Skip to main content

MELAS Syndrome: Mediated by Impaired Taurinomethyluridine Synthesis

  • Chapter
  • First Online:
Book cover Genes and Cardiovascular Function

Abstract

Taurine (2-aminoethanesulfonate) is a ubiquitous β-amino acid found in a very high concentration in excitable tissue. One of its most important functions is its conjugation with uridine located in the wobble position of tRNALeu(UUR). Because the wobble modification stabilizes the UG base pairing, it facilitates the decoding of UUG codons. Consequently, taurine deficiency, which reduces the wobble modification, decreases the synthesis of proteins whose mRNA has a high UUG codon content. The synthesis of one such protein, ND6, plunges 60% after a 50% decline in taurine content. Because ND6 is a subunit of respiratory chain complex I, taurine depletion also leads to a decline in the activity of the electron transport chain. A similar sequence of events occurs in the mitochondrial disease, MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes). The initial event in most MELAS patients is the appearance of one mutation in tRNALeu(UUR), which in turn blocks the taurinomethyl modification of the wobble nucleotide. As a result, the synthesis of ND6 and other UUG-dependent proteins falls. As respiratory function declines, the generation of ATP is compromised and in some cases the mitochondria begin to produce oxidants. Because mutations in tRNALeu(UUR) trigger multiple events, the identification of which event causes mitochondrial dysfunction has been challenging. The taurine-deficient model has aided in the identification of at least one pathological pathway that contributes to the development of the MELAS disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kleist-Retzow JC, Schauseil-Zipf J, Michalk DV, et al. Mitochondrial diseases: an expanding spectrum of disorders and affected genes. Exp Physiol. 2003;88:155–66.

    Article  Google Scholar 

  2. Chomyn A, Enriquez JA, Micol V, et al. The mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like syndrome-associated human mitochondrial tRNALeu (UUR) mutation causes aminoacylation deficiency and concomitant reduced association of mRNA with ribosomes. J Biol Chem. 2000;275:19198–209.

    Article  PubMed  CAS  Google Scholar 

  3. Sohm B, Sissler M, Park H, et al. Recognition of human mitochondrial tRNALeu (UUR) by its cognate leucyl-tRNA synthetase. J Mol Biol. 2004;339:17–29.

    Article  PubMed  CAS  Google Scholar 

  4. Tsutsui H, Kinugawa S, Matsushima S. Mitochondrial oxidative stress and dysfunction in myocardial remodeling. Cardiovasc Res. 2009;81:449–56.

    Article  PubMed  CAS  Google Scholar 

  5. Anan R, Nakagawa M, Higuchi I, et al. Cardiac involvement in mitochondrial diseases: A study on 17 patients with documented mitochondrial DNA defects. Circulation. 1995;91:955–61.

    PubMed  CAS  Google Scholar 

  6. Casademont J, Miro O. Electron transport chain defects in heart failure. Heart Fail Rev. 2002;7:131–9.

    Article  PubMed  CAS  Google Scholar 

  7. Limongelli G, Tome-Esteban M, Dejthevaporn C, et al. Prevalence and natural history of heart disease in adults with primary mitochondrial respiratory chain disease. Eur J Heart Fail. 2010;12:114–21.

    Article  PubMed  CAS  Google Scholar 

  8. Vydt TCG, de Coo RFM, Soliman OII, et al. Cardiac involvement in adults with m.3243A  >  G MELAS gene mutation. Am J Cardiol. 2007;99:264–9.

    Article  PubMed  CAS  Google Scholar 

  9. Goto YI, Nonaka I, Horai S. A mutation in the tRNALeu (UUR) gene associated with the MELAS subgroup of mitochondrial encephalomyopathies. Nature. 1990;348:651–3.

    Article  PubMed  CAS  Google Scholar 

  10. Goto YI, Nonaka I, Horai S. A new mtDNA mutation associated with mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS). Biochim Biophys Acta. 1991;1097:238–40.

    PubMed  CAS  Google Scholar 

  11. Finsterer J. Mitochondriopathies. Eur J Neurol. 2004;11:163–86.

    Article  PubMed  CAS  Google Scholar 

  12. Kirino Y, Goto YI, Campos Y, et al. Specific correlation between the wobble modification deficiency in mutant tRNAs and the clinical features of a human mitochondrial disease. Proc Natl Acad Sci USA. 2005;102:7127–32.

    Article  PubMed  CAS  Google Scholar 

  13. King MP, Koga Y, Davidson M, et al. Defects in mitochondrial protein synthesis and respiratory chain activity segregate with the tRNALeu (UUR) mutation associated with mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like syndrome. Mol Cell Biol. 1992;12:480–90.

    PubMed  CAS  Google Scholar 

  14. Li R, Guan MX. Human mitochondrial leucyl-tRNA synthetase corrects mitochondrial dysfunction due to the tRNALeu (UUR) A3243G mutation, associated with mitochondrial encephalomyopathy, lactic acidosis, and stroke-like symptoms and diabetes. Mol Cell Biol. 2010;30:2147–54.

    Article  PubMed  CAS  Google Scholar 

  15. Mariotti C, Tiranti V, Carrara F, et al. Defective respiratory capacity and mitochondrial protein synthesis in transformant cybrids harbor the tRNALeu (UUR) mutation associated with maternally inherited myopathy and cardiomyopathy. J Clin Invest. 1994;93:1102–7.

    Article  PubMed  CAS  Google Scholar 

  16. Ikawa M, Kawai Y, Arakawa K, et al. Evaluation of respiratory chain failure in mitochondrial cardiomyopathy by assessments of 99mTc-MIBI washout and 123I-BMIPP/99mTc-MIBI mismatch. Mitochondrion. 2007;7:164–70.

    Article  PubMed  CAS  Google Scholar 

  17. Hess JF, Parisi MA, Bennett JL, et al. Impairment of mitochondrial transcription termination by a point mutation associated with the MELAS subgroup of mitochondrial encephalomyopathies. Nature. 1991;351:236–9.

    Article  PubMed  CAS  Google Scholar 

  18. Helm M, Florentz C, Chomyn A, et al. Search for differences in post-transcriptional modification patterns of mitochondrial DNA-encoded wild-type and mutant human tRNALys and tRNALeu (UUR). Nucleic Acid Res. 1999;27:756–63.

    Article  PubMed  CAS  Google Scholar 

  19. Park H, Davidson E, King MP. The pathogenic A3243G mutation in human mitochondrial tRNALeu (UUR) decreases the efficiency of aminoacylation. Bio­chemistry. 2003;42:958–64.

    Article  PubMed  CAS  Google Scholar 

  20. Hao R, Yao YN, Zheng YG, et al. Reduction of mitochondrial tRNALeu (UUR) aminoacylation by some MELAS-associated mutations. FEBS Lett. 2004;578:135–9.

    Article  PubMed  CAS  Google Scholar 

  21. Lofgren DJ, Thompson LH. Relationship between histidyl-tRNA level and protein synthesis rate in wild-type and mutant Chinese hamster ovary cells. J Cell Physiol. 1979;99:303–12.

    Article  PubMed  CAS  Google Scholar 

  22. Yasukawa T, Suzuki T, Ueda T, et al. Modification defect at anticodon Wobble nucleotide of mitochondrial tRNALeu (UUR) pathogenic mutations of mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes. J Biol Chem. 2000;275:4251–7.

    Article  PubMed  CAS  Google Scholar 

  23. Takai K, Okumura S, Hosono K, et al. A single uridine modification at the wobble position of an artificial tRNA enhances wobbling in an Escherichia coli cell-free translation system. FEBS Lett. 1999;447:1–4.

    Article  PubMed  CAS  Google Scholar 

  24. Weixlbaumer A, Murphy IV FV, Dziergowska A, et al. Mechanism for expanding the decoding capacity of transfer RNAs by modification of uridines. Nat Struct Mol Biol. 2007;14:498–502.

    Article  PubMed  CAS  Google Scholar 

  25. Kurata S, Weixlbaumer A, Ohtsuki T, et al. Modified uridines with C5-methylene substituents at the first position of the tRNA anticodon stabilize U-G wobble pairing during decoding. J Biol Chem. 2008;283:18801–11.

    Article  PubMed  CAS  Google Scholar 

  26. Kirino Y, Yasukawa T, Oha S, et al. Codon-specific translation defect caused by wobble modification deficiency in mutant tRNA from a human mitochondrial disease. Proc Natl Acad Sci USA. 2004;101:15070–5.

    Article  PubMed  CAS  Google Scholar 

  27. Hayashi J, Ohta S, Takai D, et al. Accumulation of mtDNA with a mutation at position 3271 in tRNALeu (UUR) gene introduced from a MELAS patient to HeLa cells lacking mtDNA results in progressive inhibition of mitochondrial respiratory function. Biochem Biophys Res Commun. 1993;197:1049–55.

    Article  PubMed  CAS  Google Scholar 

  28. Huxtable RJ. Physiological actions of taurine. Physiol Rev. 1992;72:101–63.

    PubMed  CAS  Google Scholar 

  29. Pion PD, Kittleson MD, Rogers QR, et al. Myocardial failure in cats associated with low plasma taurine: a reversible cardiomyopathy. Science. 1987;237:764–8.

    Article  PubMed  CAS  Google Scholar 

  30. Eley DW, Lake N, ter Keurs HEDJ. Taurine depletion and excitation-contraction coupling in rat myocardium. Circ Res. 1994;74:11210–19.

    Google Scholar 

  31. Ito T, Kimura Y, Uozumi Y, et al. Taurine depletion caused by knocking out the taurine transporter gene leads to a cardiomyopathy and cardiac atrophy. J Mol Cell Cardiol. 2008;44:927–37.

    Article  PubMed  CAS  Google Scholar 

  32. Pastukh V, Ricci C, Solodushko V, et al. Contribution of PI 3-kinase/Akt survival pathway toward osmotic preconditioning. Mol Cell Biochem. 2005;269:59–67.

    Article  PubMed  CAS  Google Scholar 

  33. Sasarman F, Antonicka H, Shoubridge EA. The A3243G tRNALeu (UUR) mutation causes amino acid misincorporation and a combined respiratory chain assembly defect partially suppressed by overexpression of EFTu and EFG2. Hum Mol Genet. 2008;17:3697–707.

    Article  PubMed  CAS  Google Scholar 

  34. Ricci C, Pastukh V, Leonard J, et al. Mitochondrial DNA damage triggers mitochondrial superoxide generation and apoptosis. Am J Physiol. 2008;294:C413–22.

    Article  CAS  Google Scholar 

  35. Lenaz G, Baracca A, Carelli V, et al. Bioenergetics of mitochondrial diseases associated with mtDNA mutations. Biochim Biophys Acta. 2004;1658:89–94.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The present study was supported with a grant from the American Heart Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen W. Schaffer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Schaffer, S.W., Jong, C.J. (2011). MELAS Syndrome: Mediated by Impaired Taurinomethyluridine Synthesis. In: Ostadal, B., Nagano, M., Dhalla, N. (eds) Genes and Cardiovascular Function. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7207-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7207-1_10

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-7206-4

  • Online ISBN: 978-1-4419-7207-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics