gene–gene interactions cause modifications of various systems that adjust blood pressure to actual living conditions. Numerous environmental factors surrounding the organism could modify its development not only by the influence on the expression of genetic information but mainly by epigenetic mechanisms. However, despite considerable research effort, it is still difficult to identify all genes and/or other genetic determinants leading to essential hypertension and other cardiovascular diseases. This is mainly because these diseases usually become a medical problem in adulthood, although their roots might be traced back to earlier stages of ontogeny. The link between distinct developmental periods (e.g., birth and adulthood) should involve the changes in gene expression involving epigenetic phenomena. The purpose of the present paper is to bring some light on gene–environmental interactions potentially implicated in the pathogenesis of hypertension, with special attention to epigenetic inheritance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reid CM, Thrift AG. Hypertension 2020: confronting tomorrow’s problem today. Clin Exp Pharmacol Physiol. 2005;32:374–6.

    Article  PubMed  CAS  Google Scholar 

  2. Nugent R. Chronic diseases in developing countries: health and economic burdens. Ann NY Acad Sci. 2008;1136:70–9.

    Article  PubMed  Google Scholar 

  3. Taylor JY, Maddox R, Wu CY. Genetic and environmental risks for high blood pressure among African American mothers and daughters. Biol Res Nurs. 2009;11:53–65.

    Article  PubMed  Google Scholar 

  4. Kuneš J, Zicha J. Developmental windows and environment as important factors in the expression of genetic information: a cardiovascular physiologist‘s view. Clin Sci Lond. 2006;111:295–305.

    Article  PubMed  Google Scholar 

  5. Kuneš J, Zicha J. The interaction of genetic and environmental factors in the etiology of hypertension. Physiol Res. 2009;58(Suppl 2):S33–41.

    PubMed  Google Scholar 

  6. Gibson G. Epistasis and pleiotropy as natural properties of transcriptional regulation. Theor Popul Biol. 1196;49:58–89.

    Article  Google Scholar 

  7. Greenland S, Rothman KJ. Concepts of interaction. In: Rothman KJ, Greenland S, editors. Modern epidemiology. Philadelphia, PA: Lippincott-Raven; 1998. p. 329–42.

    Google Scholar 

  8. Zicha J, Kuneš J. Ontogenetic aspects of hypertension development: analysis in the rat. Physiol Rev. 1999;79:1227–82.

    PubMed  CAS  Google Scholar 

  9. Weder AB, Schork NJ. Adaptation, allometry, and hypertension. Hypertension. 1994;24:145–56.

    PubMed  CAS  Google Scholar 

  10. Wilson TW, Grim CE. Biohistory of slavery and blood pressure differences in blacks today. A hypothesis. Hypertension. 1991;17(1 Suppl):I122–8.

    PubMed  CAS  Google Scholar 

  11. Neel JV, Weder AB, Julius S. Type II diabetes, essential hypertension, and obesity as “syndromes of impaired genetic homeostasis”: the “thrifty genotype” hypothesis enters the 21st century. Perspect Biol Med. 1998;42:44–74.

    PubMed  CAS  Google Scholar 

  12. Rapp JP. Genetic analysis of inherited hypertension in the rat. Physiol Rev. 2000;8:135–72.

    Google Scholar 

  13. Cicila GT. Strategy for uncovering complex determinants of hypertension using animal models. Curr Hypertens Rep. 2000;2:1–10.

    Article  Google Scholar 

  14. Glazier AM, Nadeu JH, Aitman TJ. Finding genes that underlie complex traits. Science. 2002;298:2345–9.

    Article  PubMed  CAS  Google Scholar 

  15. Svenson KL, Bogue MA, Peters LL. Identifying new mouse models of cardiovascular disease: a review of high-throughput screens of mutagenized and inbred strains. J Appl Physiol. 2003;94:1650–9.

    PubMed  Google Scholar 

  16. Trippodo NC, Frohlich ED. Similarities of genetic (spontaneous) hypertension. Man and rat. Circ Res. 1981;48:309–19.

    PubMed  CAS  Google Scholar 

  17. McGiff JC, Quilley CP. The rat with spontaneous genetic hypertension is not suitable model of human essential hypertension. Circ Res. 1981;48:455–63.

    PubMed  CAS  Google Scholar 

  18. Rettig R, Folberth C, Stauss H, et al. Role of the kidney in primary hypertension: a renal transplantation study in rats. Am J Physiol. 1990;258:F606–11.

    PubMed  CAS  Google Scholar 

  19. Campbell DJ, Duncan AM, Kladis A, et al. Converting enzyme inhibition and its withdrawal in spontaneously hypertensive rats. J Cardiovasc Pharmacol. 1995;26:426–36.

    Article  PubMed  CAS  Google Scholar 

  20. de Souza Bomfim A, Mandarim-de-Lacerda CA. Effects of ACE inhibition during fetal development on cardiac microvasculature in adult spontaneously hypertensive rats. Int J Cardiol. 2005;101:237–42.

    Article  PubMed  Google Scholar 

  21. Iyer SN, Lu D, Katovich MJ, et al. Chronic control of high blood pressure in the spontaneously hypertensive rat by delivery of angiotensin type 1 receptor antisense. Proc Natl Acad Sci USA. 1996;93:9960–5.

    Article  PubMed  CAS  Google Scholar 

  22. Pachori AS, Huentelman MJ, Francis SC, et al. The future of hypertension therapy: sense, antisense, or nonsense? Hypertension. 2001;37:357–64.

    PubMed  CAS  Google Scholar 

  23. Pinto YM, Paul M, Ganten D. Lessons from rat models of hypertension: from Goldblatt to genetic engineering. Cardiovasc Res. 1998;39:77–88.

    Article  PubMed  CAS  Google Scholar 

  24. Yamori Y. Implication of hypertensive rat models for primordial nutritional prevention of cardiovascular diseases. Clin Exp Pharmacol Physiol. 1999;26:568–72.

    Article  PubMed  CAS  Google Scholar 

  25. Barker DJP, Osmond C, Golding J, et al. Growth in utero, blood pressure in childhood and adult life, and mortality from cardiovascular disease. Br Med J. 1989;298:564–7.

    Article  CAS  Google Scholar 

  26. Huxley RR, Shiel AW, Law CM. The role of size at birth and postnatal catch-up growth in determining systolic blood pressure: a systemic review of the literature. J Hypertens. 2000;18:815–31.

    Article  PubMed  CAS  Google Scholar 

  27. De Boo HA, Harding JE. The developmental origins of adult disease (Barker) hypothesis. Aust N Z J Obstet Gynaecol. 2006;46:4–14.

    Article  PubMed  Google Scholar 

  28. Eriksson JG, Forsón TJ, Kajantie E, et al. Childhood growth and hypertension in later life. Hypertension. 2007;49:1414–21.

    Article  Google Scholar 

  29. Falkner B, Hulman S, Kushner H. Effect of birth weight on blood pressure and body size in early adolescence. Hypertension. 2004;43:203–7.

    Article  PubMed  CAS  Google Scholar 

  30. Zandi-Nejad K, Luyckx VA, Brenner BM. Adult hypertensuion and kidney disease. The role of fetal programming. Hypertension. 2006;47:502–8.

    Article  PubMed  CAS  Google Scholar 

  31. Bo S, Cavallo-Perin P, Scaglione L, et al. Low birthweight and metabolic abnormalities in twins with increased susceptibility to Type 2 diabetes mellitus. Diabet Med. 2000;17:365–70.

    Article  PubMed  CAS  Google Scholar 

  32. Iliadou A, Cnattingius S, Lichtenstein P. Low birthweight and Type 2 diabetes: a study on 11 162 Swedish twins. Int J Epidemiol. 2004;33:948–53.

    Article  PubMed  CAS  Google Scholar 

  33. Cheung YF, Taylor MJ, Fisk NM, et al. Fetal origins of reduced arterial distensibility in the donor twin in twin-twin transfusion syndrome. Lancet. 2000;355:1157–8.

    Article  PubMed  CAS  Google Scholar 

  34. Gärtner K. A third component causing random variability beside environment and genotype. A reason for the limited success of a 30 year long effort to standardize laboratory animals? Lab Anim. 1990;24:71–7.

    Article  PubMed  Google Scholar 

  35. Waterland RA, Jirtle RL. Early nutrition, epigenetic changes at transposons and imprinted genes, and enhanced susceptibility to adult chronic diseases. Nutrition. 2004;20:63–8.

    Article  PubMed  CAS  Google Scholar 

  36. Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development. Science. 2001;293:1089–93.

    Article  PubMed  CAS  Google Scholar 

  37. Nafee TM, Farrell WE, Carroll WD, et al. Epigenetic control of fetal gene expression. BJOG. 2008;115:158–68.

    PubMed  CAS  Google Scholar 

  38. Surani MA. Reprogramming of genome function through epigenetic inheritance. Nature. 2001;414:122–8.

    Article  PubMed  CAS  Google Scholar 

  39. Wolff GL, Kodell RL, Moore SR, et al. Maternal epigenetics and methyl supplements affect agouti gene expression in Avy/a mice. FASEB J. 1998;12:949–57.

    PubMed  CAS  Google Scholar 

  40. Morgan HD, Sutherland HG, Martin DI, et al. Epigenetic inheritance at the agouti locus in the mouse. Nat Genet. 1999;23:314–8.

    Article  PubMed  CAS  Google Scholar 

  41. Waterland RA, Jirtle RL. Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol. 2003;23:5293–300.

    Article  PubMed  CAS  Google Scholar 

  42. Heijmans BT, Tobi EW, Stein AD, et al. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci USA. 2008;105:17046–9.

    Article  PubMed  CAS  Google Scholar 

  43. Tobi EW, Lumey LH, Talens RP, et al. DNA methylation differences after exposure to prenatal famine are common and timing- and sex-specific. Hum Mol Genet. 2009;18:4046–53.

    Article  PubMed  CAS  Google Scholar 

  44. Heijmans BT, Kremer D, Tobi EW, et al. Heritable rather than age-related environmental and stochastic factors dominate variation in DNA methylation of the human IGF2/H19 locus. Hum Mol Genet. 2007;16:547–54.

    Article  PubMed  CAS  Google Scholar 

  45. Fraga MF, Ballestar E, Paz MF, et al. Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci USA. 2005;102:10604–9.

    Article  PubMed  CAS  Google Scholar 

  46. Kadlecová M, Dobešová Z, Zicha J, et al. Abnormal Igf2 gene in Prague hereditary hypertriglyceridemic rats: its relation to blood pressure and plasma lipids. Mol Cell Biochem. 2008;314:37–43.

    Article  PubMed  Google Scholar 

  47. Martens JR, Reaves PY, Lu D, et al. Prevention of renovascular and cardiac pathophysiological changes in hypertension by angiotensin II type 1 receptor antisense gene therapy. Proc Natl Acad Sci USA. 1998;95:2664–9.

    Article  PubMed  CAS  Google Scholar 

  48. Katovich MJ, Gelband CH, Reaves P, et al. Reversal of hypertension by angiotensin II type 1 receptor antisense gene therapy in the adult SHR. Am J Physiol Heart Circ Physiol. 1999;277:H1260–4.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaroslav Kunes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kunes, J., Kadlecova, M., Zicha, J. (2011). Gene–Environment Interactions: Their Role in Hypertension Development. In: Ostadal, B., Nagano, M., Dhalla, N. (eds) Genes and Cardiovascular Function. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7207-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7207-1_17

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-7206-4

  • Online ISBN: 978-1-4419-7207-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics