Diagnostic Genome Profiling in Mental Retardation

  • David A. Koolen
  • Joris A. Veltman
  • Bert B. A. de Vries
Chapter
Part of the Advances in Neurobiology book series (NEUROBIOL, volume 2)

Abstract

Mental retardation occurs in 2–3% of the general population. Chromosomal aberrations are one of the major causes of mental retardation, but despite the significant progresses in the elucidation of mental retardation, the genetic causes of mental retardation remain largely unknown. Conventional karyotyping using light microscopy has been the primary tool for diagnosing chromosomal aberrations in mental retardation for more than 30 years. Several novel methods based on fluorescence in situ hybridization (FISH) and polymerase chain reaction (PCR)-based methods have been developed over recent years to increase the detection yield of copy-number changes (CNVs) at the submicroscopic level (<5–10 Mb) in individuals with mental retardation. In the last few years, genome-wide microarray technologies have resulted in significant increases in the resolution of chromosome analysis. Microarray ­technologies allow genome-wide detection of multiple genomic submicroscopic CNVs. The implementation of these novel molecular-cytogenetic technologies not only showed that submicroscopic genomic aberrations are an important cause of mental retardation, resulting in newly recognized microdeletion/microduplication syndromes, but also allowed for the identification of novel genes causing mental retardation.

Keywords

Copy-number variants Genome profiling Mental retardation Microarray Molecular karyotyping Syndrome 

Notes

Acknowledgements

This work was supported by grants from the Netherlands Organization for Health Research and Development (ZON-MW) (D.A.K., J.A.V., and B.B.A.d.V.), and the Hersenstichting Nederland (B.B.A.d.V.).

References

  1. Amiel, J., et al. (2007). Mutations in TCF4, encoding a class I basic helix-loop-helix transcription factor, are responsible for Pitt-Hopkins syndrome, a severe epileptic encephalopathy associated with autonomic dysfunction. American Journal of Human Genetics, 80(5), 988–993.PubMedCrossRefGoogle Scholar
  2. Balciuniene, J., et al. (2007). Recurrent 10q22-q23 deletions: A genomic disorder on 10q associated with cognitive and behavioral abnormalities. American Journal of Human Genetics, 80(5), 938–947.PubMedCrossRefGoogle Scholar
  3. Barrett, M. T., et al. (2004). Comparative genomic hybridization using oligonucleotide microarrays and total genomic DNA. Proceedings of the National Academy of Sciences of the United States of America, 101(51), 17765–17770.PubMedCrossRefGoogle Scholar
  4. Bauters, M., et al. (2005). X chromosome array-CGH for the identification of novel X-linked mental retardation genes. European Journal of Medical Genetics, 48(3), 263–275.PubMedCrossRefGoogle Scholar
  5. Boehm, D., et al. (2004). Rapid detection of subtelomeric deletion/duplication by novel real-time quantitative PCR using SYBR-green dye. Human Mutation, 23(4), 368–378.PubMedCrossRefGoogle Scholar
  6. Bruder, C. E., et al. (2001). High resolution deletion analysis of constitutional DNA from neurofibromatosis type 2 (NF2) patients using microarray-CGH. Human Molecular Genetics, 10(3), 271–282.PubMedCrossRefGoogle Scholar
  7. Buckley, P. G., et al. (2002). A full-coverage, high-resolution human chromosome 22 genomic microarray for clinical and research applications. Human Molecular Genetics, 11(25), 3221–3229.PubMedCrossRefGoogle Scholar
  8. Casas, K. A., et al. (2004). Chromosome 2q terminal deletion: report of 6 new patients and review of phenotype-breakpoint correlations in 66 individuals. American Journal of Medical Genetics. Part A, 130(4), 331–339.Google Scholar
  9. Chelly, J., et al. (2006). Genetics and pathophysiology of mental retardation. European Journal of Human Genetics, 14(6), 701–713.PubMedCrossRefGoogle Scholar
  10. Conrad, D. F., et al. (2006). A high-resolution survey of deletion polymorphism in the human genome. Nature Genetics, 38(1), 75–81.PubMedCrossRefGoogle Scholar
  11. de Brouwer, A. P., et al. (2007). Mutation frequencies of X-linked mental retardation genes in families from the EuroMRX consortium. Human Mutation, 28(2), 207–208.PubMedCrossRefGoogle Scholar
  12. de Vries, B. B., et al. (1997). Screening and diagnosis for the fragile X syndrome among the mentally retarded: an epidemiological and psychological survey. Collaborative Fragile X Study Group. American Journal of Human Genetics, 61(3), 660–667.PubMedCrossRefGoogle Scholar
  13. de Vries, B. B., et al. (2001). Submicroscopic subtelomeric 1qter deletions: a recognisable phenotype? Journal of Medical Genetics, 38(3), 175–178.PubMedCrossRefGoogle Scholar
  14. de Vries, B. B., et al. (2003). Telomeres: A diagnosis at the end of the chromosomes. Journal of Medical Genetics, 40(6), 385–398.PubMedCrossRefGoogle Scholar
  15. de Vries, B. B., et al. (2005). Diagnostic genome profiling in mental retardation. American Journal of Human Genetics, 77(4), 606–616.PubMedCrossRefGoogle Scholar
  16. Dobyns, W. B., et al. (1991). Clinical and molecular diagnosis of Miller-Dieker syndrome. American Journal of Human Genetics, 48(3), 584–594.PubMedGoogle Scholar
  17. Edwards, J. H., et al. (1960). A new trisomic syndrome. Lancet, 1, 787–790.PubMedCrossRefGoogle Scholar
  18. Ekong, R., et al. (2004). Chromosomal anomalies on 6p25 in iris hypoplasia and Axenfeld-Rieger syndrome patients defined on a purpose-built genomic microarray. Human Mutation, 24(1), 76–85.PubMedCrossRefGoogle Scholar
  19. Engels, H., et al. (2007). DNA microarray analysis identifies candidate regions and genes in unexplained mental retardation. Neurology, 68(10), 743–750.PubMedCrossRefGoogle Scholar
  20. Flint, J., et al. (1995). The detection of subtelomeric chromosomal rearrangements in idiopathic mental retardation. Nature Genetics, 9(2), 132–140.PubMedCrossRefGoogle Scholar
  21. Flint, J., & Knight, S. (2003). The use of telomere probes to investigate submicroscopic rearrangements ­associated with mental retardation. Current Opinion in Genetics & Development, 13(3), 310–316.CrossRefGoogle Scholar
  22. Ford, C. E., & Hamerton, J. L. (1956a). A colchicine, hypotonic citrate, squash sequence for mammalian ­chromosomes. Stain Technology, 31(6), 247–251.PubMedGoogle Scholar
  23. Ford, C. E., & Hamerton, J. L. (1956b). The chromosomes of man. Nature, 178(4541), 1020–1023.PubMedCrossRefGoogle Scholar
  24. Ford, C. E., et al. (1959). A sex-chromosome anomaly in a case of gonadal dysgenesis (Turner’s syndrome). Lancet, 1(7075), 711–713.PubMedCrossRefGoogle Scholar
  25. Friedman, J. M., et al. (2006). Oligonucleotide microarray analysis of genomic imbalance in children with mental retardation. American Journal of Human Genetics, 79(3), 500–513.PubMedCrossRefGoogle Scholar
  26. Harada, N., et al. (2004). Subtelomere specific microarray based comparative genomic hybridisation: A rapid detection system for cryptic rearrangements in idiopathic mental retardation. Journal of Medical Genetics, 41(2), 130–136.PubMedCrossRefGoogle Scholar
  27. Hinds, D. A., et al. (2006). Common deletions and SNPs are in linkage disequilibrium in the human genome. Nature Genetics, 38(1), 82–85.PubMedCrossRefGoogle Scholar
  28. Huang, J., et al. (2004). Whole genome DNA copy number changes identified by high density oligonucleotide arrays. Human Genomics, 1(4), 287–299.PubMedCrossRefGoogle Scholar
  29. Iafrate, A. J., et al. (2004). Detection of large-scale variation in the human genome. Nature Genetics, 36(9), 949–951.PubMedCrossRefGoogle Scholar
  30. Ishkanian, A. S., et al. (2004). A tiling resolution DNA microarray with complete coverage of the human genome. Nature Genetics, 36(3), 299–303.PubMedCrossRefGoogle Scholar
  31. Jacobs, P. A., & Strong, J. A. (1959). A case of human intersexuality having a possible XXY sex-determining mechanism. Nature, 183(4657), 302–303.PubMedCrossRefGoogle Scholar
  32. Jongmans, M. C., et al. (2006). CHARGE syndrome: The phenotypic spectrum of mutations in the CHD7 gene. Journal of Medical Genetics, 43(4), 306–314.PubMedCrossRefGoogle Scholar
  33. Kallioniemi, A., et al. (1992). Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science, 258(5083), 818–821.PubMedCrossRefGoogle Scholar
  34. Kirchhoff, M., et al. (2007). MLPA analysis for a panel of syndromes with mental retardation reveals imbalances in 5.8% of patients with mental retardation and dysmorphic features, including duplications of the Sotos syndrome and Williams-Beuren syndrome regions. European Journal of Medical Genetics, 50(1), 33–42.PubMedCrossRefGoogle Scholar
  35. Knight, S. J., et al. (1999). Subtle chromosomal rearrangements in children with unexplained mental retardation. Lancet, 354(9191), 1676–1681.PubMedCrossRefGoogle Scholar
  36. Koolen, D. A., et al. (2004). Screening for subtelomeric rearrangements in 210 patients with unexplained mental retardation using multiplex ligation dependent probe amplification (MLPA). Journal of Medical Genetics, 41(12), 892–899.PubMedCrossRefGoogle Scholar
  37. Koolen, D. A., et al. (2006). A new chromosome 17q21.31 microdeletion syndrome associated with a common inversion polymorphism. Nature Genetics, 38(9), 999–1001.PubMedCrossRefGoogle Scholar
  38. Krepischi-Santos, A. C., et al. (2006). Whole-genome array-CGH screening in undiagnosed syndromic patients: Old syndromes revisited and new alterations. Cytogenetic and Genome Research, 115(3–4), 254–261.PubMedCrossRefGoogle Scholar
  39. Ledbetter, D. H., et al. (1981). Deletions of chromosome 15 as a cause of the Prader-Willi ­syndrome. The New England Journal of Medicine, 304(6), 325–329.PubMedCrossRefGoogle Scholar
  40. Lejeune, J., et al. (1959). Study of somatic chromosomes from 9 mongoloid children. Competes Rendus Hebdomadaires des Seances de l’Academis des Sciences, 248(11), 1721–1722.Google Scholar
  41. Leonard, H., et al. (2002). The epidemiology of mental retardation: challenges and opportunities in the new millennium. Mental Retardation and Developmental Disabilities Research Reviews, 8(3), 117–134.PubMedCrossRefGoogle Scholar
  42. Lesnik Oberstein, S. A., et al. (2006). Peters Plus syndrome is caused by mutations in B3GALTL, a putative glycosyltransferase. American Journal of Human Genetics, 79(3), 562–566.PubMedCrossRefGoogle Scholar
  43. Lindsay, E. A. (2001). Chromosomal microdeletions: dissecting del22q11 syndrome. Nature Reviews. Genetics, 2(11), 858–868.PubMedCrossRefGoogle Scholar
  44. Locke, D. P., et al. (2004). BAC microarray analysis of 15q11-q13 rearrangements and the impact of segmental duplications. Journal of Medical Genetics, 41(3), 175–182.PubMedCrossRefGoogle Scholar
  45. Lu, X. Y., et al. (2002). The utility of spectral karyotyping in the cytogenetic analysis of newly diagnosed pediatric acute lymphoblastic leukemia. Leukemia, 16(11), 2222–2227.PubMedCrossRefGoogle Scholar
  46. Lu, X., et al. (2007). Clinical implementation of chromosomal microarray analysis: summary of 2513 postnatal cases. PLoS ONE, 2, e327.PubMedCrossRefGoogle Scholar
  47. Luckasson, R., Borthwick-Duffy, S., Buntinx, W. H. E., Coulter, D. L., Snell, M. E., Spitalnik, D. M., et al. (2002). Mental retardation: Definition, classification, and systems of support (10th ed.). Washington: American Association on Mental Retardation.Google Scholar
  48. Lugtenberg, D., et al. (2006). ZNF674: A new kruppel-associated box-containing zinc-finger gene involved in nonsyndromic X-linked mental retardation. American Journal of Human Genetics, 78(2), 265–278.PubMedCrossRefGoogle Scholar
  49. Lupski, J. R. (1998). Genomic disorders: structural features of the genome can lead to DNA rearrangements and human disease traits. Trends in Genetics, 14(10), 417–422.PubMedCrossRefGoogle Scholar
  50. Magenis, R. E., et al. (1987). Is Angelman syndrome an alternate result of del(15)(q11q13)? American Journal of Medical Genetics, 28(4), 829–838.PubMedCrossRefGoogle Scholar
  51. Magenis, R. E., et al. (1990). Comparison of the 15q deletions in Prader-Willi and Angelman syndromes: specific regions, extent of deletions, parental origin, and clinical consequences. American Journal of Medical Genetics, 35(3), 333–349.PubMedCrossRefGoogle Scholar
  52. Malcolm, S., et al. (1991). Uniparental paternal disomy in Angelman’s syndrome. Lancet, 337(8743), 694–697.PubMedCrossRefGoogle Scholar
  53. Mao, R., & Pevsner, J. (2005). The use of genomic microarrays to study chromosomal abnormalities in mental retardation. Mental Retardation and Developmental Disabilities Research Reviews, 11(4), 279–285.PubMedCrossRefGoogle Scholar
  54. McCarroll, S. A., et al. (2006). Common deletion polymorphisms in the human genome. Nature Genetics, 38(1), 86–92.PubMedCrossRefGoogle Scholar
  55. McLaren, J., & Bryson, S. E. (1987). Review of recent epidemiological studies of mental retardation: prevalence, associated disorders, and etiology. American Journal of Mental Retardation, 92(3), 243–254.PubMedGoogle Scholar
  56. Menten, B., et al. (2006). Emerging patterns of cryptic chromosomal imbalance in patients with idiopathic mental retardation and multiple congenital anomalies: a new series of 140 patients and review of published reports. Journal of Medical Genetics, 43(8), 625–633.PubMedCrossRefGoogle Scholar
  57. Miyake, N., et al. (2006). BAC array CGH reveals genomic aberrations in idiopathic mental retardation. American Journal of Medical Genetics. Part A, 140(3), 205–211.PubMedCrossRefGoogle Scholar
  58. Moog, U. (2005). The outcome of diagnostic studies on the etiology of mental retardation: Considerations on the classification of the causes. American Journal of Medical Genetics. Part A, 137(2), 228–231.PubMedCrossRefGoogle Scholar
  59. Nannya, Y., et al. (2005). A robust algorithm for copy number detection using high-density oligonucleotide single nucleotide polymorphism genotyping arrays. Cancer Research, 65(14), 6071–6079.PubMedCrossRefGoogle Scholar
  60. Nesslinger, N. J., et al. (1994). Clinical, cytogenetic, and molecular characterization of seven patients with deletions of chromosome 22q13.3. American Journal of Human Genetics, 54(3), 464–472.PubMedGoogle Scholar
  61. Patau, K., et al. (1960). Multiple congenital anomaly caused by an extra autosome. Lancet, 1, 790–793.PubMedCrossRefGoogle Scholar
  62. Peiffer, D. A., et al. (2006). High-resolution genomic profiling of chromosomal aberrations using Infinium whole-genome genotyping. Genome Research, 16(9), 1136–1148.PubMedCrossRefGoogle Scholar
  63. Pinkel, D., et al. (1998). High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nature Genetics, 20(2), 207–211.PubMedCrossRefGoogle Scholar
  64. Pollack, J. R., et al. (1999). Genome-wide analysis of DNA copy-number changes using cDNA microarrays. Nature Genetics, 23(1), 41–46.PubMedCrossRefGoogle Scholar
  65. Potocki, L., et al. (2000). Molecular mechanism for duplication 17p11.2- the homologous recombination reciprocal of the Smith-Magenis microdeletion. Nature Genetics, 24(1), 84–87.PubMedCrossRefGoogle Scholar
  66. Rauch, A., et al. (2006). Diagnostic yield of various genetic approaches in patients with unexplained developmental delay or mental retardation. American Journal of Medical Genetics. Part A, 140(19), 2063–2074.PubMedCrossRefGoogle Scholar
  67. Ravnan, J. B., et al. (2006). Subtelomere FISH analysis of 11 688 cases: An evaluation of the frequency and pattern of subtelomere rearrangements in individuals with developmental disabilities. Journal of Medical Genetics, 43(6), 478–489.PubMedCrossRefGoogle Scholar
  68. Raymond, F. L., & Tarpey, P. (2006). The genetics of mental retardation. Human Molecular Genetics, 15 Spec No 2, R110–R116.PubMedCrossRefGoogle Scholar
  69. Redon, R., et al. (2006). Global variation in copy number in the human genome. Nature, 444(7118), 444–454.PubMedCrossRefGoogle Scholar
  70. Rooms, L., et al. (2004). Subtelomeric deletions detected in patients with idiopathic mental retardation using multiplex ligation-dependent probe amplification (MLPA). Human Mutation, 23(1), 17–21.PubMedCrossRefGoogle Scholar
  71. Ropers, H. H., & Hamel, B. C. (2005). X-linked mental retardation. Nature Reviews. Genetics, 6(1), 46–57.PubMedCrossRefGoogle Scholar
  72. Rosenberg, C., et al. (2006). Array-CGH detection of micro rearrangements in mentally retarded individuals: clinical significance of imbalances present both in affected children and normal parents. Journal of Medical Genetics, 43(2), 180–186.PubMedCrossRefGoogle Scholar
  73. Ruiter, M., et al. (2006). A novel 2.3 Mb microduplication of 12q24.21q24.23 detected by genome-wide tiling-path resolution array comparative genomic hybridization in a girl with syndromic mental retardation. Clinical Dysmorphology, 15(3), 133–137.PubMedCrossRefGoogle Scholar
  74. Scambler, P. J., et al. (1992). Velo-cardio-facial syndrome associated with chromosome 22 deletions encompassing the DiGeorge locus. Lancet, 339(8802), 1138–1139.PubMedCrossRefGoogle Scholar
  75. Schoumans, J., et al. (2005). Detection of chromosomal imbalances in children with idiopathic mental retardation by array based comparative genomic hybridisation (array-CGH). Journal of Medical Genetics, 42(9), 699–705.PubMedCrossRefGoogle Scholar
  76. Schouten, J. P., et al. (2002). Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Research, 30(12), e57.PubMedCrossRefGoogle Scholar
  77. Sebat, J., et al. (2004). Large-scale copy number polymorphism in the human genome. Science, 305(5683), 525–528.PubMedCrossRefGoogle Scholar
  78. Selzer, R. R., et al. (2005). Analysis of chromosome breakpoints in neuroblastoma at sub-kilobase resolution using fine-tiling oligonucleotide array CGH. Genes, Chromosomes & Cancer, 44(3), 305–319.CrossRefGoogle Scholar
  79. Shaffer, L. G., & Bejjani, B. A. (2004). A cytogeneticist’s perspective on genomic microarrays. Human Reproduction Update, 10(3), 221–226.PubMedCrossRefGoogle Scholar
  80. Shaffer, L. G., et al. (2006). Targeted genomic microarray analysis for identification of chromosome abnormalities in 1500 consecutive clinical cases. Jornal de Pediatria, 149(1), 98–102.Google Scholar
  81. Sharp, A. J., et al. (2005). Segmental duplications and copy-number variation in the human genome. American Journal of Human Genetics, 77(1), 78–88.PubMedCrossRefGoogle Scholar
  82. Sharp, A. J., et al. (2006). Discovery of previously unidentified genomic disorders from the duplication architecture of the human genome. Nature Genetics, 38(9), 1038–1042.PubMedCrossRefGoogle Scholar
  83. Sharp, A. J., et al. (2007). Characterization of a recurrent 15q24 microdeletion syndrome. Human Molecular Genetics, 16(5), 567–572.PubMedCrossRefGoogle Scholar
  84. Shaw, C. J., et al. (2004). Comparative genomic hybridisation using a proximal 17p BAC/PAC array detects rearrangements responsible for four genomic disorders. Journal of Medical Genetics, 41(2), 113–119.PubMedCrossRefGoogle Scholar
  85. Shaw-Smith, C., et al. (2004). Microarray based comparative genomic hybridisation (array-CGH) detects submicroscopic chromosomal deletions and duplications in patients with learning ­disability/mental retardation and dysmorphic features. Journal of Medical Genetics, 41(4), 241–248.PubMedCrossRefGoogle Scholar
  86. Shaw-Smith, C., et al. (2006). Microdeletion encompassing MAPT at chromosome 17q21.3 is associated with developmental delay and learning disability. Nature Genetics, 38(9), 1032–1037.PubMedCrossRefGoogle Scholar
  87. Sismani, C., et al. (2001). Screening for subtelomeric chromosome abnormalities in children with idiopathic mental retardation using multiprobe telomeric FISH and the new MAPH telomeric assay. European Journal of Human Genetics, 9(7), 527–532.PubMedCrossRefGoogle Scholar
  88. Slater, H. R., et al. (2005). High-resolution identification of chromosomal abnormalities using oligonucleotide arrays containing 116, 204 SNPs. American Journal of Human Genetics, 77(5), 709–726.PubMedCrossRefGoogle Scholar
  89. Slavotinek, A., et al. (1999). Monosomy 1p36. Journal of Medical Genetics, 36(9), 657–663.PubMedGoogle Scholar
  90. Smeets, D. F. (2004). Historical prospective of human cytogenetics: From microscope to microarray. Clinical Biochemistry, 37(6), 439–446.PubMedCrossRefGoogle Scholar
  91. Smith, A. C., et al. (1986). Interstitial deletion of (17)(p11.2p11.2) in nine patients. American Journal of Medical Genetics, 24(3), 393–414.PubMedCrossRefGoogle Scholar
  92. Snijders, A. M., et al. (2001). Assembly of microarrays for genome-wide measurement of DNA copy number. Nature Genetics, 29(3), 263–264.PubMedCrossRefGoogle Scholar
  93. Solinas-Toldo, S., et al. (1997). Matrix-based comparative genomic hybridization: Biochips to screen for genomic imbalances. Genes, Chromosomes & Cancer, 20(4), 399–407.CrossRefGoogle Scholar
  94. Solomon, N. M., et al. (2004). Array comparative genomic hybridisation analysis of boys with X linked hypopituitarism identifies a 3.9 Mb duplicated critical region at Xq27 containing SOX3. Journal of Medical Genetics, 41(9), 669–678.PubMedCrossRefGoogle Scholar
  95. Somerville, M. J., et al. (2005). Severe expressive-language delay related to duplication of the Williams-Beuren locus. The New England Journal of Medicine, 353(16), 1694–1701.PubMedCrossRefGoogle Scholar
  96. Speicher, M. R., et al. (1996). Karyotyping human chromosomes by combinatorial multi-fluor FISH. Nature Genetics, 12(4), 368–375.PubMedCrossRefGoogle Scholar
  97. Stankiewicz, P., & Lupski, J. R. (2002). Molecular-evolutionary mechanisms for genomic disorders. Current Opinion in Genetics & Development, 12(3), 312–319.CrossRefGoogle Scholar
  98. Stewart, D. R., et al. (2004). Subtelomeric deletions of chromosome 9q: a novel microdeletion syndrome. American Journal of Medical Genetics. Part A, 128(4), 340–351.Google Scholar
  99. Tjio, J. H., & Levan, A. (1956). The chromosome number in man. Hereditas, 42, 1–6.CrossRefGoogle Scholar
  100. Trask, B. J. (1991). Fluorescence in situ hybridization: applications in cytogenetics and gene mapping. Trends in Genetics, 7(5), 149–154.PubMedCrossRefGoogle Scholar
  101. Tuzun, E., et al. (2005). Fine-scale structural variation of the human genome. Nature Genetics, 37(7), 727–732.PubMedCrossRefGoogle Scholar
  102. Tyson, C., et al. (2005). Submicroscopic deletions and duplications in individuals with intellectual disability detected by array-CGH. American Journal of Medical Genetics. Part A, 139(3), 173–185.PubMedCrossRefGoogle Scholar
  103. van Buggenhout, G., et al. (2004). Mild Wolf-Hirschhorn syndrome: Micro-array CGH analysis of atypical 4p16.3 deletions enables refinement of the genotype-phenotype map. Journal of Medical Genetics, 41(9), 691–698.PubMedCrossRefGoogle Scholar
  104. van den IJssel, P., et al. (2005). Human and mouse oligonucleotide-based array CGH. Nucleic Acids Research, 33(22), e192.PubMedCrossRefGoogle Scholar
  105. Veltman, J. A., et al. (2002). High-throughput analysis of subtelomeric chromosome rearrangements by use of array-based comparative genomic hybridization. American Journal of Human Genetics, 70(5), 1269–1276.PubMedCrossRefGoogle Scholar
  106. Veltman, J. A., et al. (2003). Definition of a critical region on chromosome 18 for congenital aural atresia by arrayCGH. American Journal of Human Genetics, 72(6), 1578–1584.PubMedCrossRefGoogle Scholar
  107. Veltman, J. A., et al. (2004). High resolution profiling of X chromosomal aberrations by array comparative genomic hybridisation. Journal of Medical Genetics, 41(6), 425–432.PubMedCrossRefGoogle Scholar
  108. Vermeesch, J. R., et al. (2005). Molecular karyotyping: Array CGH quality criteria for constitutional genetic diagnosis. The Journal of Histochemistry and Cytochemistry, 53(3), 413–422.PubMedCrossRefGoogle Scholar
  109. Visser, R., et al. (2005). Identification of a 3.0-kb major recombination hotspot in patients with Sotos syndrome who carry a common 1.9-Mb microdeletion. American Journal of Human Genetics, 76(1), 52–67.PubMedCrossRefGoogle Scholar
  110. Vissers, L. E., et al. (2003). Array-based comparative genomic hybridization for the genomewide detection of submicroscopic chromosomal abnormalities. American Journal of Human Genetics, 73(6), 1261–1270.PubMedCrossRefGoogle Scholar
  111. Vissers, L. E., et al. (2004). Mutations in a new member of the chromodomain gene family cause CHARGE syndrome. Nature Genetics, 36(9), 955–957.PubMedCrossRefGoogle Scholar
  112. Vissers, L. E., et al. (2005). Identification of disease genes by whole genome CGH arrays. Human Molecular Genetics, 14 Spec No 2, R215–R223.PubMedCrossRefGoogle Scholar
  113. Willatt, L., et al. (2005). 3q29 microdeletion syndrome: clinical and molecular characterization of a new syndrome. American Journal of Human Genetics, 77(1), 154–160.PubMedCrossRefGoogle Scholar
  114. Yu, W., et al. (2003). Development of a comparative genomic hybridization microarray and demonstration of its utility with 25 well-characterized 1p36 deletions. Human Molecular Genetics, 12(17), 2145–2152.PubMedCrossRefGoogle Scholar
  115. Yunis, J. J. (1976). High resolution of human chromosomes. Science, 191(4233), 1268–1270.PubMedCrossRefGoogle Scholar
  116. Zhou, X., et al. (2004). Concurrent analysis of loss of heterozygosity (LOH) and copy number abnormality (CNA) for oral premalignancy progression using the Affymetrix 10K SNP mapping array. Human Genetics, 115(4), 327–330.PubMedCrossRefGoogle Scholar
  117. Zweier, C., et al. (2007). Haploinsufficiency of TCF4 causes syndromal mental retardation with intermittent hyperventilation (Pitt-Hopkins Syndrome). American Journal of Human Genetics, 80(5), 994–1001.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • David A. Koolen
  • Joris A. Veltman
  • Bert B. A. de Vries
    • 1
  1. 1.Department of Human Genetics, Nijmegen Centre for Molecular Life SciencesRadboud University Nijmegen Medical CentreNijmegenThe Netherlands

Personalised recommendations