Skip to main content

Genetic Basis of Salt-Sensitive Hypertension in Humans

  • Chapter
  • First Online:
Genes and Cardiovascular Function

Abstract

The genetic network responsible for blood pressure (BP) variation in the general population and specifically the hypertensive population remains elusive. Several recent genome-wide association studies (GWAS) have identified and confirmed loci associated with BP and hypertension. However, only a small fraction of the trait is currently explained. This apparent deficit relative to the estimates for heritability can be due to several factors, a major one being the poor assessment of the phenotype, i.e. BP. All GWAS have used so far office BPs, which are notoriously variable. Imputation of BP in treated subjects is done by a fixed number. In addition, BPs are usually being “adjusted” for e.g. age, gender or body mass index under the assumption that these do not alter BP systematically by genotype, an assumption that appears no longer valid.

A better approach may include more specific assessment of the actual BP level in a given individual for both cases and controls, preferably by 24-h ambulatory BP monitoring, for cases off antihypertensive therapy, and to stratify for factors such as sex, age and body mass index. This approach will likely provide better insight into the distinct genetic architectures contributing to different hypertension phenotypes and explain a substantially larger part of the BP variance. Further improvements will likely emerge when other environmental/lifestyle factors are incorporated, such as extent of alcohol intake, stress, salt intake or physical activity. In the ongoing Ottawa GWAS for BP response to salt, we hope to identify loci and genes associated with salt-sensitive versus salt-resistant hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ong KL, Cheung BMY, Man YB, et al. Prevalence, awareness, treatment, and control of hypertension among United Stated adults 1999–2004. Hypertension. 2006;46:69–75.

    Article  Google Scholar 

  2. Leenen FH, Dumais J, McInnis NH, et al. Results of the Ontario survey on the prevalence and control of hypertension. CMAJ. 2008;178:1441–9.

    Article  PubMed  Google Scholar 

  3. van Rijn MJE, Schut AFFC, Aulchenko YS, et al. Heritability of blood pressure traits and the genetic contribution to blood pressure variance explained by four blood-pressure-related genes. J Hypertens. 2007;25:565–70.

    Article  PubMed  Google Scholar 

  4. Saunder CL, Gulliford MC. Heritabilities and shared environmental effects were estimated from household clustering in national health survey data. J Clin Epidemiology. 2006;59:1191–8.

    Article  Google Scholar 

  5. Zeegers M, Fruhling R, Pak F, et al. The contribution of risk factors to blood pressure heritability estimates in young adults: the East Flanders prospective twin study. Twin Res. 2004;7:245–53.

    Article  PubMed  Google Scholar 

  6. Robinson RF, Batisky DL, Hayes JR, et al. Significance of heritability in primary and secondary pediatric hypertension. Amer J Hypertens. 2005;18:917–21.

    Article  Google Scholar 

  7. Wu X, Kan D, Province M, et al. An updated meta-analysis of genome scans for hypertension and blood pressure in the NHLBI family blood pressure program (FBPP). Amer J Hypertens. 2006;19:122–7.

    Article  Google Scholar 

  8. Koivukoski L, Fisher SA, Kanninen T, et al. Meta-analysis of genome-wide scans for hypertension and blood pressure in Caucasians shows evidence of susceptibility regions on chromosomes 2 and 3. Hum Mol Genet. 2004;13:2325–32.

    Article  PubMed  CAS  Google Scholar 

  9. Sookoian S, Gianotti TF, González CD, et al. Association of the C-344T aldosterone synthase gene variant with essential hypertension: a meta-analysis. J Hypertens. 2006;25:5–13.

    Article  Google Scholar 

  10. Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007;447:661–78.

    Article  Google Scholar 

  11. Levy D, Larson MG, Benjamin EJ, et al. Framingham heart study 100K project: genome-wide associations for blood pressure and arterial stiffness. BMC Med Genet. 2007;8:S3.

    Article  PubMed  Google Scholar 

  12. Newton-Cheh C, Johnson T, Gateva V, et al. Genome-wide association study identifies eight loci associated with blood pressure. Nat Genet. 2009;41: 666–76.

    Article  PubMed  CAS  Google Scholar 

  13. Levy D, Ehret KB, Rice K, et al. Genome-wide association study of blood pressure and hypertension. Nat Genet. 2009;41:677–87.

    Article  PubMed  CAS  Google Scholar 

  14. Org E, Eyheramendy S, Juhanson P. Genome-wide scan identifies CDH13 as a novel susceptibility locus contributing to blood pressure determination in two European populations. Hum Mol Genet. 2009;18:2288–96.

    Article  PubMed  CAS  Google Scholar 

  15. Adeyemo A, Gerry N, Chen G, Herbert A, et al. A genome-wide association study of hypertension and blood pressure in African Americans. PLoS Genet. 2009;5:e1000564.

    Article  PubMed  Google Scholar 

  16. Cho YS, Go MJ, Kim YJ, Heo JY, et al. A large-scale genome-wide association study of Asian populations uncovers genetic factors influencing eight quantitative traits. Nat Genet. 2009;41:527–34.

    Article  PubMed  CAS  Google Scholar 

  17. Yang HC, Liang YJ, Wu YL, et al. Genome-wide association study of young-onset hypertension in the Han Chinese population of Taiwan. PLoS ONE. 2009;4:e5459.

    Article  PubMed  Google Scholar 

  18. Hong KW, Jin HS, Lim JE, et al. Recapitulation of two genomewide association studies on blood pressure and essential hypertension in the Korean population. J Hum Genetics. 2010;55:336–41.

    Article  CAS  Google Scholar 

  19. Niu W, Zhang Y, Ji K, et al. Confirmation of top polymorphisms in hypertension genome wide association study among Han Chinese. Clin Chim Acta. 2010;411:1491–5.

    Article  PubMed  CAS  Google Scholar 

  20. Hong KW, Go MJ, Jin HS. Genetic variations in ATP2B1, CSK, ARSG and CSMD1 loci are related to bood pressure and/or hypertension in two Korean cohorts. J Hum Hypertens. 2010;24:367–72.

    Article  PubMed  CAS  Google Scholar 

  21. Kato N, Miyata T, Tabara Y, et al. High-density association study and nomination of susceptibility genes for hypertension in the Japanese national project. Hum Mol Genet. 2009;17:617–27.

    Article  Google Scholar 

  22. Wang Y, O’Connell JR, McArdle PF, et al. Whole-genome association study identifies STK39 as a hypertension susceptibility gene. Proc Natl Acad Sci USA. 2009;106:226–31.

    Article  PubMed  CAS  Google Scholar 

  23. Cunnington MS, Kay C, Avery PJ, et al. STK39 polymorphisms and blood pressure: an association study in British Caucasians and assessment of cis-acting influences on gene expression. BMC Med Genet. 2009;10:135.

    Article  PubMed  Google Scholar 

  24. Hong KW, Jin HS, Lim JE, Cho YS, Go MJ, Jung J, Lee JE, et al. Non-synonymous single-nucleotide polymorphisms associated with blood pressure and hypertension. J Hum Hypertens. 2010;24:763–74.

    Article  PubMed  CAS  Google Scholar 

  25. Harrap SB. Blood pressure genetics: time to focus. J Am Soc Hypertens. 2009;3:231–7.

    Article  PubMed  Google Scholar 

  26. McCarroll SA, Hadnott TN, Perry GH, et al. International HapMap consortium. Common deletion polymorphisms in the human genome. BMC Nat Genet. 2006;38:86–92.

    Article  CAS  Google Scholar 

  27. Kleinjan DA, van Heyningen V. Long-range control of gene expression: emerging mechanisms and disruption in disease. Am J Hum Genet. 2005;76:8–32.

    Article  PubMed  CAS  Google Scholar 

  28. Stranger BE, Forrest MS, Dunning M, et al. Relative impact of nucleotide and copy number variation on gene expression phenotypes. Science. 2007;315:848–53.

    Article  PubMed  CAS  Google Scholar 

  29. Sun YV, Peyser PA, Kardia SL. A common copy number variation on chromosome 6 association with the gene expression level of endothelin 1 in transformed B lymphocytes from three racial groups. Circ Cardiovasc Genet. 2009;2:483–8.

    Article  PubMed  CAS  Google Scholar 

  30. Wellcome Trust Case Control Consortium. Genome-wide association study of CNVs in 16,000 cases of eight common diseases and 3,000 shared controls. Nature. 2010;464:713–20.

    Article  Google Scholar 

  31. Sethi AA, Nordestgaard BG, Tybjæg-Hansen A. Angiotensinogen gene polymorphism, plasma angiotensinogen, and risk of hypertension and ischemic heart disease. Arterioscler Thromb Vasc Biol. 2003;23:1269–75.

    Article  PubMed  CAS  Google Scholar 

  32. Martinez F, Mansego ML, Escudero JC, et al. Association of a mineralocorticoid receptor gene polymorphism with hypertension in a Spanish population. Am J Hypertens. 2009;22:649–55.

    Article  PubMed  CAS  Google Scholar 

  33. Ji W, Foo JN, O’Roak BJ, Zhao H, Larson MG, Simon DB, et al. Rare independent mutations in renal salt handling genes contribute to blood pressure variation. Nat Genet. 2008;40:592–9.

    Article  PubMed  CAS  Google Scholar 

  34. Manunta P, Lavery G, Lanzani C, et al. Physiological interaction between α-adducin and WNK1-NEDD4L pathways on sodium-related blood pressure regulation. Hypertension. 2008;52:366–72.

    Article  PubMed  CAS  Google Scholar 

  35. Province MA, Arnett DK, Hunt SC, et al. Association between the α-adducin gene and hypertension in the HyperGEN study. Am J Hypertens. 2000;13: 710–8.

    Article  PubMed  CAS  Google Scholar 

  36. Wong ZYH, Stebbing M, Ellis JA, et al. Genetic linkage of β and γ subunits of epithelial sodium channel to systolic blood pressure. Lancet. 1999;353:1222–5.

    Article  PubMed  CAS  Google Scholar 

  37. Büsst CJ, Scurrah KJ, Ellis JA, et al. Selective genotyping association between the epithelial sodium channel {gamma}-subunit and systolic blood pressure. Hypertension. 2007;50:672–8.

    Article  PubMed  Google Scholar 

  38. von Wowern F, Berglund G, Carlson J, et al. Genetic variance of SGK-1 is associated with blood pressure, blood pressure change over time and strength of the insulin-diastolic blood pressure relationship. Kidney Int. 2005;68:2164–72.

    Article  Google Scholar 

  39. Fava C, von Wowern F, Berglund G, et al. 24-h ambulatory blood pressure is linked to chromosome 18q21-22 and genetic variation of NEDD4L associates with cross-sectional and longitudinal blood pressure in Swedes. Kidney Int. 2006;70:562–9.

    PubMed  CAS  Google Scholar 

  40. Tobin MD, Raleigh SM, Newhouse S, et al. Association of WNK1 gene polymorphisms and haplotypes with ambulatory blood pressure in the general population. Circulation. 2005;112:3423–9.

    Article  PubMed  CAS  Google Scholar 

  41. Newhouse S, Farrall M, Wallace C, et al. Polymorphisms in the WNK1 gene are associated with blood pressure variation and urinary potassium excretion. PLoS ONE. 2009;4:e5003.

    Article  PubMed  Google Scholar 

  42. Siani A, Russo P, Cappuccio FP, et al. Combination of renin-angiotensin system polymorphisms is associated with altered renal sodium handling and hypertension. Hypertension. 2003;43:598–602.

    Article  Google Scholar 

  43. Wang J, Liu L, Zagato L, et al. Blood pressure in relation to three candidate genes in a Chinese population. J Hypertens. 2004;22:937–44.

    Article  PubMed  CAS  Google Scholar 

  44. Banegas JR, Segura J, Sobrino J, et al. Effectiveness of blood pressure control outside the medical setting. Hypertension. 2007;49:62–8.

    Article  PubMed  CAS  Google Scholar 

  45. Kotsis V, Stabouli S. The definition of true normotension needs out of office blood pressure measurements. J Hypertens. 2010;28:1778–9.

    Article  CAS  Google Scholar 

  46. Tobin MD, Sheehan NA, Scurrah KJ, et al. Adjusting for treatment effects in studies of quantitative traits: antihypertensive therapy ad systolic blood pressure. Statist Med. 2005;24:2911–35.

    Article  Google Scholar 

  47. Cui JS, Hopper JL, Harrap SB. Antihypertensive treatments obscure familial contributions to blood pressure variation. Hypertension. 2003;41:207–10.

    Article  PubMed  CAS  Google Scholar 

  48. Falaschetti E, Chaudhury M, Mindell J, et al. Continued improvement in hypertension management in England. Results From the health survey for England 2006. Hypertension. 2009;53:480–6.

    Article  PubMed  CAS  Google Scholar 

  49. Zhang K, Weder AB, Eskin E, et al. Genome-wide case/control studies in hypertension: only the tip of the iceberg. J Hypertension. 2010;28:1115–23.

    CAS  Google Scholar 

  50. Clark AG, Boerwinkle E, Hixson J, et al. Determinants of the success of whole-genome association testing. Genome Res. 2005;15:1463–7.

    Article  PubMed  CAS  Google Scholar 

  51. Shi G, Gu CC, Kraja AT, et al. Genetic effect on blood pressure is modulated by age. the hypertension genetic epidemiology network study. Hypertension. 2009;53:35–41.

    Article  PubMed  CAS  Google Scholar 

  52. Rana GK, Insel PA, Payne SH, et al. Population-based sample reveals gene–gender interactions in blood pressure in white Americans. Hypertension. 2007;49:96–106.

    Article  PubMed  CAS  Google Scholar 

  53. Šeda O, Tremblay J, Gaudet D, et al. Systematic, genome-wide, sex-specific linkage of cardiovascular traits in French Canadians. Hypertension. 2008;51:1156–62.

    Article  PubMed  Google Scholar 

  54. Sõber S, Org E, Kepp K, et al. Targeting 160 candidate genes for blood pressure regulation with a genome-wide genotyping array. PLoS ONE. 2009;4:e6034.

    Article  PubMed  Google Scholar 

  55. Pausova Z, Syme C, Abrahamowicz M, et al. A common variant of the FTO gene is associated with not only increased adiposity but also elevated blood pressure in French Canadians. Circ Cardiovasc Genet. 2009;2:260–9.

    Article  PubMed  CAS  Google Scholar 

  56. Melka M, Bernard M, Paterson A, et al. Genome-wide scan for genes of adolescent obesity-related high bood pressure. Hypertension. 2010;56:e64.

    Google Scholar 

  57. Kuznetsova T, Staessen JA, Brand E, et al. Sodium excretion as a modulator of genetic associations with cardiovascular phenotypes in the European project on genes in hypertension. J Hypertens. 2006;24:235–42.

    Article  PubMed  CAS  Google Scholar 

  58. Gu D, Rice T, Wang S, et al. Heritability of blood pressure responses to dietary sodium and potassium intake in a Chinese population. Hypertension. 2007;50:116–22.

    Article  PubMed  CAS  Google Scholar 

  59. INTERSALT. Intersalt: an international study of electrolyte excretion and blood pressure. Results for 24 hour urinary sodium and potassium excretion. BMJ. 1988;30:319–28.

    Google Scholar 

  60. Liu L, Liu L, Ding Y, et al. Ethnic and environmental differences in various markers of dietary intake and blood pressure among Chinese Han and three other minority peoples in China: results from the WHO cardiovascular diseases and alimentary comparison (CARDIAC) study. Hypertens Res. 2001;24:315–22.

    Article  PubMed  CAS  Google Scholar 

  61. He FJ, Markandu ND, MacGregor GA. Importance of the renin system for determining blood pressure fall with acute salt restriction in hypertensive and normotensive whites. Hypertension. 2001;38:321–5.

    PubMed  CAS  Google Scholar 

  62. Gerdts E, Myking OL, Omvik P. Salt sensitive essential hypertension evaluated by 24 hour ambulatory blood pressure. Blood Press. 1994;3:375–80.

    Article  PubMed  CAS  Google Scholar 

  63. Gerdts E, Lund-Johansen P, Omvik P. Reproducibility of salt sensitivity testing using a dietary approach in essential hypertension. J Hum Hypertens. 1999;13:375–84.

    Article  PubMed  CAS  Google Scholar 

  64. Wilson DK, Sica DA, Miller SB. Ambulatory blood pressure nondipping status in salt-sensitive and salt-resistant black adolescents. Am J Hypertens. 1999;12:159–65.

    Article  PubMed  CAS  Google Scholar 

  65. Graudal NA, Galloe AM, Garred P. Effects of sodium restriction on blood pressure, renin, aldosterone, catecholamines, cholesterols, and triglyceride. JAMA. 1998;279:1383–91.

    Article  PubMed  CAS  Google Scholar 

  66. Obarzanek E, Proschan MA, Vollmer WM, et al. Individual blood pressure responses to changes in salt intake. Hypertension. 2003;42:459–67.

    Article  PubMed  CAS  Google Scholar 

  67. Miller JZ, Weinberger MH, Christian JC, et al. Familial resemblance in the blood pressure response to sodium restriction. Am J Epidemiol. 1987;126:822–30.

    PubMed  CAS  Google Scholar 

  68. Hurwitz S, Fisher NDL, Ferri C, et al. Controlled analysis of blood pressure sensitivity to sodium intake: interactions with hypertension type. J Hypertens. 2003;21:951–9.

    Article  PubMed  CAS  Google Scholar 

  69. Yamori Y, Liu L, Ikeda K, et al. Different associations of blood pressure with 24-hour urinary sodium excretion among pre- and post-menopausal women. J Hypertens. 2001;19:535–8.

    Article  PubMed  CAS  Google Scholar 

  70. Barton M, Meyer MR. Postmenopausal hypertension, mechanisms and therapy. Hypertension. 2009;54:11–8.

    Article  PubMed  CAS  Google Scholar 

  71. Chappell MC, Yamaleyeva M, Westwood BM. Estrogen and salt sensitivity in the female mRen(2). Lewis rat. Am J Physiol. 2006;291:R1557–63.

    CAS  Google Scholar 

  72. Schulman IH, Aranda P, Raij L, et al. Surgical menopause increases salt sensitivity of blood pressure. Hypertension. 2006;47:1168–74.

    Article  PubMed  CAS  Google Scholar 

  73. Scuteri A, Lakatta EG, Anderson DE, et al. Transdermal 17 Beta-oestradiol reduces salt sensistivity of blood pressure in postmenopausal women. J Hypertens. 2003;21:2419–20.

    Article  PubMed  CAS  Google Scholar 

  74. Beeks E, Kessels AGH, Kroon AA, et al. Genetic predisposition to salt-sensitivity: a systematic review. J Hypertens. 2004;22:1243–9.

    Article  PubMed  CAS  Google Scholar 

  75. Wang JG, Staessen JA, Barlassina C, et al. Association between hypertension and variation in the α- and β-adducin genes in a white population. Kidney Internat. 2002;62:2152–9.

    Article  CAS  Google Scholar 

  76. Zhu H, Lu Y, Wang X, et al. The G protein-coupled receptor kinase 4 gene affects blood pressure in young normotensive twins. Am J Hypertens. 2006;19:61–6.

    Article  PubMed  CAS  Google Scholar 

  77. Sanada H, Yatabe J, Midorikawa S, et al. Single-nucleotide polymorphisms for diagnosis of salt-­sensitive hypertension. Clin Chem. 2006;52:352–60.

    Article  PubMed  CAS  Google Scholar 

  78. Pojoga L, Kolatkar NS, Williams JS, et al. β-2 adrenergic receptor diplotype defines a subset of salt-sensitive hypertension. Hypertension. 2006;48:892–900.

    Article  PubMed  CAS  Google Scholar 

  79. Giner V, Poch E, Bragulat E, et al. Renin-angiotensin system genetic polymorphisms and salt sensitivity in essential hypertension. Hypertension. 2000;35:512–7.

    PubMed  CAS  Google Scholar 

  80. Hollenberg NK, Martinez G, McCullough M, et al. Aging, acculturation, salt intake, and hypertension in the Juna of Panama. Hypertension. 1997;29:171–6.

    PubMed  CAS  Google Scholar 

  81. Wittes J, Brittain E. The role of internal pilot studies in increasing the efficiency of clinical trials. Stat Med. 1990;9:65–72.

    Article  PubMed  CAS  Google Scholar 

  82. Betensky RA, Tierney C. An examination of methods for sample size recalculations during an experiment. Stat Med. 1997;16:2587–98.

    Article  PubMed  CAS  Google Scholar 

  83. Wright JT, Rahman M, Scarpa A, et al. Determinants of salt sensitivity in black and white normotensive and hypertensive women. Hypertension. 2003;42:1087–92.

    Article  PubMed  CAS  Google Scholar 

  84. Weinberger MH, Finebert NS. Sodium and volume sensitivity of blood pressure: age and pressure change over time. Hypertension. 1991;18:67–71.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Mrs. Danielle Oja for her excellent skills in assisting in the preparation and formatting of the chapter.

The authors’ research discussed in this chapter is being supported by operating grants from the Canadian Institutes of Health Research.

Frans H. H. Leenen is supported by the Pfizer Chair in Hypertension Research, an Endowed Chair supported by Pfizer Canada, University of Ottawa Heart Institute Foundation and the Canadian Institutes of Health Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frans H. H. Leenen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Leenen, F.H.H., Amin, S., Stewart, A.F.R., Tesson, F. (2011). Genetic Basis of Salt-Sensitive Hypertension in Humans. In: Ostadal, B., Nagano, M., Dhalla, N. (eds) Genes and Cardiovascular Function. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7207-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7207-1_16

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-7206-4

  • Online ISBN: 978-1-4419-7207-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics