Skip to main content

Prenatal Viral Infection in Mouse: An Animal Model of Schizophrenia

  • Chapter
  • First Online:
Genomics, Proteomics, and the Nervous System

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 2))

  • 959 Accesses

Abstract

Schizophrenia is a major debilitating disease with a lifetime prevalence of 1% throughout the world. There is robust epidemiologic evidence indicating that environmental contributions, such as prenatal infections, may lead to the genesis of schizophrenia. Our laboratory has developed an animal model using human influenza virus to infect pregnant Balb/c and C57BL/6 mice intranasally at selected time points during pregnancy to investigate the role of prenatal viral infection on brain development. In this chapter, we review our research using this model and the changes in brain structure, gene expression, neurochemistry, and behavior that are observed in the offspring of infected dams. Our observations are consistent with findings observed in subjects with schizophrenia, providing additional evidence for the role of prenatal viral infection in the etiology of this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abi-Dargham, A., Mawlawi, O., Lombardo, I., Gil, R., Martinez, D., Huang, Y., et al. (2002). Prefrontal dopamine D1 receptors and working memory in schizophrenia. J Neurosci, 22, 3708–3719.

    PubMed  CAS  Google Scholar 

  • Abi-Dargham, A., Rodenhiser, J., Printz, D., Zea-Ponce, Y., Gil, R., Kegeles, L. S., et al. (2000). Increased baseline occupancy of D2 receptors by dopamine in schizophrenia. Proc Natl Acad Sci U S A, 97, 8104–8109.

    Article  PubMed  CAS  Google Scholar 

  • Acuff-Smith, K. D., & Vorhees, C. V. (1999). Neurobehavioral teratology. In R. J. M. Niesink, R. M. A. Jaspers, L. M. W. Kornet, J. M. VanRee, & H. A. Tilson (Eds.), Introduction to neurobehavioral toxicology, food and environment (pp. 26–69). Boca Raton, FL: CRC.

    Google Scholar 

  • Adams, W., Kendell, R. E., & Hare, E. T. (1993). Epidemiological evidence that maternal influenza contributes to the aetiology of schizophrenia: An analysis of Scottish, English, and Danish data. Br J Psychiatry, 163, 522–534.

    Article  PubMed  CAS  Google Scholar 

  • Andreasen, N. C. (1999). A unitary model of schizophrenia. Bleuler’s “Fragmented phrene” as schizencephaly. Arch Gen Psychiatry, 56, 781–793.

    Article  PubMed  CAS  Google Scholar 

  • Arnold, S. E., & Trojanowski, J. Q. (1996). Recent advanced in defining the neuropathology of schizophrenia. Acta Neuropath, 92, 217–231.

    Article  PubMed  CAS  Google Scholar 

  • Avishai-Eliner, S., Brunson, K. L., Sandman, C. A., & Baram, T. Z. (2002). Stressed-out or in (utero)? Trends Neurosci, 25, 518–524.

    Article  PubMed  CAS  Google Scholar 

  • Barr, C. E., Mednick, S. A., & Munk-Jorgensen, P. (1990). Exposure to influenza epidemics during gestation and adult schizophrenia: A 40-year study. Arch Gen Psychiatry, 47, 869–874.

    Article  PubMed  CAS  Google Scholar 

  • Blond, J. L., Besème, F., Duret, L., Bouton, O., Bedin, F., Perron, H., et al. (1999). Molecular characterization and placental expression of HERV-W, a new human endogenous retrovirus family. J Virol, 73, 1175–1185.

    PubMed  CAS  Google Scholar 

  • Boksa, P., & Luheshi, G. N. (2003). On the use of animal modeling to study maternal infection during pregnancy and prenatal cytokine exposure as risk factors for schizophrenia. Clin Neurosci, 3, 339–346.

    Article  CAS  Google Scholar 

  • Boyd, J. H., Pulver, A. E., & Stewart, W. (1986). Season of birth: Schizophrenia and bipolar disorder. Schizophr Bull, 12, 173–186.

    Article  PubMed  CAS  Google Scholar 

  • Boyer, P., Phillips, J. L., Rousseau, F. L., & Ilivitsky, S. (2007). Hippocampal abnormalities and memory deficits: New evidence of a strong pathophysiological link in schizophrenia. Brain Res Rev, 54, 92–112.

    Article  PubMed  CAS  Google Scholar 

  • Brown, A. S. (2006). Prenatal infection as a risk factor for schizophrenia. Schizophr Bull, 32, 200–202.

    Article  PubMed  Google Scholar 

  • Brown, A. S., Begg, M. D., Gravenstein, S., Schaefer, C. A., Wyatt, R. J., Bresnahan, M., et al. (2004). Serologic evidence of prenatal influenza in the etiology of schizophrenia. Arch Gen Psychiatry, 61, 774–780.

    Article  PubMed  Google Scholar 

  • Chung, C., Tallerico, T., & Seeman, P. (2003). Schizophrenia hippocampus has elevated expression of chondrex glycoprotein gene. Synapse, 50, 29–34.

    Article  PubMed  CAS  Google Scholar 

  • Crespo-Facorro, B., Barbadillo, L., Pelayo-Terán, J. M., & Rodríguez-Sánchez, J. M. (2007). Neuropsychological functioning and brain structure in schizophrenia. Int Rev Psychiatry, 19, 325–336.

    Article  PubMed  Google Scholar 

  • Do, K. Q., Lauer, C. J., Schreiber, W., Zollinger, M., Gutteck-Amsler, U., Cuenod, M., et al. (1995). Gamma-glutamylglutamine and taurine concentrations are decreased in the cerebrospinal fluid of drug-naive patients with schizophrenic disorders. J Neurochem, 65, 2652–2662.

    Article  PubMed  CAS  Google Scholar 

  • Erlenmeyer-Kimling, L., Folnegovic, Z., Hrabak-Zerjavic, V., Borcic, B., Folnegovic-Smalc, V., & Susser, E. (1994). Schizophrenia and prenatal exposure to the 1957 A2 influenza epidemic in Croatia. Am J Psychiatry, 151, 1496–1498.

    PubMed  CAS  Google Scholar 

  • Fahy, T. A., Jones, P. B., & Sham, P. C. (1993). Schizophrenia in Afro-Caribbeans in the UK ­following prenatal exposure to the 1957 A2 influenza epidemic. Schizophr Res, 6, 98–99.

    Article  Google Scholar 

  • Fatemi, S. H., Earle, J. A., Kanodia, R., Kist, D., Emamian, E. S., Patterson, P. H., et al. (2002). Prenatal viral infection leads to pyramidal cell atrophy and macrocephaly in adulthood: Implications for genesis of autism and schizophrenia. Cell Mol Neurobiol, 22, 25–33.

    Article  PubMed  Google Scholar 

  • Fatemi, S. H., Earle, J., & McMenomy, T. (2000). Reduction in Reelin immunoreactivity in ­hippocampus of subjects with schizophrenia, bipolar disorder, and major depression. Mol Psychiatry, 5, 654–663.

    Article  PubMed  CAS  Google Scholar 

  • Fatemi, S. H., Emamian, E. S., Kist, D., Sidwell, R. W., Nakajima, K., Akhter, P., et al. (1999). Defective corticogenesis and reduction in Reelin immunoreactivity in cortex and hippocampus of prenatally infected neonatal mice. Mol Psychiatry, 4, 145–154.

    Article  PubMed  CAS  Google Scholar 

  • Fatemi, S. H., Emamian, E. S., Sidwell, R. W., Kist, D. A., Stary, J. M., Earle, J. A., et al. (2002). Human influenza viral infection in utero alters glial fibrillary acidic protein immunoreactivity in developing brains of neonatal mice. Mol Psychiatry, 7, 633–640.

    Article  PubMed  CAS  Google Scholar 

  • Fatemi, S. H., Folsom, T. D., Reutiman, T. J., & Sidwell, R. W. (2008a). Viral regulation of ­aquaporin 4, connexin 43, microcephalin and nucleolin. Schizophr Res, 98, 163–177.

    Article  PubMed  Google Scholar 

  • Fatemi, S. H., Laurence, J. A., Araghi-Niknam, M., Stary, J. M., Schulz, S. C., Lee, S., et al. (2004). Glial fibrillary acidic protein is reduced in cerebellum of subjects with major depression, but not schizophrenia. Schizophr Res, 69, 317–323.

    Article  PubMed  Google Scholar 

  • Fatemi, S. H., Pearce, D. A., Brooks, A., & Sidwell, R. (2003). cDNA microarray studies of prenatal virally induced brain disorders in mouse. Stanley Proteomics and Genomes Meeting.

    Google Scholar 

  • Fatemi, S. H., Pearce, D. A., Brooks, A. I., & Sidwell, R. W. (2005). Prenatal viral infection in mouse causes differential expression of genes in brains of mouse progeny: A potential animal model for schizophrenia and autism. Synapse, 57, 91–99.

    Article  PubMed  CAS  Google Scholar 

  • Fatemi, S. H., Reutiman, T. J., Folsom, T. D., Huang, H., Oishi, K., Mori, S., et al. (2008b). Maternal infection leads to abnormal gene regulation and brain atrophy in mouse offspring: Implications for genesis of neurodevelopmental disorders. Schizophr Res, 99, 56–70.

    Article  PubMed  Google Scholar 

  • Fatemi, S. H., Reutiman, T. J., Folsom, T. D., & Sidwell, R. W. (2008c). The role of cerebellar genes in pathology of autism and schizophrenia. Cerebellum, 7, 279–294.

    Article  PubMed  CAS  Google Scholar 

  • Fatemi, S.H., Folsom, T.D., Reutiman, T.J., Huang, H., Oishi, K., Mori, S., 2009a. Prenatal viral infection of mice at E16 causes changes in gene expression in the hippocampi of the offspring. Eur Neuropsychopharmacol , 19, 648–653.

    Google Scholar 

  • Fatemi, S.H., Folsom, T.D., Reutiman, T.J., Abu-Odeh, D., Mori, S., Huang, H., Oishi, K., 2009b. Abnormal expression of myelination genes and alterations in white matter fractional anisotropy following prenatal viral influenza infection at E16 in mice. Schizophr Res, 112, 46–53.

    Google Scholar 

  • Fatemi, S. H., Sidwell, R., Akhter, P., Sedgwick, J., Thuras, P., & Barley, K. (1998). Human influenza viral infection in utero increases nNOS expression in hippocampi of neonatal mice. Synapse, 29, 84–88.

    Article  PubMed  CAS  Google Scholar 

  • Fatemi, S. H., Sidwell, R., Kist, D., Akhter, P., Bailey, K., Thuras, P., et al. (1998). Differential expression of synaptosome-associated protein 25 kDa (SNAP-25) in hippocampi of neonatal mice following exposure to human influenza virus in utero. Brain Res, 800, 1–9.

    Article  PubMed  CAS  Google Scholar 

  • Fatemi, S. H., Stary, J. M., Earle, J. A., Araghi-Niknam, M., & Eagan, E. (2005). GABAergic dysfunction in schizophrenia and mood disorders as reflected by decreased levels of glutamic acid decarboxylase 65 and 67 kDa and Reelin proteins in cerebellum. Schizophr Res, 72, 109–122.

    Article  PubMed  Google Scholar 

  • Geyer, M. A., Braff, D. L., & Swerdlow, N. R. (1999). Startle-response measures of information processing in animals: Relevance to schizophrenia. In M. Haug & R. E. Whalen (Eds.), Animal models of human emotion and cognition (pp. 103–116). Washington, DC: APA.

    Chapter  Google Scholar 

  • Gong, X., Jia, M., Ruan, Y., Shuang, M., Liu, J., Wu, S., et al. (2004). Association between the FOXP2 gene and autistic disorder in Chinese population. Am J Med Genet B Neuropsychiatr Genet, 127, 113–116.

    Article  Google Scholar 

  • Hakak, Y., Walker, J. R., Li, C., Wong, W. H., Davis, K. L., Buxbaum, J. D., et al. (2001). Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. Proc Natl Acad Sci U S A, 98, 4746–4751.

    Article  PubMed  CAS  Google Scholar 

  • Hare, E. H., Price, J. S., & Slater, E. (1972). Schizophrenia and season of birth. Br J Psychiatry, 120, 125–126.

    Google Scholar 

  • Hashimoto, T., Volk, D. W., Eggan, S. M., Mirnics, K., Pierri, J. N., Sun, Z., et al. (2003). Gene expression deficits in a subclass of GABA neurons in the prefrontal cortex of subjects with schizophrenia. J Neurosci, 23, 6315–6326.

    PubMed  CAS  Google Scholar 

  • Heckers, S., Stone, D., Walsh, J., Shick, J., Koul, P., & Benes, F. M. (2002). Differential hippocampal expression of glutamic acid decarboxylase 67&67 messenger RNA in bipolar disorder and schizophrenia. Arch Gen Psychiatry, 59, 521–529.

    Article  PubMed  CAS  Google Scholar 

  • Hogan, B., Beddington, R., Constantini, F., & Lacy, E. (1994). Manipulating the mouse embryo. A laboratory manual. New York: CSHL.

    Google Scholar 

  • Holson, R. R., Adams, J., & Ferguson, S. A. (1999). Gestational stage-specific effects of retinois acid exposure in the rat. Neurotoxicol Teratol, 21, 393–402.

    Article  PubMed  CAS  Google Scholar 

  • Impagnatiello, F., Guidotti, A. R., Pesold, C., Dwivedi, Y., Caruncho, H., Pisu, M., et al. (1998). A decrease of Reelin expression as a putative vulnerability factor in schizophrenia. Proc Natl Acad Sci U S A, 95, 15718–15723.

    Article  PubMed  CAS  Google Scholar 

  • Juckel, G., Gallinat, J., Riedel, M., Sokullu, S., Schulz, C., Moller, H. J., et al. (2003). Serotonergic dysfunction in schizophrenia assessed by the loudness dependence measure of primary auditory cortex evoked activity. Schizophr Res, 64, 115–124.

    Article  PubMed  Google Scholar 

  • Juckel, G., Gudlowski, Y., Müller, D., Özgürdal, S., Brüne, M., Gallinat, J., et al. (2008). Loudness dependence of the auditory evoked N1/P2-component as an indicator of serotonergic dysfunction in patients with schizophrenia – a replication study. Psychiatry Res, 158, 79–82.

    Article  PubMed  Google Scholar 

  • Karlsson, H., Bachmann, S., Schroder, J., McArthur, J., Torrey, E. F., & Yolken, R. H. (2001). Retroviral RNA identified in the cerebrospinal fluids and brains of individuals with schizophrenia. Proc Natl Acad Sci U S A, 98, 4634–4639.

    Article  PubMed  CAS  Google Scholar 

  • Kaufmann, W. (2000). Developmental neurotoxicity. In G. J. Krinke (Ed.), The laboratory rat (pp. 227–250). New York: Academic.

    Chapter  Google Scholar 

  • Kendell, R. E., & Kemp, I. W. (1989). Maternal influenza in the etiology of schizophrenia. Arch Gen Psychiatry, 46, 878–882.

    Article  PubMed  CAS  Google Scholar 

  • Koch, M. (1999). The neurobiology of startle. Prog Neurbiol, 59, 107–128.

    Article  CAS  Google Scholar 

  • Kunugi, H., Nanko, S., & Takei, N. (1995). Schizophrenia following in utero exposure to the 1957 influenza epidemics in Japan. Am J Psychiatry, 152, 450–452.

    PubMed  CAS  Google Scholar 

  • Lewis, D. A. (2001). Retroviruses and the pathogenesis of schizophrenia. Proc Natl Acad Sci USA, 94, 4293–4294.

    Article  Google Scholar 

  • Lipska, B. K., Jaskiw, G. E., & Weinberger, D. R. (1993). Postpubertal emergency of hyperresponsiveness to stress and to amphetamine after neonatal excitotoxic hippocampal damage:A potential animal model of schizophrenia. Neuropsychopharmacology, 9, 67–75.

    PubMed  CAS  Google Scholar 

  • Lipska, B. K., Khaing, Z. Z., & Weinberger, D. R. (1999). Neonatal hippocampal damage in the rat: A neuristic model of schizophrenia. Psychiatr Ann, 29, 157–160.

    Google Scholar 

  • Machon, R. A., Mednick, S. A., & Schulsinger, F. (1983). The interaction of seasonality, place of birth, genetic risk and subsequent schizophrenia in a high risk sample. Br J Psychiatry, 143, 383–388.

    Article  PubMed  CAS  Google Scholar 

  • McGrath, J. J., Pemberton, M., & Welham, J. L. (1994). Schizophrenia and the influenza epidemics of 1954, 1957 and 1959: A Southern hemisphere study. Schizophr Res, 14, 1–8.

    Article  PubMed  CAS  Google Scholar 

  • Mednick, S. A., Huttunen, M. O., & Macon, R. A. (1994). Prenatal influenza infections and adult schizophrenia. Schizophr Bull, 20, 263–267.

    Article  PubMed  CAS  Google Scholar 

  • Mednick, S. A., Machon, R. A., & Huttunen, M. O. (1988). Adult schizophrenia following prenatal exposure to an influenza epidemic. Arch Gen Psychiatry, 45, 189–192.

    Article  PubMed  CAS  Google Scholar 

  • Menninger, K. A. (1928). The schizophrenic syndromes as a product of acute infectious disease. Arch Neurol Psychiatry, 20, 464–481.

    Article  Google Scholar 

  • Meyer, U., Nyffeler, M., Engler, A., Urwyler, A., Schedlowski, M., Knuesel, I., et al. (2006). The time of prenatal immune challenge determines the specificity of inflammation-mediated brain and behavioral pathology. J Neurosci, 26, 4752–4762.

    Article  PubMed  CAS  Google Scholar 

  • Mirnics, K., & Lewis, D. A. (2001). Genes and subtypes of schizophrenia. Trends Mol Med, 7, 169–174.

    Article  Google Scholar 

  • Mirnics, K., Middleton, F. A., Marquez, A., Lewis, D. A., & Levitt, P. (2000). Molecular characterization of schizophrenia viewed by microarray analysis of gene expression in prefrontal cortex. Neuron, 28, 53–67.

    Article  PubMed  CAS  Google Scholar 

  • Molanova, A., & Blaskovic, D. (1975). The influence of influenza infection of pregnant mice on the development of their fetuses. Acta Virol, 19, 259.

    Google Scholar 

  • Morgane, P. J., Austin-LaFrance, R. J., Bronzino, J. D., Tonkiss, J., & Galler, J. R. (1992). Malnutrition and the developing central nervous system. In R. L. Isaacson & R. F. Jensen (Eds.), The vulnerable brain and environmental risks, volume 1: Malnutrition and hazard assessment (pp. 3–44). New York: Plenum.

    Chapter  Google Scholar 

  • Nicotera, P., Brune, B., & Bagetta, G. (1997). Nitric oxide: Inducer or suppresser of apoptosis? Trends Pharmacol Sci, 189–190.

    PubMed  CAS  Google Scholar 

  • O’Callaghan, E., Gibson, T., & Colohan, H. A. (1991). Season of birth in schizophrenia: Evidence for confinement of an excess of winter births to patients without a family history of mental disorder. Br J Psychiatry, 158, 764–769.

    Article  PubMed  Google Scholar 

  • Pallast, E. G., Jongbloet, P. H., & Straatman, H. M. (1994). Excess seasonality of births among patients with schizophrenia and seasonal ovopathy. Schizophr Bull, 20, 269–276.

    Article  PubMed  CAS  Google Scholar 

  • Pulver, A. E., Liang, K. Y., & Wolyniec, P. S. (1992). Season of birth among siblings of schizophrenic patients. Br J Psychiatry, 160, 71–75.

    Article  PubMed  CAS  Google Scholar 

  • Rajkowska, G., Miguel-Hidalgo, J. J., Makkos, Z., Meltzer, H., Overholser, J., & Stockmeier, C. (2002). Layer-specific reductions in GFAP-reactive astroglia in the dorsolateral prefrontal cortex in schizophrenia. Schizophr Res, 57, 127–138.

    Article  PubMed  Google Scholar 

  • Rami, A., Jansen, S., Giesser, I., & Winckler, J. (2003). Post-ischemic activation of caspase-3 in the rat hippocampus: Evidence of an axonal and dendritic localization. Neurochem Int, 43, 211–223.

    Article  PubMed  CAS  Google Scholar 

  • Rodier, P. M. (1980). Chronology of neuron development: Animal studies and their clinical ­implications. Dev Med Child Neurol, 22, 525–545.

    Article  PubMed  CAS  Google Scholar 

  • Romijn, H. J., Hofman, M. A., & Gramsbergen, A. (1991). At what age is the developing cerebral cortex of the rat comparable to that of the full-term newborn human baby? Early Hum Dev, 26, 61–67.

    Article  PubMed  CAS  Google Scholar 

  • Sanjuan, J., Tolosa, A., Gonzalez, J. C., Aguilar, E. J., Perez-Tur, J., Najera, C., et al. (2006). Association between FOXP2 polymorphisms and schizophrenia with auditory hallucinations. Psychiatr Genet, 16, 67–72.

    Article  PubMed  Google Scholar 

  • Selten, J. P. C. J., & Sleats, J. P. J. (1994). Evidence against maternal influenza as a risk factor for schizophrenia. Br J Psychiatry, 164, 674–676.

    Article  PubMed  CAS  Google Scholar 

  • Sham, P. C., O’Callaghan, E., & Takei, N. (1992). Schizophrenia following prenatal exposure to influenza epidemics between 1939 and 1960. Br J Psychiatry, 160, 461–466.

    Article  PubMed  CAS  Google Scholar 

  • Shi, L., Fatemi, S. H., Sidwell, R. W., & Patterson, P. H. (2003). Maternal influenza infection causes marked behavioral and pharmacological changes in the offspring. J Neurosci, 23, 297–302.

    PubMed  Google Scholar 

  • Sodhi, M. S., & Sanders-Bush, E. (2004). Serotonin and brain development. Int Rev Neurobiol, 59, 111–174.

    Article  PubMed  CAS  Google Scholar 

  • Stober, G., Franzek, E., & Beckmann, J. (1992). The role of maternal infectious diseases during pregnancy in the aetiology of schizophrenia in offspring. Eur Psychiatry, 7, 147–152.

    Google Scholar 

  • Su, J., Wang, L., Yuan, L., Reutiman, T. J., Folsom, T. D., Smee, D., et al. (2008). Impairment of synaptic plasticity in offspring of virally infected mouse progeny. Int J Neuropsychopharmacol, 11(S1):264.

    Google Scholar 

  • Susser, E. S., Brown, A. S., & Gorman, J. M. (1999). Prenatal exposures in schizophrenia. Washington, DC: American Psychiatric Press.

    Google Scholar 

  • Susser, E., Lin, S. P., & Brown, A. S. (1994). No relation between risk of schizophrenia and prenatal exposure to influenza in Holland. Am J Psychiatry, 151, 922–924.

    PubMed  CAS  Google Scholar 

  • Susser, E., Neugebauer, R., Hoek, H. W., Brown, A. S., Lin, S., Labovitz, D., et al. (1997). Schizophrenia after prenatal famine. Arch Gen Psychiatry, 53, 25–31.

    Article  Google Scholar 

  • Swerdlow, N. R., & Geyer, M. A. (1998). Using an animal model of deficient sensorimotor gating to study the pathophysiology and new treatments of schizophrenia. Schizophr Bull, 24, 285–301.

    Article  PubMed  CAS  Google Scholar 

  • Takei, N., Mortensen, P. B., Klaening, U., Murray, R. M., Sham, P. C., O’Callaghan, E., et al. (1994). Relationship between in utero exposure to influenza epidemic and risk of schizophrenia in Denmark (letter). Schizophr Res, 11, 95.

    Google Scholar 

  • Takei, N., Sham, P. C., & O’Callaghan, E. (1994). Prenatal exposure to influenza and the development of schizophrenia: Is the effect confined to females? Am J Psychiatry, 151, 117–119.

    PubMed  CAS  Google Scholar 

  • Takei, N., Van Os, J., & Murray, R. M. (1995). Maternal exposure to influenza and risk of schizophrenia: A 22-year study from The Netherlands. J Psychiatr Res, 29, 435–445.

    Article  PubMed  CAS  Google Scholar 

  • Tkachev, D., Mimmack, M. L., Ryan, M. M., Wayland, M., Freeman, T., Jones, P. B., et al. (2003). Oligodendrocyte dysfunction in schizophrenia and bipolar disorder. Lancet, 362, 798–805.

    Article  PubMed  CAS  Google Scholar 

  • Toro, C. T., Hallak, J. E., Dunham, J. S., & Deakin, J. F. (2006). Glial fibrillary acidic protein and glutamine synthetase in subregions of prefrontal cortex in schizophrenia and mood disorder. Neurosci Lett, 404, 276–281.

    Article  PubMed  CAS  Google Scholar 

  • Torrey, E. F., Bowler, A. E., Taylor, E. H., & Gottesman, I. I. (1994). Schizophrenia and manic depression disorders: The biological roots of mental illness as revealed by a landmark study of identical twins. New York: Basic Books.

    Google Scholar 

  • Tueting, P., Costa, E., Dwivedi, Y., Guidotti, A., Impagnatiello, F., Manev, R., et al. (1999). The phenotypic characteristics of heterozygous reeler mouse. Neuroreport, 10, 1329–1334.

    Article  PubMed  CAS  Google Scholar 

  • Vawter, M. P., Crook, J. M., Hyde, T. M., Kleinman, J. E., Weinberger, D. R., Becker, K. G., et al. (2002). Microarray analysis of gene expression in the prefrontal cortex in schizophrenia: A preliminary study. Schizophr Res, 58, 11–20.

    Article  PubMed  Google Scholar 

  • Webster, M. J., O’Grady, J., Kleinman, J. E., & Weickert, C. S. (2005). Glial fibrillary acidic protein mRNA levels in the cingulate cortex of individuals with depression, bipolar disorder and schizophrenia. Neuroscience, 133, 453–461.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, J. G. (1964). General principles of experimental teratology. In: Congenital Malformations Proceedings of the First International Conference. Philadelphia: Lippincott.

    Google Scholar 

  • Winter, C., Reutiman, T. J., Folsom, T. D., Sohr, R., Wolf, R. J., Juckel, G., et al. (2008). Dopamine and serotonin levels following prenatal viral infection in mouse – implications for psychiatric disorders such as schizophrenia and autism. Eur Neuropsychopharmacol, 18, 712–716.

    Article  PubMed  CAS  Google Scholar 

  • Wright, P., Rakei, N., Rifkin, L., & Murray, R. (1995). Maternal influenza, obstetric complications, and schizophrenia. Am J Psychiatry, 152, 1714–1720.

    PubMed  CAS  Google Scholar 

  • Yamagishi, H., Garg, V., Matsuoka, R., Thomas, T., & Srivastava, D. (1999). A molecular pathway revealing a genetic basis for human cardiac and cranio-facial defects. Science, 283, 1158–1160.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Grant support by National Institute of Child Health and Human Development (#5R01-HD046589-04 and 3R01-HD046589-04S1) to SHF is gratefully acknowledged. Portions of this article are reprinted from: (1) Fatemi, S. H., Folsom, T. D., Reutiman, T. J., Abu-Odeh, D., Mori, S., Huang, H., et al. (2009). Abnormal expression of myelination genes and alterations in white matter fractional anisotropy following prenatal viral influenza infection at E16 in mice. Schizophr Res, 112(1–3), Copyright (2009), with permission from Elsevier; (2) Fatemi, S. H., Folsom, T. D., Reutiman, T. J., Huang, H., Oishi, K., & Mori, S. (2009). Prenatal viral infection of mice at E16 causes changes in gene expression in hippocampi of the offspring. Eur Neuropsychopharmacol, 19(9), Copyright (2009), with permission from Elsevier; (3) Fatemi, S. H., Folsom, T. D., Reutiman, T. J., Huang, H., Oishi, K., Mori, S., et al. (2008). Maternal infection leads to abnormal gene regulation and brain atrophy in mouse offspring: Implications for genesis of neurodevelopmental disorders. Schizophr Res, 99(1–3), Copyright (2008), with permission from Elsevier; (4) with kind permission from Springer Science+Business Media: Fatemi, S. H., Reutiman, T. J., Folsom, T. D., & Sidwell, R. W. (2008). The role of cerebellar genes in pathology of autism and schizophrenia. Cerebellum, 7; and (5) Fatemi, S. H., Folsom, T. D., Reutiman, T. J., & Sidwell, R. W. (2009). Viral regulation of aquaporin 4, connexin 43, microcephalin, and nucleolin. Schizophr Res, 98(1–3), Copyright (2009), with permission from Elsevier.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Hossein Fatemi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Fatemi, S.H., Folsom, T.D. (2011). Prenatal Viral Infection in Mouse: An Animal Model of Schizophrenia. In: Clelland, J. (eds) Genomics, Proteomics, and the Nervous System. Advances in Neurobiology, vol 2. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7197-5_4

Download citation

Publish with us

Policies and ethics