Skip to main content

Mental Retardation and Human Chromosome 21 Gene Overdosage: From Functional Genomics and Molecular Mechanisms Towards Prevention and Treatment of the Neuropathogenesis of Down Syndrome

  • Chapter
  • First Online:
Genomics, Proteomics, and the Nervous System

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 2))

Abstract

Down syndrome (DS), caused by a genomic imbalance of human chromosome 21 (HSA21), is mainly observed as trisomy 21 and is the major genetic cause of mental retardation (MR). MR and associated neurological and behavioural alterations result from dysregulation in critical HSA21 genes and associated molecular pathways. Gene expression, transcriptome, proteome and functional genomics studies, in human, trisomic and transgenic mouse models have shown similar genotype/phenotype correlation and parallel outcomes suggesting that the same evolutionarily conserved genetic programmes are perturbed by gene-dosage effects. The expression variations caused by this gene-dosage imbalance may firstly induce brain functional variations at cellular level, as primary phenotypes, and finally induce neuromorphological alterations and cognitive deficits as secondary phenotypes. The identification of trisomic genes overexpressed in the brain and their function, their developmental regulated expression and their downstream effects, their interaction with other proteins, and their involvement in regulatory and metabolic pathways is giving a clearer view of the origin of the MR in DS. This led to the identification of potential targets in the altered molecular pathways involved in MR pathogenesis, such as calcineurin, NFATs and MAPK pathways, that may be potentially corrected, in the perspective of new therapeutic approaches. Treatment of DS mouse models with NMDA receptor or GABAA antagonists allowed post-drug rescue of cognitive deficits. Besides these new pharmacotherapies, the regulation of gene expression by microRNAs or small interfering RNAs provide exciting possibilities for exogenous correction of the aberrant gene expression in DS and provide potential directions for clinical therapeutics of MR. Herein, we highlight the genetic networks and molecular mechanisms implicated in the pathogenesis of MR in DS and, thereafter, we outline some of the therapeutic strategies for the treatment of this as yet incurable cognitive disorder with a considerable impact on public health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AChEI:

Acetylcholinesterase inhibitor

AD:

Alzheimer’s disease

APP:

Amyloid precursor protein

ATP:

Adenosine triphosphate

BAC:

Bacterial artificial chromosome

BFCN:

Basal forebrain cholinergic neurons

CA1:

Cornu ammonis 1

CA3:

Cornu ammonis 3

CaMKII:

Calcium/calmodulin-dependent protein kinase

CBR1:

Carbonyl reductase 1

ChAT:

Choline acetyl transferase

CIT-K:

Citron kinase

CREB:

c-AMP response element-binding protein

DS:

Down syndrome

DSCAM:

Down syndrome cell adhesion molecule

DSCR:

Down syndrome critical region

DSCR1:

Down syndrome critical region gene 1

DYN1:

Dynamin 1

DYRK1A:

Dual-specificity tyrosine-(Y)-phosphorylation kinase 1A

EGF:

Epidermal growth factor

EPSCs:

Excitatory postsynaptic currents

ERG:

Ets related gene

ES:

Embryonic stem cells

ETS2:

v-ets erythroblastosis virus E26 oncogene homolog 2

GABAA :

Gamma-aminobutyric acid type A receptor

GIRK2:

G-protein coupled inward rectifying potassium channel subunit 2

HSA21:

Human chromosome 21

IQ:

Intelligence quotient

ITSN1:

Intersectin gene 1

KCNJ6:

Potassium inwardly rectifying channel J6

LPS:

Lipopolysaccharide

LTD:

Long-term depression

LTP:

Long-term potentiation

MAPK:

Mitogen activated protein kinase

MCIP1:

Myocyte-enriched calcineurin-interacting protein 1

miRNA:

MicroRNA

MMU16:

Mouse chromosome 16

MR:

Mental retardation

NFATc:

Nuclear factor of activated T cells

NGF:

Nerve growth factor

NMDA:

N-methyl-d-aspartate

NMDA-R:

N-methyl-d-aspartate receptor

PP1:

Protein phosphatase 1

PTZ:

Pentylenetetrazol

qRT-PCR:

Quantitative reverse transcriptase polymerase chain reaction

RCAN1:

Regulator of calcineurin 1 protein

S100B:

S100 calcium-binding protein beta

SAGE:

Serial analysis of gene expression

SHH:

Sonic hedgehog

SIM2:

Single minded 2

SNP:

Single nucleotide polymorphism

SOD1:

Superoxide dismutase 1

SYNJ1:

Synaptojanin gene 1

TBS:

Theta-burst stimulation

TPRD:

Tetratricopeptide repeat domain Down syndrome

TTC3:

Tetratricopeptide repeat domain 3

YAC:

Yeast artificial chromosome

References

  • Ahn, K. J., Jeong, H. K., Choi, H. S., Ryoo, S. R., Kim, Y. J., et al. (2006). DYRK1A BAC transgenic mice show altered synaptic plasticity with learning and memory defects. Neurobiology of Disease, 22, 463–472.

    Article  PubMed  CAS  Google Scholar 

  • Aït Yahya-Graison, E., Aubert, J., Dauphinot, L., Rivals, I., Prieur, M., et al. (2007). Classification of human chromosome 21 gene-expression variations in Down syndrome: Impact on disease phenotypes. American Journal of Human Genetics, 81, 475–491.

    Article  PubMed  CAS  Google Scholar 

  • Aitken, D. A., McCaw, G., Crossley, J. A., Berry, E., Connor, J. M., et al. (1993). First-trimester biochemical screening for fetal chromosome abnormalities and neural tube defects. Prenatal Diagnosis, 13, 681–689.

    Article  PubMed  CAS  Google Scholar 

  • Akeson, E. C, Lambert J. P., Narayanswami, S., Gardiner, K., Bechtel, L. J., et al. (2001). Ts65Dn: localization of the translocation breakpoint and trisomic gene content in a mouse model for Down syndrome. Cytogenetics and Cellular Genetics, 93, 270–276.

    Article  PubMed  CAS  Google Scholar 

  • Aldridge, K., Reeves, R. H., Olson, L. E., & Richtsmeier, J. T. (2007). Differential effects of trisomy on brain shape and volume in related aneuploid mouse models. American Journal of Medical Genetics, 143A, 1060–1070.

    Article  PubMed  Google Scholar 

  • Altafaj, X., Dierssen, M., Baamonde, C., Marti, E., Visa, J., et al. (2001). Neurodevelopmental delay, motor abnormalities and cognitive deficits in transgenic mice overexpressing Dyrk1A (minibrain), a murine model of Down’s syndrome. Human Molecular Genetics, 10, 1915–1923.

    Article  PubMed  CAS  Google Scholar 

  • Alvarez, M., Estivill, X., & de la Luna, S. (2003). DYRK1A accumulates in splicing speckles through a novel targeting signal and induces speckle disassembly. Journal of Cell Science, 116, 3099–3107.

    Article  PubMed  CAS  Google Scholar 

  • Amano, K., Sago, H., Uchikawa, C., Suzuki, T., Kotliarova, S. E., et al. (2004). Dosage-dependent over-expression of genes in the trisomic region of Ts1Cje mouse model for Down syndrome. Human Molecular Genetics, 13, 1333–1340.

    Article  PubMed  CAS  Google Scholar 

  • Antonarakis, S. E. (1998). 10 years of genomics, chromosome 21, and Down syndrome. Genomics, 51, 1–16.

    Article  PubMed  CAS  Google Scholar 

  • Antonarakis, S. E. (2001). Chromosome 21: From sequence to applications. Current Opinion in Genetics & Development, 11, 241–246.

    Article  CAS  Google Scholar 

  • Antonarakis, S. E., & Epstein, C. J. (2006). The challenge of Down syndrome. Trends in Molecular Medicine, 12, 473–479.

    Article  PubMed  Google Scholar 

  • Antonarakis, S. E., Lyle, R., Dermitzakis, E. T., Reymond, A., & Deutsch, S. (2004). Chromosome 21 and down syndrome: From genomics to pathophysiology. Nature Review Genetics, 5, 725–738.

    Article  CAS  Google Scholar 

  • Arai, Y., Ijuin, T., Takenawa, T., Becker, L. E., & Takashima, S. (2002). Excessive expression of synaptojanin in brains with Down syndrome. Brain & Development, 24, 67–72.

    Article  Google Scholar 

  • Arron, J. R., Winslow, M. M., Polleri, A., Chang, C. P., Wu, H., et al. (2006). NFAT dysregulation by increased dosage of DSCR1 and DYRK1A on chromosome 21. Nature, 441, 595–600.

    Article  PubMed  CAS  Google Scholar 

  • Avraham, K. B., Sugarman, H., Rotshenker, S., & Groner, Y. (1991). Down’s syndrome: Morphological remodelling and increased complexity in the neuromuscular junction of transgenic CuZn-superoxide dismutase mice. Journal of Neurocytology, 20, 208–215.

    Article  PubMed  CAS  Google Scholar 

  • Aylward, E. H., Li, Q., Honeycutt, N. A., Warren, A. C., Pulsifer, M. B., et al. (1999). MRI volumes of the hippocampus and amygdala in adults with Down’s syndrome with and without dementia. The American Journal of Psychiatry, 156, 564–568.

    PubMed  CAS  Google Scholar 

  • Ayraham, K. B., Sugarman, H., Rotshenker, S., & Groner, Y. (1991). Down’s syndrome: Morphological remodelling and increased complexity in the neuromuscular junction of transgenic CuZn-superoxide dismutase mice. Journal of Neurocytology, 20, 208–215.

    Article  Google Scholar 

  • Azmitia, E. C., Griffin, W. S. T., Marshak, D. R., Van Eldik, L. J., & Whitaker-Azmitia, P. M. (1992). S100b and serotonin: A possible astrocytic-neuronal link to neuropathology of Alzheimer’s disease. Progress in Brain Research, 92, 459–473.

    Article  Google Scholar 

  • Bahn, S., Mimmack, M., Ryan, M., Caldwell, M. A., Jauniaux, E., et al. (2002). Neuronal target genes of the neuron-restrictive silencer factor in neurospheres derived from fetuses with Down’s syndrome: A gene expression study. Lancet, 359, 310–315.

    Article  PubMed  CAS  Google Scholar 

  • Balcz, B., Kirchner, L., Cairns, N., Fountoulakis, M., & Lubec, G. (2001). Increased brain protein levels of carbonyl reductase and alcohol dehydrogenase in Down syndrome and Alzheimer’s disease. Journal of Neural Transmission, 61, 193–201.

    PubMed  Google Scholar 

  • Barlow, G. M., Micales, B., Chen, X. N., Lyons, G. E., & Korenberg, J. R. (2002). Mammalian DSCAMs: Roles in the development of the spinal cord, cortex, and cerebellum? Biochemical and Biophysical Research Communications, 293, 881–891.

    Article  PubMed  CAS  Google Scholar 

  • Bartel, D. P. (2004). MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell, 116, 281–297.

    Article  PubMed  CAS  Google Scholar 

  • Baxter, L. L., Moran, T. H., Richtsmeier, J. T., Troncoso, J., & Reeves, R. H. (2000). Discovery and genetic localization of Down syndrome cerebellar phenotypes using the Ts65Dn mouse. Human Molecular Genetics, 9, 195–202.

    Article  PubMed  CAS  Google Scholar 

  • Becker, L., Mito, T., Takashima, S., & Onodera, K. (1991). Growth and development of the brain in Down syndrome. In C. H. Epstein (Ed.), The morphogenesis of Down syndrome (pp. 133–152). New York: Wiley-Liss.

    Google Scholar 

  • Becker, L. E., Armstrong, D. L., & Chan, F. (1986). Dendritic atrophy in children with Down’s syndrome. Annals of Neurology, 20, 520–532.

    Article  PubMed  CAS  Google Scholar 

  • Behar, T. N., & Colton, C. A. (2003). Redox regulation of neuronal migration in a Down syndrome model. Free Radical Biology & Medicine, 35, 566–575.

    Article  CAS  Google Scholar 

  • Belichenko, P. V., Masliah, E., Kleschevnikov, A. M., Villar, A. J., Epstein, C. J., et al. (2004). Synaptic structural abnormalities in the Ts65Dn mouse model of Down syndrome. The Journal of Comparative Neurology, 480, 281–298.

    Article  PubMed  Google Scholar 

  • Bell, K., Shokrian, D., Potenzieri, C., & Whitaker-Azmitia, P. M. (2003). Harm avoidance, anxiety, and response to novelty in the adolescent S-100beta transgenic mouse: Role of serotonin and relevance to Down syndrome. Neuropsychopharmacology, 28, 1810–1816.

    Article  PubMed  CAS  Google Scholar 

  • Benavides-Piccione, R., Ballesteros-Yanez, I., Martinez de Lagran, M., Elston, G., Estivill, X., et al. (2004). On dendrites in Down syndrome and DS murine models: A spiny way to learn. Progress in Neurobiology, 74, 111–126.

    Article  PubMed  CAS  Google Scholar 

  • Benavides-Piccione, R., Dierssen, M., Ballesteros-Yaöez, I., Martinez de Lagran, M., Arbones, M. L., et al. (2005). Alterations in the phenotype of neocortical pyramidal cells in the Dyrk1A+/− mouse. Neurobiology of Disease, 20, 115–122.

    Article  PubMed  CAS  Google Scholar 

  • Berto, G., Camera, P., Fusco, C., Imarisio, S., Ambrogio, C., et al. (2007). The Down syndrome critical region protein TTC3 inhibits neuronal differentiation via RhoA and Citron kinase. Journal of Cell Science, 120, 1859–1867.

    Article  PubMed  CAS  Google Scholar 

  • Best, T. K., Siarey, R. J., & Galdzicki, Z. (2006). Ts65Dn, a mouse model of Down syndrome, exhibits increased GABAB induced potassium current. Journal of Neurophysiology, 97, 892–900.

    Article  PubMed  CAS  Google Scholar 

  • Black, A. H., Nadel, L., & O’Keefe, J. (1977). Hippocampal function in avoidance learning and punishment. Psychological Bulletin, 84, 1107–1129.

    Article  PubMed  CAS  Google Scholar 

  • Blednow, Y. A., Stoffel, M., Chang, S. R., & Harris, R. A. (2001). GIRK2 deficient mice. Evidence for hyperactivity and reduced anxiety. Physiology & Behavior, 74, 109–117.

    Article  Google Scholar 

  • Bourtchuladze, R., Frenguelli, B., Blendy, J., Cioffi, D., Schutz, G., et al. (1994). Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell, 79, 59–68.

    Article  PubMed  CAS  Google Scholar 

  • Branchi, I., Bichler, Z., Minghetti, L., Delabar, J. M., Malchiodi-Albedi, F., et al. (2004). Transgenic mouse in vivo library of human Down syndorme Critical Region 1: Association between DYRK1A overexpession, brain development abnormalities, and cell cycle protein alteration. Journal of Neuropathology and Experimental Neurology, 63, 429–440.

    PubMed  CAS  Google Scholar 

  • Brem, R. B., Yvert, G., Clinton, R., & Kruglyak, L. (2002). Genetic dissection of transcriptional regulation in budding yeast. Science, 296, 752–755.

    Article  PubMed  CAS  Google Scholar 

  • Brown, F. R., Greer, M. K., Aylward, E. H., & Hunt, H. H. (1990). Intellectual and adaptive functioning in individuals with Down syndrome in relation to age and environmental placement. Pediatrics, 85, 450–452.

    PubMed  Google Scholar 

  • Brown, J. H., Johnson, M. H., Patterson, S. J., Gilmore, R., Longhi, E., et al. (2003). Spatial representation and attention in toddlers with Williams syndrome and Down syndrome. Neuropsychologia, 41, 1037–1046.

    Article  PubMed  Google Scholar 

  • Bushati, N., & Cohen, S. M. (2007). MicroRNA functions. Annual Review of Cell and Developmental Biology, 3, 175–205.

    Article  CAS  Google Scholar 

  • Carlesimo, G. A., Marotta, L., & Vicari, S. (1997). Long-term memory in mental retardation: Evidence for a specific impairment in subjects with Down’s syndrome. Neuropsychologia, 35, 71–79.

    Article  PubMed  CAS  Google Scholar 

  • Casanova, M. F., Walker, L. C., Whitehouse, P. J., & Price, D. L. (1985). Abnormalities of the nucleus basalis in Down’s syndrome. Annals of Neurology, 18, 310–313.

    Article  PubMed  CAS  Google Scholar 

  • Chabert, C., Jamon, M., Cherfouh, A., Duquenne, V., Smith, D. J., et al. (2004). Functional analysis of genes implicated in Down syndrome: 1. Cognitive abilities in mice transpolygenic for Down syndrome chromosomal region-1 (DCR-1). Behavior Genetics, 34, 559–569.

    Article  PubMed  Google Scholar 

  • Chang, K. T., Shi, Y. J., & Min, K. T. (2003). The Drosophila homolog of Down’s syndrome critical region 1 gene regulates learning: Implications for mental retardation. Proceedings of the National Academy of Sciences of the United States of America, 100, 15794–15799.

    Article  PubMed  CAS  Google Scholar 

  • Chapman, R. S., & Hesketh, L. J. (2000). Behavioral phenotype of individuals with Down syndrome. Mental Retardation and Developmental Disabilities Research Reviews, 6, 84–95.

    Article  PubMed  CAS  Google Scholar 

  • Chapman, R. S., Seung, H. K., Schwartz, S. E., & Kay-Raining Bird, E. (1998). Language skills of children and adolescents with Down syndrome II: Production deficits. Journal of Speech, Language, and Hearing Research, 41, 861–873.

    PubMed  CAS  Google Scholar 

  • Chen, B. E., Kondo, M., Garnier, A., Watson, F. L., Puettmann-Holgado, R., et al. (2006). The molecular diversity of Dscam is functionally required for neuronal wiring specificity in Drosophila. Cell, 125, 607–620.

    Article  PubMed  CAS  Google Scholar 

  • Chen-Hwang, M. C., Chen, H. R., Elzinga, M., & Hwang, Y. W. (2002). Dynamin is a minibrain kinase/dual specificity Yak1-related kinase 1A substrate. The Journal of Biological Chemistry, 277, 17597–17604.

    Article  PubMed  CAS  Google Scholar 

  • Cheon, M. S., Bajo, M., Kim, S. H., Claudio, J. O., Stewart, A. K., et al. (2003). Protein levels of genes encoded on chromosome 21 in fetal Down syndrome brain: Challenging the gene dosage effect hypothesis (Part II). Amino Acids, 24, 119–125.

    PubMed  CAS  Google Scholar 

  • Cheon, M. S., Fountoulakis, M., Dierssen, M., Ferreres, J. C., & Lubec, G. (2001). Expression profiles of proteins in fetal brain with Down syndrome. Journal of Neural Transmission. Supplementum, 61, 311–319.

    PubMed  Google Scholar 

  • Cheon, M. S., Kim, S. H., Ovod, V., Kopitar Jerala, N., Morgan, J. I., et al. (2003). Protein levels of genes encoded on chromosome 21 in fetal Down syndrome brain: Challenging the gene dosage effect hypothesis (Part III). Amino Acids, 24, 127–134.

    PubMed  CAS  Google Scholar 

  • Cheon, M. S., Kim, S. H., Yaspo, M. L., Blasi, F., Aoki, Y., et al. (2003). Protein levels of genes encoded on chromosome 21 in fetal Down syndrome brain: Challenging the gene dosage effect hypothesis (Part I). Amino Acids, 24, 111–117.

    PubMed  CAS  Google Scholar 

  • Cheon, M. S., Shim, K. S., Kim, S. H., Hara, A., & Lubec, G. (2003). Protein levels of genes encoded on chromosome 21 in fetal Down syndrome brain: Challenging the gene dosage effect hypothesis (Part IV). Amino Acids, 25, 41–47.

    PubMed  CAS  Google Scholar 

  • Cheung, V. G., Conlin, L. K., Weber, T. M., Arcaro, M., Jen, K. Y., et al. (2003). Natural variation in human gene expression assessed in lymphoblastoid cells. Nature Genetics, 33, 422–425.

    Article  PubMed  CAS  Google Scholar 

  • Chou, C. Y., Liu, L. Y., Chen, C. Y., Tsai, C. H., Hwa, H. L., et al. (2008). Gene expression variation increase in trisomy 21 tissues. Mammalian Genome. doi: 10.1007/s00335-008-9121-1.

    Google Scholar 

  • Chrast, R., Scott, H. S., Madani, R., Huber, L., Wolfer, D. P., et al. (2000). Mice trisomic for a bacterial artificial chromosome with the single-minded 2 gene (Sim2) show phenotypes similar to some of those present in the partial trisomy 16 mouse models of Down syndrome. Human Molecular Genetics, 9, 1853–1864.

    Article  PubMed  CAS  Google Scholar 

  • Chrast, R., Scott, H. S., Papasavvas, M. P., Rossier, C., Antonarakis, E. S., et al. (2000). The mouse brain transcriptome by SAGE: Differences in gene expression between P30 brains of the partial trisomy 16 mouse model of Down syndrome (Ts65Dn) and normals. Genome Research, 10, 2006–2021.

    Article  PubMed  CAS  Google Scholar 

  • Clark, D., & Wilson, G. N. (2003). Behavioral assessment of children with Down syndrome using the Reiss psychopathology scale. American Journal of Medical Genetics, 118, 210–216.

    Article  Google Scholar 

  • Collacot, R. A., Cooper, S. A., Branford, D., & McGrother, C. (1998). Behaviour phenotype for Down’s syndrome. The British Journal of Psychiatry, 172, 85–89.

    Article  Google Scholar 

  • Connolly, B. H., Morgan, S. B., Russell, F. F., & Fulliton, W. L. (1993). A longitudinal study of children with Down syndrome who experienced early intervention programming. Physical Therapy, 73, 170–179.

    PubMed  CAS  Google Scholar 

  • Cooper, J. D., Salehi, A., Delcroix, J. D., Howe, C. L., Belichenko, P. V., et al. (2001). Failed retrograde transport of NGF in a mouse model of Down’s syndrome: Reversal of cholinergic neurodegenerative phenotypes following NGF infusion. Proceedings of the National Academy of Sciences of the United States of America, 98, 10439–10444.

    Article  PubMed  CAS  Google Scholar 

  • Costa, A. C. S., & Grybko, M. J. (2005). Deficits in hippocampal CA1 LTP induced by TBS but not HFS in the Ts65Dn mouse: A model of Down syndrome. Neuroscience Letters, 382, 317–322.

    Article  PubMed  CAS  Google Scholar 

  • Costa, A. C. S., Scott-McKean, J. J., & Stasko, M. R. (2008). Acute injections of the NMDA receptor antagonist memantine rescue performance deficits of the Ts65Dn mouse model of Down syndrome on a conditioning fear test. Neuropsychopharmacology, 33, 1624–1632.

    Article  PubMed  CAS  Google Scholar 

  • Cousin, M. A., Tan, T. C., & Robinson, P. J. (2001). Protein phosphorylation is required for endocytosis in nerve terminals: Potential role for the dephosphins dynamin I and synaptojanin, but not AP180 or amphiphysin. Journal of Neurochemistry, 76, 105–116.

    Article  PubMed  CAS  Google Scholar 

  • Coussons-Read, M. E., & Crnic, L. S. (1996). Behavioral assessment of the Ts65Dn mouse, a model for Down syndrome: Altered behavior in the elevated plus maze and open field. Behavior Genetics, 26, 7–13.

    Article  PubMed  CAS  Google Scholar 

  • Cox, D. R., Smith, S. A., Epstein, L. B., & Epstein, C. J. (1984). Mouse trisomy 16 as an animal model of human trisomy 21 (Down syndrome): Production of viable trisomy 16 diploid mouse chimeras. Developmental Biology, 101, 416–424.

    Article  PubMed  CAS  Google Scholar 

  • Coyle, J. T., Oster-Granite, M. L., & Gearhart, J. D. (1986). The neurobiologic consequences of Down syndrome. Brain Research Bulletin, 16, 773–787.

    Article  PubMed  CAS  Google Scholar 

  • Crabtree, G. R., & Olson, E. N. (2002). NFAT signalling: Choreagraphing the social lives of cells. Cell, 109(Suppl.), S67–S79.

    Article  PubMed  CAS  Google Scholar 

  • Cremona, O., Di Paolo, G., Wenk, M. R., Luthi, A., Kim, W. T., et al. (1999). Essential role of phosphoinositide metabolism in synaptic vesicle recycling. Cell, 99, 179–188.

    Article  PubMed  CAS  Google Scholar 

  • Crews, S. T., Thomas, J. B., & Goodman, C. S. (1988). The Drosophila singleminded gene encodes a nuclear protein with sequence similarity to the per gene product. Cell, 52, 143–151.

    Article  PubMed  CAS  Google Scholar 

  • Dahmane, N., Ait Ghezala, G. A., Gosset, P., Chamoun, Z., Dufresne-Zacharia, M. C., et al. (1998). Transcriptional map of the 2.5-Mb CBR–ERG region of chromosome 21 involved in Down syndrome. Genomics, 48, 12–23.

    Article  PubMed  CAS  Google Scholar 

  • Dahmane, N., Charron, G., Lopes, C., Yaspo, M. L., Maunoury, C., et al. (1995). Down syndrome critical region contains a gene homologous to Drosophila sim expressed during rat and human central nervous system development. Proceedings of the National Academy of Sciences of the United States of America, 92, 9191–9195.

    Article  PubMed  CAS  Google Scholar 

  • Dalton, A. J., & Crapper-McLachlan, D. R. (1986). Clinical expression of Alzheimer’s disease in Down syndrome. The Psychiatric Clinics of North America, 9, 959–970.

    Google Scholar 

  • Das, A. K., Cohen, P. W., & Barford, D. (1998). The structure of the tetratricopeptide repeats of protein phosphatase 5: Implications for TPR-mediated protein-protein interactions. The EMBO Journal, 17, 1192–1199.

    Article  PubMed  CAS  Google Scholar 

  • Dauphinot, L., Lyle, R., Rivals, I., Dang, M. T., Moldrich, R. X., et al. (2005). The cerebellar transcriptome during postnatal development of the Ts1Cje mouse, a segmental trisomy model for Down syndrome. Human Molecular Genetics, 14, 373–384.

    Article  PubMed  CAS  Google Scholar 

  • Davisson, M. T., Schmidt, C., & Akeson, E. C. (1990). Segmental trisomy of murine chromosome 16: A new model system for studying Down syndrome. Progress in Clinical and Biological Research, 360, 263–280.

    PubMed  CAS  Google Scholar 

  • de Graaf, K., Hekerman, P., Spelten, O., Herrman, A., Packman, L. C., et al. (2004). Characterization of cyclin L2, a novel cyclin with an arginine/serine-rich domain: Phosphorylation by DYRK1A and colocalization with splicing factors. The Journal of Biological Chemistry, 279, 4612–4624.

    Article  PubMed  Google Scholar 

  • de Kerchove, D’ Exaerde A., Cartaud, J., Ravel-Chapuis, A., Seroz, T., Pasteau, F., et al. (2002). Expression of mutant Ets protein at the neuromuscular synapse causes alterations in morphology and gene expression. EMBO Reports, 3, 1075–1081.

    Article  Google Scholar 

  • Delabar, J. M., Theophile, D., Rahmani, Z., Chettouh, Z., Blouin, J. L., et al. (1993). Molecular mapping of twenty-four features of Down syndrome on chromosome 21. European Journal of Human Genetics, 1, 114–124.

    PubMed  CAS  Google Scholar 

  • Deutsch, S., Lyle, R., Dermitzakis, E. T., Attar, H., Subrahmanyan, L., et al. (2005). Gene expression variation and expression quantitative trait mapping of human chromosome 21 genes. Human Molecular Genetics, 14, 3741–3749.

    Article  PubMed  CAS  Google Scholar 

  • Devenny, D. A., Silverman, W. P., Hill, A. L., Jenkins, E., Sersen, E. A., et al. (1996). Normal ageing in adults with Down’s syndrome: A longitudinal study. Journal of Intellectual Disability Research, 40, 208–221.

    Article  PubMed  Google Scholar 

  • Dierssen, M., & Ramakers, G. J. A. (2006). Dendritic pathology in mental retardation; from molecular genetics to neurobiology. Genes, Brain, and Behavior, 5(Suppl 2), 48–60.

    Article  PubMed  CAS  Google Scholar 

  • Dierssen, M., Vallina, I. F., Baamonde, C., Lumbreras, M. A., Martinez-Cue, C., et al. (1996). Impaired cyclic AMP production in the hippocampus of a Down syndrome murine model. Brain Research. Developmental Brain Research, 95, 122–124.

    Article  PubMed  CAS  Google Scholar 

  • Dierssen, M., Vallna, I. F., Baamonde, C., Garcia-Calatayud, S., & Lumbreras, M. A. (1997). Alterations of central noradrenergic transmission in Ts65Dn mouse, a model for Down syndrome. Brain Research, 749, 238–244.

    Article  PubMed  CAS  Google Scholar 

  • Dineley, K. T., Hogan, D., Zhang, W. R., & Taglialatela, G. (2007). Acute inhibition of calcineurin restores associative learning and memory in Tg2576 APP transgenic mice. Neurobiology of Learning and Memory, 88, 217–224.

    Article  PubMed  CAS  Google Scholar 

  • Dufresne-Zacharia, M. C., Dahmane, N., Theophile, D., Orti, R., Chettouh, Z., et al. (1994). 3.6-Mb genomic and YAC physical map of the Down syndrome chromosome region on chromosome 21. Genomics, 19, 462–469.

    Article  PubMed  CAS  Google Scholar 

  • Dujon, B. (1996). The yeast genome project: What did we learn? Trends in Genetics, 12, 263–270.

    Article  PubMed  CAS  Google Scholar 

  • Ema, M., Ikegami, S., Hosoya, T., Mimura, J., Ohtani, H., et al. (1999). Mild impairment of learning and memory in mice overexpressing the mSim2 gene located on chromosome 16: An animal model of Down’s syndrome. Human Molecular Genetics, 8, 1409–1415.

    Article  PubMed  CAS  Google Scholar 

  • Ema, M., Suzuki, M., Morita, M., Hirose, K., Sogawa, K., et al. (1996). cDNA cloning of a murine homologue of Drosophila single-minded, its mRNA expression in mouse development, and chromosome localization. Biochemical and Biophysical Research Communications, 218, 588–594.

    Article  PubMed  CAS  Google Scholar 

  • Engidawork, E., Balic, N., Fountoulakis, M., Dierssen, M., Graber-Platzer, S., et al. (2001). b-Amyloid precursor protein, ETS-2 and collagen alpha 1 (VI) chain precursor, encoded on chromosome 21, are not overexpressed in fetal Down syndrome: Further evidence against gene dosage effect. Journal of Neural Transmission. Supplementum, 61, 335–346.

    PubMed  Google Scholar 

  • Engidawork, E., Gulesserian, T., Balic, N., Cairns, N., & Lubec, G. (2001). Changes in nicotinic acetylcholine receptor subunits expression in brain of patients with Down syndrome and Alzheimer’s disease. Journal of Neural Transmission, 61, 211–222.

    PubMed  Google Scholar 

  • Engidawork, E., Gulesserian, T., Fountoulakis, M., & Lubec, G. (2003). Aberrant protein expression in cerebral cortex of fetus with Down syndrome. Neuroscience, 122, 145–154.

    Article  PubMed  CAS  Google Scholar 

  • Engidawork, E., & Lubec, G. (2003). Molecular changes in fetal Down syndrome brain. Journal of Neurochemistry, 84, 895–904.

    Article  PubMed  CAS  Google Scholar 

  • Epstein, C. J. (1986). The consequences of chromosome imbalance: Principles, mechanisms, and models. New York: Cambridge University Press.

    Book  Google Scholar 

  • Epstein, C. J. (1988). Mechanisms of the effects of aneuploidy in mammals. Annual Review of Genetics, 22, 51–75.

    Article  PubMed  CAS  Google Scholar 

  • Epstein, C. J. (1990). The consequences of chromosome imbalance. American Journal of Human Genetics, 7(Suppl), 31–37.

    CAS  Google Scholar 

  • Epstein, C. J., Avraham, K. B., Lovett, M., Smith, S., Elroy-Stein, O., et al. (1987). Transgenic mice with increased Cu/Zn-superoxide dismutase activity: Animal model of dosage effects in Down syndrome. Proceedings of the National Academy of Sciences of the United States of America, 84, 8044–8048.

    Article  PubMed  CAS  Google Scholar 

  • Epstein, C. J., Hofmeister, B. G., Yee, D., Smith, S. A., Philip, R., et al. (1985). Stem cell deficiencies and thymic abnormalities in fetal mouse trisomy 16. The Journal of Experimental Medicine, 162, 695–712.

    Article  PubMed  CAS  Google Scholar 

  • Epstein, D. J., Matinu, L., Michaud, J. L., Losos, K. M., Fan, C. M., et al. (2000). Members of the bHLH-PAS family regulate Shh transcription in forebrain regions of the mouse CNS. Development, 127, 1701–1709.

    Google Scholar 

  • Epstein, J. (2001). Down syndrome. In C. R. Scriver, A. L. Beaudet, W. S. Sly, & D. Valle (Eds.), The metabolic and molecular bases of inherited disease (7th ed., pp. 1223–1256). New York: McGraw-Hill.

    Google Scholar 

  • Ermak, G., Morgan, T. E., & Davies, K. J. (2001). Chronic overexpression of the calcineurin inhibitory gene DSCR1 (Adapt78) is associated with Alzheimer’s disease. The Journal of Biological Chemistry, 276, 38787–38794.

    Article  PubMed  CAS  Google Scholar 

  • Fabbro, F., Alberti, A., Gagliardi, C., & Borgatti, R. (2002). Differences in native and foreign language repetition task between subjects with Williams and Down syndromes. Journal of Neurolinguistics, 15, 1–10.

    Article  Google Scholar 

  • Fan, C. M., Kuwana, E., Bulfone, A., Fletcher, C. F., Copeland, N. G., et al. (1996). Expression patterns of two murine homologs of Drosophila single-minded suggest possible roles in embryonic patterning and in the pathogenesis of Down syndrome. Molecular and Cellular Neurosciences, 7, 1–16.

    Article  PubMed  CAS  Google Scholar 

  • Fernandez, F., Morishita, W., Zuniga, E., Nguyen, J., Blank, M., et al. (2007). Pharmacotherapy for cognitive impairment in a mouse model of Down syndrome. Nature Neuroscience, 10, 411–413.

    PubMed  CAS  Google Scholar 

  • Ferrando-Miguel, R., Cheon, M. S., & Lubec, G. (2004). Protein levels of genes encoded on chromosome 21 in fetal Down syndrome brain (Part V); overexpression of phosphatidyl-inositol-glycan class P protein (DSCR5). Amino Acids, 26, 255–261.

    Article  PubMed  CAS  Google Scholar 

  • FitzPatrick, D. R., Ramsay, J., McGill, N. I., Shade, M., Carothers, A. D., et al. (2002). Transcriptome analysis of human autosomal trisomy. Human Molecular Genetics, 11, 3249–3256.

    Article  PubMed  CAS  Google Scholar 

  • Fotaki, V., Dierssen, M., Alcantara, S., Martinez, S., Marti, E., et al. (2002). Dyrk1A ­haploinsufficiency affects viability and causes developmental delay and abnormal brain ­morphology in mice. Molecular and Cellular Biology, 22, 6636–6647.

    Article  PubMed  CAS  Google Scholar 

  • Frangou, S., Aylward, E., Warren, A., Sharma, T., Barta, P., et al. (1997). Small planum temporale volume in Down’s syndrome: A volumetric MRI study. The American Journal of Psychiatry, 154, 1424–1429.

    PubMed  CAS  Google Scholar 

  • Freidl, M., Gulesserian, T., Lubec, G., Fountoulakis, M., & Lubec, B. (2001). Deterioration of the transcriptional, splicing and elongation machinery in brain of fetal Down syndrome. Journal of Neural Transmission. Supplementum, 61, 47–57.

    PubMed  Google Scholar 

  • Fuentes, J. J., Genesca, L., Kingsbury, T. J., Cunningham, K. W., Perez-Riba, M., et al. (2000). DSCR1, overexpressed in Down syndrome, is an inhibitor of calcineurin-mediated signaling pathways. Human Molecular Genetics, 9, 1681–1690.

    Article  PubMed  CAS  Google Scholar 

  • Fuentes, J. J., Pritchard, M. A., Planas, A. M., Bosch, A., Ferrer, I., et al. (1995). A new human gene from the Down syndrome critical region encodes a proline-rich protein highly expressed in fetal brain and heart. Human Molecular Genetics, 4, 1935–1944.

    Article  PubMed  CAS  Google Scholar 

  • Funahashi, S., Takeda, K., & Watanabe, Y. (2004). Neural mechanisms of spatial working memory: Contributions of the dorsolateral pre-frontal cortex and the thalamic mediodorsal nucleus. Cognitive, Affective & Behavioral Neuroscience, 4, 409–420.

    Article  Google Scholar 

  • Gahtan, E., Auerbach, J. M., Groner, Y., & Segal, M. (1998). Reversible impairment of long-term potentiation in transgenic Cu/Zn-SOD mice. The European Journal of Neuroscience, 10, 538–544.

    Article  PubMed  CAS  Google Scholar 

  • Gardiner, K., Fortna, A., Bechtel, L., & Davisson, M. T. (2003). Mouse models of Down syndrome: How useful can they be? Comparison of the gene content of human chromosome 21 with orthologous mouse genomic regions. Gene, 318, 137–147.

    Article  PubMed  CAS  Google Scholar 

  • Gearhart, J. D., Davisson, M. T., & Oster-Granite, M. L. (1986). Autosomal aneuploidy in mice: Generation and developmental consequences. Brain Research Bulletin, 16, 789–801.

    Article  PubMed  CAS  Google Scholar 

  • Gerlai, R., & Roder, J. (1996). Spatial and nonspatial learning in mice: Effects of S100 beta overexpression and age. Neurobiology of Learning and Memory, 66, 143–154.

    Article  PubMed  CAS  Google Scholar 

  • Giannone, S., Strippoli, P., Vitale, L., Casadei, R., Canaider, S., et al. (2004). Gene expression profile analysis in human T lymphocytes from patients with Down syndrome. Annals of Human Genetics, 68, 546–554.

    Article  PubMed  CAS  Google Scholar 

  • Gitton, Y., Dahmane, N., Baik, S., Ruiz, I., Altaba, A., et al. (2002). A gene expression map of human chromosome 21 orthologues in the mouse. Nature, 420, 586–590.

    Article  PubMed  CAS  Google Scholar 

  • Golden, J. A., & Hyman, B. T. (1994). Development of the superior temporal neocortex is anomalous in trisomy 21. Journal of Neuropathology and Experimental Neurology, 53, 513–552.

    Article  PubMed  CAS  Google Scholar 

  • Goldowitw, D., & Smeyne, R. J. (1995). Tune into the weaver channel. Nature Genetics, 11, 107–109.

    Article  Google Scholar 

  • Goshu, E., Jin, H., Fasnacht, R., Sepenski, M., Michaud, J. L., et al. (2002). Sim2 mutant have developmental defects not overlapping with those of the Sim1 mutants. Molecular and Cellular Biology, 22, 4147–4157.

    Article  PubMed  CAS  Google Scholar 

  • Graef, I. A., Che, F., & Crabtree, G. R. (2001). NFAT signaling in vertebrate development. Current Opinion in Genetics & Development, 11, 505–512.

    Article  CAS  Google Scholar 

  • Granholm, A. C., Ford, K. A., Hyde, L. A., Bimonte, H. A., Hunter, C. L., et al. (2002). Estrogen restores cognition and cholinergic phenotype in an animal model of Down syndrome. Physiology & Behavior, 77, 371–385.

    Article  CAS  Google Scholar 

  • Greber-Platzer, S., Schatzmann-Turhani, D., Cairns, N., Balcz, B., & Lubec, G. (1999). Expression of the transcription factor ETS2 in brain of patients with Down syndrome-evidence against the overexpression-gene dosage hypothesis. Journal of Neural Transmission, 57(Suppl), 269–281.

    PubMed  CAS  Google Scholar 

  • Griffin, W. S. T., Sheng, J. G., McKenzie, L. E., Royston, M. C., Gentleman, S. M., et al. (1998). Life-long over-expression of S100b in Down’s syndrome: Implications for Alzheimer’s pathogenesis. Neurobiology of Aging, 19, 401–405.

    Article  PubMed  CAS  Google Scholar 

  • Groves, M. R., & Barford, D. (1999). Topological characteristics of helical repeat proteins. Current Opinion in Structural Biology, 9, 383–389.

    Article  PubMed  CAS  Google Scholar 

  • Guimera, J., Casas, C., Estivill, X., & Pritchard, M. (1999). Human minibrain homologue (MNBH/DYRK1): Characterization, alternative splicing, differential tissue expression, and overexpression in Down syndrome. Genomics, 57, 407–418.

    Article  PubMed  CAS  Google Scholar 

  • Guimera, J., Casas, C., Pucharcos, C., Solans, A., Domenech, A., et al. (1996). A human ­homologue of Drosophila minibrain (MNB) is expressed in the neuronal regions affected in Down syndrome and maps to the critical region. Human Molecular Genetics, 5, 1305–1310.

    Article  PubMed  CAS  Google Scholar 

  • Guipponi, M., Brunschwig, K., Chamoun, Z., Scott, H. S., Shibuya, K., et al. (2000). C21orf5, a novel human chromosome 21 gene, has a Caenorhabditis elegans ortholog (pad-1) required for embryonic patterning. Genomics, 68, 30–40.

    Article  PubMed  CAS  Google Scholar 

  • Gurney, M. E., Pu, H., Chiu, A. Y., CantoMC, D., Polchow, C. Y., et al. (1994). Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation. Science, 264, 1772–1775.

    Article  PubMed  CAS  Google Scholar 

  • Gwack, Y., Sharma, S., Nardone, J., Tanasa, B., Iuga, A., et al. (2006). A genome-wide Drosophila RNAi screen identifes DYRK-family kinases as regulators of NFAT. Nature, 441, 646–650.

    Article  PubMed  CAS  Google Scholar 

  • Haffner, C., Takei, K., Chen, H., Ringstad, N., Hudson, A., et al. (1997). Synaptojanin 1: Localization on coated endocytic intermediates in nerve terminals and interaction of its 170 kDa isoform with Eps15. FEBS Letters, 419, 175–180.

    Article  PubMed  CAS  Google Scholar 

  • Hammerle, B., Carnicero, A., Elizalde, C., Ceron, J., Martinez, S., & Tejedor, F. J. (2003). Expression patterns and subcellular localization of the Down syndrome candidate protein MNB/DYRK1A suggest a role in late neuronal differentiation. The European Journal of Neuroscience, 17, 2277–2286.

    Article  PubMed  CAS  Google Scholar 

  • Hanson, J. E., Blank, M., Valenzuela, R. A., Garner, C. C., & Madison, D. V. (2007). The functional nature of synaptic circuitry is altered in area CA3 of the hippocampus in a mouse model of Downs’s syndrome. Journal of Physiology, 579, 53–67.

    Article  PubMed  CAS  Google Scholar 

  • Harashima, C., Jacobowitz, D. M., Stoffel, M., Chakrabarti, L., Haydar, T. F., et al. (2006). Elevated expression of the G-protein-activated inwardly rectifying potassium channel 2 (GIRK2) in cerebellar unipolar brush cells of a Down syndrome mouse model. Cellular and Molecular Neurobiology, 26, 719–734.

    Article  PubMed  CAS  Google Scholar 

  • Harashima, C., Jacobowitz, D. M., Witta, J., Borke, R. C., Best, T. K., et al. (2006). Abnormal expression of the G-protein-activated inwardly rectifying potassium channel 2 (GIRK2) in hippocampus, frontal cortex, and substantia nigra of Ts65Dn mouse: A model of Down syndrome. The Journal of Comparative Neurology, 494, 815–833.

    Article  PubMed  CAS  Google Scholar 

  • Harris-Cerruti, C., Kamsler, A., Kaplan, B., Lamb, B., Segal, M., et al. (2004). Functional and mophological alterations in compound transgenic mice overexpressing Cu/Zn superoxide dismutase and amyloid precursor protein. The European Journal of Neuroscience, 19, 1174–90.

    Article  PubMed  Google Scholar 

  • Hattori, D., Demir, E., Kim, H. W., Viragh, E., Zipursky, S. L., et al. (2007). Dscam diversity is essential for neuronal wiring and self-recognition. Nature, 449, 223–227.

    Article  PubMed  CAS  Google Scholar 

  • Hattori, M., Fujiyama, A., Taylor, T. D., Watanabe, H., Yada, T., et al. (2000). The DNA sequence of human chromosome 21. Nature, 405, 311–319.

    Article  PubMed  CAS  Google Scholar 

  • Heller, J. H., Spiridigliozzi, G. A., Doraiswamy, P. M., Sullivan, J. A., Crissman, B. G., et al. (2004). Donepezil effects on language in children with Down syndrome: Results of the first 22-week pilot clinical trial. American Journal of Medical Genetics, 130, 325–326.

    Article  Google Scholar 

  • Heller, J. H., Spiridigliozzi, G. A., Sullivan, J. A., Doraiswamy, P. M., Krishnan, R. R., et al. (2003). Donepezil for the tratment of language deficits in adults with Down syndrome: A preliminary 24-week open trial. American Journal of Medical Genetics, 116, 111–116.

    Article  Google Scholar 

  • Hennequin, M., Morin, C., & Feine, J. S. (2000). Pain expression and stimulus localisation in individuals with Down’s syndrome. Lancet, 356, 1882–1887.

    Article  PubMed  CAS  Google Scholar 

  • Hodapp, R. M., Ewans, D. E., & Gray, F. L. (1999). Intellectual development in children with Down syndrome. In J. A. Rondal, J. Perera, & L. Nadel (Eds.), Down syndrome: A review of current knowledge (pp. 124–132). London: Whurr publisher.

    Google Scholar 

  • Hodapp, R. M., & Zigler, E. (1990). Applying the developmental perspective to individuals with Down syndrome. In D. Cicchetti & M. Beeghly (Eds.), Children with Down syndrome: A developmental perspective (pp. 1–28). New York: Cambridge University Press.

    Chapter  Google Scholar 

  • Hoeffer, C. A., Dey, A., Sachan, N., Wong, H., Patterson, R. J., et al. (2007). The Down syndrome critical region protein RCAN1 regulates long-term potentiation and memory via inhibition of phosphatase signaling. The Journal of Neuroscience, 27, 13161–13172.

    Article  PubMed  CAS  Google Scholar 

  • Holtzman, D. M., Santucci, D., Kilbridge, J., Chua-Couzens, J., Fontana, D. J., et al. (1996). Developmental abnormalities and age-related neurodegeneration in a mouse model of Down syndrome. Proceedings of the National Academy of Sciences of the United States of America, 93, 13333–13338.

    Article  PubMed  CAS  Google Scholar 

  • Hulme, C., & Mackenzie, S. (1992). Working memory and severe learning difficulties. Hove: Erlbaum.

    Google Scholar 

  • Hunter, C. L., Isacson, O., Nelson, M., Bimonte-Nelson, H., Seo, H., et al. (2003). Regional alterations in amyloid precursor protein and nerve growth factor across age in a mouse model of Down’s syndrome. Neuroscience Research, 45, 437–445.

    Article  PubMed  CAS  Google Scholar 

  • Hussain, N. K., Yamabhai, M., Ramjaun, A. R., Guy, A. M., Baranes, D., et al. (1999). Splice variants of intersectin are components of the endocytic machinery in neurons and nonneuronal cells. The Journal of Biological Chemistry, 274, 15671–15677.

    Article  PubMed  CAS  Google Scholar 

  • Huttenlocher, P. R. (1974). Dendritic development in neocortex of children with mental defect and infantile spasms. Neurology, 24, 203–210.

    Article  PubMed  CAS  Google Scholar 

  • Hyde, L. A., Frisone, D. F., & Crnic, L. S. (2001). Ts65Dn mice, a model for Down syndrome, have deficits in context discrimination learning suggesting impaired hippocampal function. Behavioural Brain Research, 118, 53–60.

    Article  PubMed  CAS  Google Scholar 

  • Ikeda, M., & Arai, Y. (2002). Longitudinal changes in brain CT scans and development of dementia in Down’s syndrome. European Neurology, 47, 205–208.

    Article  PubMed  Google Scholar 

  • Ikegami, S., & Inokuchi, K. (2000). Antisense DNA against calcineurin facilites memory in contextual fear conditioning by lowering the threshold for hippocampal long-term potentiation induction. Neuroscience, 98, 637–646.

    Article  PubMed  CAS  Google Scholar 

  • International Human Genome Sequencing Consortium. (2004). Finishing the euchromatic sequence of the human genome. Nature, 431, 931–945.

    Article  CAS  Google Scholar 

  • Ito, M. (2002). The molecular organization of cerebellar long-term depression. Nature Review Neuroscience, 3, 896–902.

    Article  CAS  Google Scholar 

  • Janus, C. (2004). Search strategies used by APP transgenic mice during navigation in the Morris water maze. Learning & Memory, 11, 337–346.

    Article  Google Scholar 

  • Jenna, S., Hussain, N. K., Danek, E. I., Triki, I., Wasiak, S., et al. (2002). The activity of the GTPase-activating protein CdGAP is regulated by the endocytic protein intersectin. The Journal of Biological Chemistry, 277, 6366–6373.

    Article  PubMed  CAS  Google Scholar 

  • Jernigan, T. L., Bellugi, U., Sowell, E., Doherty, S., & Hesselink, J. R. (1993). Cerebral morphologic distinctions between Williams and Down syndromes. Archives of Neurology, 50, 186–191.

    Article  PubMed  CAS  Google Scholar 

  • Kadota, M., Nishigaki, R., Wang, C. C., Toda, T., Shirayoshi, Y., et al. (2004). Proteomic signatures and aberrations of mouse embryonic stem cells containing a single human chromosome 21 in neuronal differentiation: An in vitro model of Down syndrome. Neuroscience, 129, 325–335.

    Article  PubMed  CAS  Google Scholar 

  • Kaduszkiewicz, H., Zimmermann, T., Beck-Bornholdt, H. P., & van den Bussche, H. (2005). Cholinesterase inhibitors for patients with Alzheimer’s disease: Systematic review of randomised clinical trials. BMJ, 331, 321–327.

    Article  PubMed  CAS  Google Scholar 

  • Kahlem, P., Sultan, M., Herwig, R., Steinfath, M., Balzereit, D., et al. (2004). Transcript level alterations reflect gene dosage effects across multiple tissues in a mouse model of Down syndrome. Genome Research, 14, 1258–1267.

    Article  PubMed  CAS  Google Scholar 

  • Kang, J., Lemaire, H. G., Unterbeck, A., Salbaum, J. M., Masters, C. L., et al. (1987). The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature, 325, 733–736.

    Article  PubMed  CAS  Google Scholar 

  • Kapranov, P., Cawley, S. E., Drenkow, J., Bekiranov, S., Strausberg, R. L., et al. (2002). Large-scale transcriptional activity in chromosomes 21 and 22. Science, 296, 916–919.

    Article  PubMed  CAS  Google Scholar 

  • Kentrup, H., Becker, W., Heukelbach, J., Wilmes, A., Schurmann, A., et al. (1996). Dyrk, a dual specificity protein kinase with unique structural features whose activity is dependent on tyrosine residues between subdomains VII and VIII. The Journal of Biological Chemistry, 271, 3488–3495.

    Article  PubMed  CAS  Google Scholar 

  • Kesslak, J. P., Nagata, S. F., Lott, I., & Nalcioglu, O. (1994). Magnetic resonance imaging analysis of age-related changes in the brains of individuals with Down’s syndrome. Neurology, 44, 1039–1045.

    Article  PubMed  CAS  Google Scholar 

  • Kim, S. H., & Lubec, G. (2001). Decreased alpha-endosulfine, an endogenous regulator of ATP-sensitive potassium channels, in brains from adult Down syndrome patients. Journal of Neural Transmission. Supplementum, 61, 1–9.

    PubMed  Google Scholar 

  • Kim, W. T., Chang, S., Daniell, L., Cremona, O., Di Paolo, G., et al. (2002). Delayed reentry of recycling vesicles into the fusion-competent synaptic vesicle pool in synaptojanin 1 knockout mice. Proceedings of the National Academy of Sciences of the United States of America, 99, 17143–17148.

    Article  PubMed  CAS  Google Scholar 

  • King, M. C., & Wilson, A. C. (1975). Evolution at two levels in humans and chimpanzees. Science, 188, 107–116.

    Article  PubMed  CAS  Google Scholar 

  • Kish, S., Karlinsky, H., Becker, L., Gilbert, J., Rebbetoy, M., et al. (1989). Down’s syndrome individuals begin life with normal levels of brain cholinergic markers. Journal of Neurochemistry, 2, 1183–1187.

    Article  Google Scholar 

  • Kleschevnikov, A. M., Belichenko, P. V., Villar, A. J., Epstein, C. J., & Malenka, R. C. (2004). Hippocampal long-term potentiation suppressed by increased inhibition in the Ts65Dn mouse, a genetic model of Down syndrome. The Journal of Neuroscience, 24, 8153–8160.

    Article  PubMed  CAS  Google Scholar 

  • Kojima, N., & Shirao, T. (2007). Synaptic dysfunction and disruption of postsynaptic drebrin-actin complex: A study of neurological disorders accompanied by cognitive deficits. Neuroscience Research, 58, 1–5.

    Article  PubMed  CAS  Google Scholar 

  • Korenberg, J. R., Chen, X. N., Schipper, R., Sun, Z., Gonsky, R., et al. (1994). Down syndrome phenotypes: The consequences of chromosomal imbalance. Proceedings of the National Academy of Sciences of the United States of America, 91, 4997–5001.

    Article  PubMed  CAS  Google Scholar 

  • Korenberg, J. R., Kawashima, H., Pulst, S. M., Ikeuchi, T., Ogasawara, N., et al. (1990). Molecular definition of a region of chromosome 21 that causes features of the Down syndrome phenotype. American Journal of Human Genetics, 47, 236–246.

    PubMed  CAS  Google Scholar 

  • Krasuski, J. S., Alexander, G. E., Horwitz, B., Rapoport, S. I., & Schapiro, M. B. (2002). Relation of medial temporal lobe volumes to age and memory function in nondemented adults with Down’s syndrome: Implications for the prodromal phase of Alzheimer’s disease. The American Journal of Psychiatry, 159, 74–81.

    Article  PubMed  Google Scholar 

  • Kuhn, D. E., Nuovo, G. J., Martin, M. M., Malana, G. E., Pleister, A. P., et al. (2008). Human chromosome 21-derived miRNAs are overexpressed in Down syndrome brains and hearts. Biochemical and Biophysical Research Communications, 370, 473–477.

    Article  PubMed  CAS  Google Scholar 

  • Kumashiro, S., Lu, Y. F., Tomizawa, K., Matsushita, M., Wei, F. Y., et al. (2005). Regulation of synaptic vesicle recycling by calcineurin in different vesicle pools. Neuroscience Research, 51, 435–443.

    Article  PubMed  CAS  Google Scholar 

  • Kurnit, D. M. (1979). Down syndrome: Gene dosage at the transcriptional level in skin fibroblasts. Proceedings of the National Academy of Sciences of the United States of America, 76, 2372–2375.

    Article  PubMed  CAS  Google Scholar 

  • Kurnit, D. M., Aldridge, J. F., Matsuoka, R., & Matthysse, S. (1985). Increased adhesiveness of trisomy 21 cells and atrioventricular canal malformations in Down syndrome: A stochastic model. American Journal of Medical Genetics, 20, 385–399.

    Article  PubMed  CAS  Google Scholar 

  • Kurnit, D. M., Layton, W. M., & Matthysse, S. (1987). Genetics, chance, and morphogenesis. American Journal of Human Genetics, 41, 979–995.

    PubMed  CAS  Google Scholar 

  • Kuromi, H., Yoshihara, M., & Kidokoro, Y. (1997). An inhibitory role of calcineurin in endocytosis of synaptic vesicles at nerve terminals of Drosophila larvae. Neuroscience Research, 27, 101–113.

    Article  PubMed  CAS  Google Scholar 

  • Kurt, M. A., Davies, D. C., Kidd, M., Dierssen, M., & Florez, J. (2000). Synaptic deficit in the temporal cortex of partial trisomy 16 (Ts65Dn) mice. Brain Research, 858, 191–197.

    Article  PubMed  CAS  Google Scholar 

  • Kurt, M. A., Kafa, I. M., Dierssen, M., & Davies, C. D. (2004). Deficits of neuronal density in CA1 and synaptic density in the dentat gyrus, CA3 and CA1, in a mouse model of Down syndrome. Brain Research, 1022, 101–109.

    Article  PubMed  CAS  Google Scholar 

  • Lacey-Casem, M. L., & Oster-Granite, M. L. (1994). The neuropathology of the trisomy 16 mouse. Critical Reviews in Neurobiology, 8, 293–322.

    PubMed  CAS  Google Scholar 

  • Ladner, C. J., Czech, J., Maurice, J., Lorens, S. A., & Lee, J. M. (1996). Reduction of calcineurin enzymatic activity in Alzheimer’s disease: Correlation with neuropathologic changes. Journal of Neuropathology and Experimental Neurology, 55, 924–931.

    PubMed  CAS  Google Scholar 

  • Lai, F., & Williams, R. S. (1989). A prospective study of Alzheimer disease in Down syndrome. Archives of Neurology, 46, 849–853.

    Article  PubMed  CAS  Google Scholar 

  • Lalonde, R., Dumont, M., Paly, E., London, J., & Strazielle, C. (2004). Characterization of hemizygous SOD1/wild-type transgenic mice with the SHIRPA primary screen and tests of sensorimotor function and anxiety. Brain Research Bulletin, 64, 251–258.

    Article  PubMed  CAS  Google Scholar 

  • Lalonde, R., Le Pecheur, M., Strazielle, C., & London, J. (2005). Exploratory activity and motor coordination in wild-type SOD1/SOD1 transgenic mice. Brain Research Bulletin, 66, 155–162.

    Article  PubMed  CAS  Google Scholar 

  • Lamb, B. T., Sisodia, S. S., Lawler, A. M., Slunt, H. H., Kitt, C. A., et al. (1993). Introduction and expression of the 400 kilobase amyloid precursor protein gene in transgenic mice. Nature Genetics, 5, 22–30.

    Article  PubMed  CAS  Google Scholar 

  • Le Pecheur, M., Bourdon, E., Paly, E., Farout, L., Friguet, B., et al. (2005). Oxidized SOD1 alters proteasome activities in vitro and in the cortex of SOD1 overexpressing mice. FEBS Letters, 579, 3613–3618.

    Article  PubMed  CAS  Google Scholar 

  • Lee, J. I., & Ahnn, J. (2004). Calcineurin in animal behavior. Molecules and Cells, 17, 390–396.

    PubMed  CAS  Google Scholar 

  • Lejeune, J. (1990). Pathogenesis of mental deficiency in trisomy 21. American Journal of Medical Genetics, 7(Suppl), 20–30.

    PubMed  CAS  Google Scholar 

  • Lejeune, J., Gautier, M., & Turpin, R. (1959). Etude des chromosomes somatiques de neufs enfants Mongoliens. Comptes rendus de l’Académie des sciences. Série III, Sciences de la vie Paris, 248, 1721–1722.

    CAS  Google Scholar 

  • Lesage, F., Duprat, F., Fink, M., Guillemare, E., Coppola, T., et al. (1994). Cloning provides evidence for a family of inward rectifier and G-protein coupled K+ channels in the brain. FEBS Letters, 353, 37–42.

    Article  PubMed  CAS  Google Scholar 

  • Li, C. M., Guo, M., Salas, M., Schupt, N., Silvermann, W., et al. (2006). Cell type-specific over-expression of chromosome 21 genes in fibroblasts and fetal hearts with trisomy 21. BMC Medical Genetics, 7, 24.

    Article  PubMed  CAS  Google Scholar 

  • Li, Z., Yu, T., Morishima, M., Pao, A., LaDuca, J., et al. (2007). Duplication of the entire 22.9 Mb human chromosome 21 syntenic region on mouse chromosome 16 causes cardiovascular and gastrointestinal abnormalities. Human Molecular Genetics, 16, 1359–1366.

    Article  PubMed  CAS  Google Scholar 

  • Lieberman, D. N., & Mody, I. (1994). Regulation of NMDA channel function by endogenous Ca(2+)-dependent phosphatase. Nature, 369, 235–239.

    Article  PubMed  CAS  Google Scholar 

  • Liu, J. P., Sim, A. T., & Robinson, P. J. (1994). Calcineurin inhibition of dynamin I GTPase activity coupled to nerve terminal depolarization. Science, 265, 970–973.

    Article  PubMed  CAS  Google Scholar 

  • Lopes, C., Chettouh, Z., Delabar, J. M., & Rachidi, M. (2003). The differentially expressed C21orf5 gene in the medial temporal-lobe system could play a role in mental retardation in Down syndrome and transgenic mice. Biochemical and Biophysical Research Communications, 305, 915–924.

    Article  PubMed  CAS  Google Scholar 

  • Lopes, C., Rachidi, M., Gassanova, S., Sinet, P. M., & Delabar, J. M. (1999). Developmentally regulated expression of mtprd, the murine ortholog of tprd, a gene from the Down syndrome chromosomal region 1. Mechanisms of Development, 84, 189–193.

    Article  PubMed  CAS  Google Scholar 

  • Lott, I. T., & Head, E. (2005). Alzheimer disease and Down syndrome: Factors in pathogenesis. Neurobiology of Aging, 26, 383–389.

    Article  PubMed  CAS  Google Scholar 

  • Ly, A., Nikolaev, A., Suresh, G., Zheng, Y., Tessier-Lavigne, M., et al. (2008). DSCAM is a netrin receptor that collaborates with DCC in mediating turning responses to netrin-1. Cell, 133, 1241–1254.

    Article  PubMed  CAS  Google Scholar 

  • Lyle, R., Gehrig, C., Neergaard-Henrichsen, C., Deutsch, S., & Antonarakis, S. E. (2004). Gene expression from the aneuploid chromosome in a trisomy mouse model of Down syndrome. Genome Research, 14, 1268–1274.

    Article  PubMed  CAS  Google Scholar 

  • Ma, H., Xiong, H., Liu, T., Zhang, L., Godzik, A., et al. (2004). Aggregate formation and synaptic abnormality induced by DSCR1. Journal of Neurochemistry, 88, 1485–1496.

    Article  PubMed  CAS  Google Scholar 

  • Ma, Y. J., Okamoto, M., Gu, F., Obata, K., Matsuyama, T., et al. (2003). Neuronal distribution of EHSH1/intersectin: Molecular linker between clathrin-mediated endocytosis and signalling pathways. Journal of Neuroscience Research, 71, 468–477.

    Article  PubMed  CAS  Google Scholar 

  • Malago, W., Jr., Sommer, C. A., Del Cistia, A. C., Soares-Costa, A., Abrao Possik, P., et al. (2005). Gene expression profile of human Down syndrome leukocytes. Croatian Medical Journal, 46, 647–656.

    PubMed  Google Scholar 

  • Malleret, G., Haditsch, U., Genoux, D., Jones, M. W., Bliss, T. V., et al. (2001). Inducible and reversible enhancement of learning, memory, and long-term potentiation by genetic inhibition of calcineurin. Cell, 104, 675–686.

    PubMed  CAS  Google Scholar 

  • Mann, E. M. A., & Eisiri, M. M. (1989). The pattern of acquisition of plaques and tangles in the brains of patients under 50 years of age with Down’s syndrome. Journal of the Neurological Sciences, 89, 169–179.

    Article  PubMed  CAS  Google Scholar 

  • Mansuy, I. M. (2003). Calcineurin in memory and bidirectional plasticity. Biochemical and Biophysical Research Communications, 311, 1195–1208.

    Article  PubMed  CAS  Google Scholar 

  • Mansuy, I. M., Mayford, M., Jacob, B., Kandel, E. R., & Bach, M. E. (1998). Restricted and regulated overexpression reveals calcineurin as a key component in the transition from short-term to long-term memory. Cell, 92, 39–49.

    Article  PubMed  CAS  Google Scholar 

  • Mansuy, I. M., Winder, D. G., Moallem, T. M., Osman, M., Mayford, M., et al. (1998). Inducible and reversible gene expression with the rtTA system for the study of memory. Neuron, 1998(21), 257–265.

    Article  Google Scholar 

  • Mao, J., Maye, P., Kogerman, P., Tejedor, F. J., Toftgard, R., et al. (2002). Regulation of Gli1 transcriptional activity in the nucleus by Dyrk1. The Journal of Biological Chemistry, 277, 35156–35161.

    Article  PubMed  CAS  Google Scholar 

  • Mao, L., Zabel, C., Herrmann, M., Nolden, T., Mertes, F., et al. (2007). Proteomic shifts in embryonic stem cells with gene dose modifications suggest the presence of balancer proteins in protein regulatory networks. PLoS One, 2, e1218.

    Article  PubMed  CAS  Google Scholar 

  • Mao, R., Wang, X., Spitznagel, E. L., Jr., Frelin, L. P., Ting, J. C., et al. (2005). Primary and secondary transcriptional effects in the developing human Down syndrome brain and heart. Genome Biology, 6, R107.

    Article  PubMed  CAS  Google Scholar 

  • Mao, R., Zielke, C. L., Zielke, H. R., & Pevsner, J. (2003). Global up-regulation of chromosome 21 gene expression in the developing Down syndrome brain. Genomics, 81, 457–467.

    Article  PubMed  CAS  Google Scholar 

  • Marin-Padilla, M. (1972). Structural abnormalities of the cerebral cortex in human chromosomal aberrations: A Golgi study. Brain Research, 44, 625–629.

    Article  PubMed  CAS  Google Scholar 

  • Marin-Padilla, M. (1976). Pyramidal cell abnormalities in the motor cortex of a child with Down’s syndrome. The Journal of Comparative Neurology, 167, 63–75.

    Article  PubMed  CAS  Google Scholar 

  • Martina, J. A., Bonangelino, C. J., Aguilar, R. C., & Bonifacino, J. S. (2001). Stonin 2: An adaptor-like protein that interacts with components of the endocytic machinery. The Journal of Cell Biology, 153, 1111–1120.

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Cue, C., Baamonde, C., Lumbreras, M. A., Vallina, I. F., Dierssen, M., et al. (1999). A murine model for Down syndrome shows reduced responsiveness to pain. NeuroReport, 10, 1119–1122.

    Article  PubMed  CAS  Google Scholar 

  • McPherson, P. S. (1999). Regulatory role of SH3 domain-mediated protein-protein interactions in synaptic vesicle endocytosis. Cellular Signalling, 11, 229–238.

    Article  PubMed  CAS  Google Scholar 

  • McPherson, P. S., Garcia, E. P., Slepnev, V. I., David, C., Zhang, X., et al. (1996). A presynaptic inositol-5-phosphatase. Nature, 379, 353–357.

    Article  PubMed  CAS  Google Scholar 

  • McPherson, P. S., Takei, K., Schmid, S. L., & De Camilli, P. (1994). p145, a major Grb2-binding protein in brain, is co-localized with dynamin in nerve terminals where it undergoes activity-dependent dephosphorylation. The Journal of Biological Chemistry, 269, 30132–30139.

    PubMed  CAS  Google Scholar 

  • Meng, X., Shi, J., Peng, B., Zou, X., & Zhang, C. (2006). Effect of mouse Sim2 gene on the cell cycle of PC12 cells. Cell Biology International, 30, 349–353.

    Article  PubMed  CAS  Google Scholar 

  • Milner, B., Squire, L. R., & Kandel, E. R. (1998). Cognitive neuroscience and the study of memory. Neuron, 20, 445–468.

    Article  PubMed  CAS  Google Scholar 

  • Miyakawa, T., Leiter, L. M., Gerber, D. J., Gainetdinov, R. R., Sotnikova, T. D., et al. (2003). Conditional calcineurin knockout mice exhibit multiple abnormal behaviours related to schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, 100, 8987–8992.

    Article  PubMed  CAS  Google Scholar 

  • Miyashita, Y. (2004). Cognitive memory: Cellular and network machineries and their top-down control. Science, 306, 435–440.

    Article  PubMed  CAS  Google Scholar 

  • Monks, S. A., Leonardson, A., Zhu, H., Cundiff, P., Pietrusiak, P., et al. (2004). Genetic inheritance of gene expression in human cell lines. American Journal of Human Genetics, 75, 1094–1105.

    Article  PubMed  CAS  Google Scholar 

  • Morice, E., Andreae, L. C., Cooke, S. F., Vanes, L., Fisher, E. M., et al. (2008). Preservation of long-term memory and synaptic plasticity despit short-term impairments in theTc1 mouse model of Down syndrome. Learning & Memory, 15, 492–500.

    Article  CAS  Google Scholar 

  • Morii, K., Tanaka, R., Takahashi, Y., Minoshima, S., Fukuyama, R., et al. (1991). Structure and chromosome assignment of human S100 alpha and beta subunit genes. Biochemical and Biophysical Research Communications, 175, 185–191.

    Article  PubMed  CAS  Google Scholar 

  • Morley, M., Molony, C. M., Weber, T. M., Devlin, J. L., Ewens, K. G., et al. (2004). Genetic analysis of genome-wide variation in human gene expression. Nature, 430, 743–747.

    Article  PubMed  CAS  Google Scholar 

  • Mural, R. J., Adams, M. D., Myers, E. W., Smith, H. O., Miklos, G. L., et al. (2002). A comparison of whole-genome shotgun-derived mouse chromosome 16 and the human genome. Science, 296, 1661–1671.

    Article  PubMed  CAS  Google Scholar 

  • Nadel, L. (2003). Down’s syndrome: A genetic disorder in biobehavioral perspective. Genes, Brain, and Behavior, 2, 156–166.

    Article  PubMed  CAS  Google Scholar 

  • Nadel, L., & Willner, J. (1980). Context and conditioning: A place for space. Physiol Psychol, 8, 218–228.

    Google Scholar 

  • Nambu, J. R., Lewis, J. O., Wharton, K. A., & Crews, S. T. (1991). The Drosophila single-minded gene encodes a helix-loop-helix protein that acts as a master regulator of CNS midline development. Cell, 67, 1157–1167.

    Article  PubMed  CAS  Google Scholar 

  • Newby, D., Aitken, D. A., Crossley, J. A., Howatson, A. G., Macri, J. N., et al. (1997). Biochemical markers of trisomy 21 and the pathophysiology of Down’s syndrome pregnancies. Prenatal Diagnosis, 17, 941–951.

    Article  PubMed  CAS  Google Scholar 

  • Nikolaienko, O., Nguyen, C., Crinc, L. S., Cios, K. J., & Gardiner, K. (2005). Human chromosome 21/Down syndrome gene function and pathway database. Gene, 364, 90–98.

    Article  PubMed  CAS  Google Scholar 

  • Nishiyama, H., Knopfel, T., Endo, S., & Itohara, S. (2002). Glial protein S100B modulates long-term neuronal synaptic plasticity. Proceedings of the National Academy of Sciences of the United States of America, 99, 4037–4042.

    Article  PubMed  CAS  Google Scholar 

  • O’Connell, R. M., Taganov, K. D., Boldin, M. P., Cheng, G., & Baltimore, D. (2007). MicroRNA- 155 is induced during the macrophage inflammatory response. Proceedings of the National Academy of Sciences of the United States of America, 104, 1604–1609.

    Article  PubMed  CAS  Google Scholar 

  • O’Doherty, A., Ruf, S., Mullingan, C., Hildreth, V., Errington, M. L., et al. (2005). An aneuploid mouse strain carrying human chromosome 21 with Down syndrome phenotypes. Science, 309, 2033–2037.

    Article  PubMed  CAS  Google Scholar 

  • Ohira, M., Ootsuyama, A., Suzuki, E., Ichikawa, H., Seki, N., et al. (1996). Identification of a novel human gene containing the tetratricopeptide repeat domain from the Down syndrome region of chromosome 21. DNA Research, 3, 9–16.

    Article  PubMed  CAS  Google Scholar 

  • Ohira, M., Seki, N., Nagase, T., Suzuki, E., Nomura, N., et al. (1997). Gene identification in 1.6-Mb region of the Down syndrome region on chromosome 21. Genome Research, 7, 47–58.

    Article  PubMed  CAS  Google Scholar 

  • Oleksiak, M. F., Churchill, G. A., & Crawford, D. L. (2002). Variation in gene expression within and among natural populations. Nature Genetics, 32, 261–266.

    Article  PubMed  CAS  Google Scholar 

  • Olson, L. E., Richtsmeier, J. T., Leszl, J., & Reeves, R. H. (2004). A chromosome 21 critical region does not cause specific Down syndrome phenotypes. Science, 306, 687–690.

    Article  PubMed  CAS  Google Scholar 

  • Olson, L. E., Roper, R. J., Baxter, L. L., Carlson, E. J., Epstein, C. J., et al. (2004). Down syndrome mouse models Ts65Dn, Ts1Cje, and Ms1Cje/Ts65Dn exhibit variable severity of cerebellar phenotypes. Developmental Dynamics, 230, 581–589.

    Article  PubMed  CAS  Google Scholar 

  • Olson, L. E., Roper, R. J., Sengstaken, C. L., Peterson, E. A., Aquino, V., et al. (2007). Trisomy for the Down syndrome “critical region” is necessary but not sufficient for brain phenotypes of trisomic mice. Human Molecular Genetics, 16, 774–782.

    Article  PubMed  CAS  Google Scholar 

  • Pascon, R. C., & Miller, B. L. (2000). Morphogenesis in Aspergillus nidulans requires Dopey (DopA), a member of a novel family of leucine zipper-like proteins conserved from yeast to humans. Molecular Microbiology, 36, 1250–1264.

    Article  PubMed  CAS  Google Scholar 

  • Patil, N., Cox, D. R., Bhat, D., Faham, M., Myers, R. M., et al. (1995). A potassium channel mutation in weaver mice implicates membrane excitability in granule cell differentiation. Nature Genetics, 11, 126–129.

    Article  PubMed  CAS  Google Scholar 

  • Pawson, T. (1995). Protein modules and signalling networks. Nature, 373, 573–580.

    Article  PubMed  CAS  Google Scholar 

  • Pearlson, G. D., Breiter, S. N., Aylward, E. H., Warren, A. C., Grygorcewicz, M., et al. (1998). MRI brain changes in subjects with Down syndrome with and without dementia. Developmental Medicine and Child Neurology, 40, 326–334.

    PubMed  CAS  Google Scholar 

  • Pennington, B. F., Moon, J., Edgin, J., Stedron, J., & Nadel, L. (2003). The neuropsychology of Down syndrome: Evidence for hippocampal dysfunction. Child Development, 74, 75–93.

    Article  PubMed  Google Scholar 

  • Pinter, J. D., Brown, W. E., Eliez, S., Schmitt, J. E., Capone, G. T., et al. (2001). Amygdala and hippocampal volumes in children with Down syndrome: A high- resolution MRI study. Neurology, 56, 972–974.

    Article  PubMed  CAS  Google Scholar 

  • Pinter, J. D., Eliez, S., Schmitt, J. E., Capone, G. T., & Reiss, A. L. (2001). Neuroanatomy of Down’s syndrome: A high-resolution MRI study. The American Journal of Psychiatry, 158, 1659–1665.

    Article  PubMed  CAS  Google Scholar 

  • Potier, M. C., Rivals, I., Mercier, G., Ettwiller, L., Moldrich, R. X., et al. (2006). Transcriptional disruptions in Down syndrome: A case study in the Ts1Cje mouse cerebellum during post-natal development. Journal of Neurochemistry, 97(Suppl 1), 1004–109.

    Google Scholar 

  • Prandini, P., Deutsch, S., Lyle, R., Gagnebin, M., Delucinge Vivier, C., et al. (2007). Natural gene-expression variation in Down syndrome modulates the outcome of gene-dosage imbalance. American Journal of Human Genetics, 81, 252–263.

    Article  PubMed  CAS  Google Scholar 

  • Prasher, V. P. (2004). Review of donepezil, rivastigmine, galantamine and memantine for the treatment of dementia in Alzheimer’s disease in adults with Down syndrome: Implications for the intellectual disability population. International Journal of Geriatric Psychiatry, 19, 509–515.

    Article  PubMed  CAS  Google Scholar 

  • Priller, C., Bauer, T., Mitteregger, G., Krebs, B., Kretzschmar, H. A., et al. (2006). Synapse formation and function is modulated by the amyloid precursor protein. The Journal of Neuroscience, 26, 7212–7221.

    Article  PubMed  CAS  Google Scholar 

  • Pritchard, M. A., & Kola, I. (1999). The gene dosage effect hypothesis versus the amplified development instability hypothesis in Down syndrome. Journal of Neural Transmission, 57(Suppl), 293–303.

    PubMed  CAS  Google Scholar 

  • Pucharcos, C., Fuentes, J. J., Casas, C., de la Luna, S., Alcàntara, S., et al. (1999). Alu-splice cloning of the human intersectin (ITSN), a putative multivalent binding protein expressed in proliferating and differentiating neurons and over-expressed in Down syndrome. European Journal of Human Genetics, 7, 704–712.

    Article  PubMed  CAS  Google Scholar 

  • Pulsifer, M. B. (1996). The neuropsychology of mental retardation. Journal of the International Neuropsychological Society, 2, 159–176.

    Article  PubMed  CAS  Google Scholar 

  • Purpura, D. P. (1974). Dendritic spine dysgenesis and mental retardation. Science, 186, 1126–1128.

    Article  PubMed  CAS  Google Scholar 

  • Rachidi, M., & Lopes, C. (2007). Mental retardation in Down syndrome: From gene dosage imbalance to molecular and cellular mechanisms. Neuroscience Research, 59, 349–369.

    Article  PubMed  CAS  Google Scholar 

  • Rachidi, M., Lopes, C., Charron, G., Delezoide, A. L., Paly, E., et al. (2005). Spatial and temporal localization during embryonic and fetal human development of the transcription factor SIM2 in brain regions altered in Down syndrome. International Journal of Developmental Neuroscience, 23, 475–484.

    Article  PubMed  CAS  Google Scholar 

  • Rachidi, M., Lopes, C., Costantine, M., & Delabar, J. M. (2005). C21orf5, a new member of dopey family involved in morphogenesis, could participate in neurological alterations and mental retardation in Down syndrome. DNA Research, 12, 203–210.

    Article  PubMed  CAS  Google Scholar 

  • Rachidi, M., Lopes, C., Delezoide, A. L., & Delabar, J. M. (2006). C21orf5, a human candidate gene for brain abnormalities and mental retardation in Down syndrome. Cytogenetic and Genome Research, 112, 16–22.

    Article  PubMed  CAS  Google Scholar 

  • Rachidi, M., Lopes, C., Gassanova, S., Sinet, P. M., Vekemans, M., Attie, T., et al. (2000). Regional and cellular specificity of the expression of TPRD, the tetratricopeptide Down syndrome gene, during human embryonic development. Mechanisms of Development, 93, 189–193.

    Article  PubMed  CAS  Google Scholar 

  • Rachidi, M., Lopes, C., Vayssettes, C., Smith, D. J., Rubin, E. M., et al. (2007). New cerebellar phenotypes in YAC transgenic mouse in vivo library of human Down syndrome critical region-1. Biochemical and Biophysical Research Communications, 364, 488–494.

    Article  PubMed  CAS  Google Scholar 

  • Rahmani, Z., Blouin, J. L., Creau-Goldberg, N., Watkins, P. C., Mattei, J. F., et al. (1989). Critical role of the D21S55 region on chromosome 21 in the pathogenesis of Down syndrome. Proceedings of the National Academy of Sciences of the United States of America, 86, 5958–5962.

    Article  PubMed  CAS  Google Scholar 

  • Rahmani, Z., Lopes, C., Rachidi, M., & Delabar, J. M. (1998). Expression of the mnb (dyrk) protein in adult and embryonic mouse tissues. Biochemical and Biophysical Research Communications, 253, 514–518.

    Article  PubMed  CAS  Google Scholar 

  • Raz, N., Torres, I. J., Briggs, S. D., Spencer, W. D., Thornton, A. E., et al. (1995). Selective neuroanatomic abnormalities in Down’s syndrome and their cognitive correlates: Evidence from MRI morphometry. Neurology, 45, 356–366.

    Article  PubMed  CAS  Google Scholar 

  • Reeves, R. H. (2006). Down syndrome mouse models are looking up. Trends in Molecular Medicine, 12, 237–240.

    Article  PubMed  CAS  Google Scholar 

  • Reeves, R. H., Irving, N. G., Moran, T. H., Wohn, A., Kitt, C., et al. (1995). A mouse model for Down syndrome exhibits learning and behaviour deficits. Nature Genetics, 11, 177–184.

    Article  PubMed  CAS  Google Scholar 

  • Reeves, R. H., Yao, J., Crowley, M. R., Buck, S., Zhang, X., et al. (1994). Astrocytosis and axonal proliferation in the hippocampus of S100b transgenic mice. Proceedings of the National Academy of Sciences of the United States of America, 91, 5359–5363.

    Article  PubMed  CAS  Google Scholar 

  • Reymond, A., Marigo, V., Yaylaoglu, M. B., Leoni, A., Ucla, C., et al. (2002). Human chromosome 21 gene expression atlas in the mouse. Nature, 420, 582–586.

    Article  PubMed  CAS  Google Scholar 

  • Risch, N., Merikangas, K. (1996). The future of genetic studies of complex human diseases. Science, 273, 1516–1517.

    Article  PubMed  CAS  Google Scholar 

  • Risser, D., Lubec, G., Cairns, N., & Herrera-Marschitz, M. (1997). Excitatory amino acids and monoamines in parahippocampal gyrus and frontal cortical pole of adults with Down syndrome. Life Sciences, 60, 1231–1237.

    Article  PubMed  CAS  Google Scholar 

  • Roizen, N. J., & Patterson, D. (2003). Down’s syndrome. Lancet, 361, 1281–1289.

    Article  PubMed  Google Scholar 

  • Roos, J., & Kelly, R. B. (1998). Dap160, a neural-specific Eps15 homology and multiple SH3 domain-containing protein that interacts with Drosophila dynamin. The Journal of Biological Chemistry, 273, 19108–19119.

    Article  PubMed  CAS  Google Scholar 

  • Roper, R. J., Baxter, L. L., Saran, N. G., Klinedinst, D. K., Beachy, P. A., et al. (2006). Defective cerebellar response to mitogenic Hedgehog signaling in Down syndrome mice. Proceedings of the National Academy of Sciences of the United States of America, 103, 1452–1456.

    Article  PubMed  CAS  Google Scholar 

  • Rothermel, B., Vega, R. B., Yang, J., Wu, H., Bassel-Duby, R., et al. (2000). A protein encoded within the Down syndrome critical region is enriched in striated muscles and inhibits calcineurin signaling. The Journal of Biological Chemistry, 275, 8719–8725.

    Article  PubMed  CAS  Google Scholar 

  • Rothermel, B. A., Vega, R. B., & Williams, R. S. (2003). The role of modulatory calcineurin-interacting proteins in calcineurin signaling. Trends in Cardiovascular Medicine, 13, 15–21.

    Article  PubMed  CAS  Google Scholar 

  • Rueda, N., Florez, J., & Martinez-Cué, C. (2008). Chronic pentylenetetrazole but not donepezil treatment rescues spatial cognition in Ts65Dn mice, a model for Down syndrome. Neuroscience Letters, 433, 22–27.

    Article  PubMed  CAS  Google Scholar 

  • Sago, H., Carlson, E. J., Smith, D. J., Kilbridge, J., Rubin, E. M., et al. (1998). Ts1Cje, a partial trisomy 16 mouse model for Down syndrome, exhibits learning and behavioural abnormalities. Proceedings of the National Academy of Sciences of the United States of America, 95, 6256–6261.

    Article  PubMed  CAS  Google Scholar 

  • Sago, H., Carlson, E. J., Smith, D. J., Rubin, E. M., Crnic, L. S., et al. (2000). Genetic dissection of region associated with behavioral abnormalities in mouse models for Down syndrome. Pediatric Research, 48, 606–613.

    Article  PubMed  CAS  Google Scholar 

  • Saito, Y., Oka, A., Mizuguchi, M., Motonaga, K., Mori, Y., et al. (2000). The developmental and aging changes of Down’s syndrome cell adhesion molecule expression in normal and Down’s syndrome brains. Acta Neuropathologica, 100, 654–664.

    Article  PubMed  CAS  Google Scholar 

  • Sanna, B., Brandt, E. B., Kaiser, R. A., Pfluger, P., Witt, S. A., et al. (2006). Modulatory calcineurin-interacting proteins 1 and 2 function as calcineurin facilitators in vivo. Proceedings of the National Academy of Sciences of the United States of America, 103, 7327–7332.

    Article  PubMed  CAS  Google Scholar 

  • Saran, N. G., Pletcher, M. T., Natale, J. E., Cheng, Y., & Reeves, R. H. (2003). Global disruption of the cerebellar transcriptome in a Down syndrome mouse model. Human Molecular Genetics, 12, 2013–2019.

    Article  PubMed  CAS  Google Scholar 

  • Schadt, E. E., Monks, S. A., Drake, T. A., Lusis, A. J., Che, N., et al. (2003). Genetics of gene expression surveyed in maize, mouse and man. Nature, 422, 297–302.

    Article  PubMed  CAS  Google Scholar 

  • Schapiro, M. B., Haxby, J. V., & Grady, C. L. (1992). Nature of mental retardation and dementia in Down syndrome: Study with PET, CT, and neuropsychology. Neurobiology of Aging, 13, 723–734.

    Article  PubMed  CAS  Google Scholar 

  • Schapiro, M. B., Luxenberg, J. S., Kaye, J. A., Haxby, J. V., Friedland, R. P., et al. (1989). Serial quantitative CT analysis of brain morphometrics in adult Down’s syndrome at different ages. Neurology, 39, 1349–1353.

    Article  PubMed  CAS  Google Scholar 

  • Schimmel, M. S., Hammerman, C., Bromiker, R., & Berger, I. (2006). Third ventricle enlargement among newborn infants with trisomy 21. Pediatrics, 117, e928–e931.

    Article  PubMed  Google Scholar 

  • Schmidt-Sidor, B., Wisniewski, K. E., Shepard, T. H., & Sersen, E. A. (1990). Brain growth in Down syndrome subjects 1–22 weeks of gestation age and birth to 60 months. Clinical Neuropathology, 4, 181–190.

    Google Scholar 

  • Schmucker, D., Clemens, J. C., Shu, H., Worby, C. A., Xiao, J., et al. (2000). Drosophila Dscam is an axon guidance receptor exhibiting extraordinary molecular diversity. Cell, 101, 671–684.

    Article  PubMed  CAS  Google Scholar 

  • Schneider, C., Risser, D., Kirchner, L., Kitzmuller, E., Cairns, N., et al. (1997). Similar deficits of central histaminergic system in patients with Down syndrome and Alzheimer disease. Neuroscience Letters, 222, 183–186.

    Article  PubMed  CAS  Google Scholar 

  • Seabrook, G. R., Smith, D. W., Bowery, B. J., Easter, A., Reynolds, T., et al. (1999). Mechanisms contributing to the deficits in hippocampal synaptic plasticity in mice lacking amyloid precursor protein. Neuropharmacology, 38, 349–359.

    Article  PubMed  CAS  Google Scholar 

  • Sengar, A. S., Wang, W., Bishay, J., Cohen, S., & Egan, S. E. (1999). The EH and SH3 domain Ese proteins regulate endocytosis by linking to dynamin and Eps15. The EMBO Journal, 18, 1159–1171.

    Article  PubMed  CAS  Google Scholar 

  • Sethupathy, P., Borel, C., Gagnebin, M., Grant, G. R., Deutsch, S., et al. (2007). Human microRNA-155 on chromosome 21 differentially interacts with its polymorphic target in the AGTR1 3′ untranslated region: A mechanism for functional single-nucleotide polymorphisms related to phenotypes. American Journal of Human Genetics, 81, 405–413.

    Article  PubMed  CAS  Google Scholar 

  • Shapiro, B. L. (1983). Down syndrome – A disruption of homeostasis. American Journal of Medical Genetics, 14, 241–269.

    Article  PubMed  CAS  Google Scholar 

  • Shapiro, B. L. (1997). Down syndrome critical regions? Human Genetics, 99, 421–423.

    Article  PubMed  CAS  Google Scholar 

  • Shapiro, B. L., & Whither-Azmitia, P. M. (1997). Down syndrome critical regions? Human Genetics, 99, 421–423.

    Article  PubMed  CAS  Google Scholar 

  • Shapiro, L. A., & Whitaker-Azmitia, P. M. (2004). Expression levels of cytoskeletal proteins indicate pathological aging of S100B transgenic mice: An immunohistochemical study of MAP-2, drebrin and GAP-43. Brain Research, 1019, 39–46.

    Article  PubMed  CAS  Google Scholar 

  • Shefner, J. M., Reaume, A. G., Flood, D. G., Scott, R. W., Kowall, N. W., et al. (1999). Mice lacking cytosolic copper/zinc superoxide dismutase display a distinctive motor axonopathy. Neurology, 53, 1239–1246.

    Article  PubMed  CAS  Google Scholar 

  • Shin, J. H., Gulesserian, T., Verger, E., Delabar, J. M., & Lubec, G. (2006). Protein dysregulation in mouse hippocampus polytransgenic for chromosome 21 structures in the Down syndrome critical region. Journal of Proteome Research, 5, 44–53.

    Article  PubMed  CAS  Google Scholar 

  • Shin, K. S., & Lubec, G. (2002). Drebrin, a dendritic spine protein, is manifold decreased in brains of patients with Alzheimer’s disease and Down syndrome. Neuroscience Letters, 324, 209–212.

    Article  Google Scholar 

  • Shinohara, T., Tomizuka, K., Miyabara, S., Takehara, S., Kazuki, Y., et al. (2001). Mice containing a human chromosome 21 model behavioral impairment and cardiac anomalies of Down’s syndrome. Human Molecular Genetics, 10, 1163–1175.

    Article  PubMed  CAS  Google Scholar 

  • Siarey, R. J., Carlson, E. J., Epstein, C. J., Balbo, A., Rapoport, S. I., et al. (1999). Increased synaptic depression in the Ts65Dn mouse, a model for mental retardation in Down syndrome. Neuropharmacology, 38, 1917–1920.

    Article  PubMed  CAS  Google Scholar 

  • Siarey, R. J., Stoll, S. I., Rapoport, S. I., & Galdzicki, Z. (1997). Altered long-term potentiation in the young and old Ts65Dn mouse, a model for Down syndrome. Neuropharmacology, 36, 1549–1554.

    Article  PubMed  CAS  Google Scholar 

  • Siarey, R. J., Villar, A. J., Epstein, C. J., & Galdzicki, Z. (2005). Abnormal synaptic plasticity in the Ts1Cje segmental trisomy 16 mouse model of Down syndrome. Neuropharmacology, 49, 122–128.

    Article  PubMed  CAS  Google Scholar 

  • Sitz, J. H., Tigges, M., Baumgartel, K., Khaspekov, L. G., & Lutz, B. (2004). Dyrk1A potentiates steroid hormone-induced transcription via the chromatin remodeling factor Arip4. Molecular and Cellular Biology, 24, 5821–5834.

    Article  PubMed  CAS  Google Scholar 

  • Smith, C. M., & Swash, M. (1978). Possible biochemical basis of memory disorder in Alzheimer disease. Annals of Neurology, 3, 471–473.

    Article  PubMed  CAS  Google Scholar 

  • Smith, D. J., Stevens, M. E., Sudanagunta, S. P., Bronson, R. T., Makhinson, M., et al. (1997). Functional screening of 2Mb of human chromosome 21q22.2 in transgenic mice implicates minibrain in learning defects associated with Down syndrome. Nature Genetics, 16, 28–36.

    Article  PubMed  CAS  Google Scholar 

  • Smith, D. J., Zhu, Y., Zhang, J., Cheng, J. F., & Rubin, E. M. (1995). Construction of a panel of transgenic mice containing a contiguous 2-Mb set of YAC/P1 clones from human chromosome 21q22.2. Genomics, 27, 425–434.

    Article  PubMed  CAS  Google Scholar 

  • Spielman, R. S., Bastone, L. A., Burdick, J. T., Morley, M., Ewens, W. J., et al. (2007). Common genetic variants account for differences in gene expression among ethnic groups. Nature Genetics, 39, 226–231.

    Article  PubMed  CAS  Google Scholar 

  • Stasko, M. R., & Costa, A. C. (2004). Experimental parameters affecting the Morris water maze performance of a mouse model of Down syndrome. Behavioural Brain Research, 154, 1–17.

    Article  PubMed  Google Scholar 

  • Stoll, C., Alembik, Y., Dott, B., & Roth, M. P. (1990). Epidemiology of Down syndrome in 118, 265 consecutive births. American Journal of Medical Genetics, 7(Suppl), 79–83.

    PubMed  CAS  Google Scholar 

  • Storey, J. D., Madeoy, J., Strout, J. L., Wurfel, M., Ronald, J., et al. (2007). Gene-expression variation within and among human populations. American Journal of Human Genetics, 80, 502–509.

    Article  PubMed  CAS  Google Scholar 

  • Stranger, B. E., Forrest, M. S., Clark, A. G., Minichiello, M. J., Deutsch, S., et al. (2005). Genome-wide associations of gene expression variation in humans. PLoS Genetics, 1, e78.

    Article  PubMed  CAS  Google Scholar 

  • Sturchler-Pierrat, C., Abramowski, D., Duke, M., Wiederhold, K. H., Mistl, C., et al. (1997). Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology. Proceedings of the National Academy of Sciences of the United States of America, 94, 13287–13292.

    Article  PubMed  CAS  Google Scholar 

  • Sultan, M., Piccini, I., Balzereit, D., Herwig, R., Saran, N. G., et al. (2007). Gene expression variation in Down’s syndrome mice allows prioritization of candidate genes. Genome Biology, 8, R91.

    Article  PubMed  CAS  Google Scholar 

  • Sumarsono, S. H., Wilson, T. J., Tymms, M. J., Venter, D. J., Corrick, C. M., et al. (1996). Down’s syndrome-like skeletal abnormalities in Ets2 transgenic mice. Nature, 379, 534–537.

    Article  PubMed  CAS  Google Scholar 

  • Sweatt, J. D. (2001). The neuronal MAP kinase cascade: A biochemical signal integration system subserving synaptic plasticity and memory. Journal of Neurochemistry, 76, 1–10.

    Article  PubMed  CAS  Google Scholar 

  • Sweatt, J. D., & Weeber, E. J. (2003). Genetics of childhood disorders: LII. Learning and memory, part 5: Human cognitive disorders and the ras/ERK/CREB pathway. Journal of the American Academy of Child and Adolescent Psychiatry, 42, 873–876.

    Article  PubMed  Google Scholar 

  • Taganov, K. D., Boldin, M. P., Chang, K. J., & Baltimore, D. (2006). NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proceedings of the National Academy of Sciences of the United States of America, 103, 12481–12486.

    Article  PubMed  CAS  Google Scholar 

  • Takashima, S., Becker, L. E., Armstrong, D. L., & Chan, F. (1981). Abnormal neuronal development in the visual cortex of the human fetus and infant with Down’s syndrome. A quantitative and qualitative Golgi study. Brain Research, 225, 1–21.

    Article  PubMed  CAS  Google Scholar 

  • Takashima, S., Ieshima, A., Nakamura, H., & Becker, L. E. (1989). Dendrites, dementia and the Down syndrome. Brain & Development, 11, 131–133.

    Article  CAS  Google Scholar 

  • Takashima, S., Iida, K., Mito, T., & Arima, M. (1994). Dendritic and histochemical development and aging in patients with Down’s syndrome. Journal of Intellectual Disability Research, 38, 265–273.

    Article  PubMed  Google Scholar 

  • Teipel, S. J., Alexander, G. E., Schapiro, M. B., Moller, H. J., Rapoport, S. I., et al. (2004). Age-related cortical grey matter reductions in non-demented Down’s syndrome adults determined by MRI with voxel-based morphometry. Brain, 127, 811–824.

    Article  PubMed  Google Scholar 

  • Teipel, S. J., & Hampel, H. (2006). Neuroanatomy of Down syndrome in vivo: A model of preclinical Alzheimer’s disease. Behavior Genetics, 36, 405–415.

    Article  PubMed  Google Scholar 

  • Teipel, S. J., Schapiro, M. B., Alexander, G. E., Krasuski, J. S., Horwitz, B., et al. (2003). Relation of corpus callosum and hippocampal size to age in non-demented adults with Down’s syndrome. The American Journal of Psychiatry, 160, 1870–1878.

    Article  PubMed  Google Scholar 

  • Tejedor, F., Zhu, X. M., Kaltenbach, E., Ackermann, A., Baumann, A., et al. (1995). Minibrain: A new protein kinase family involved in postembryonic neurogenesis in Drosophila. Neuron, 14, 287–301.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, G. M., & Huganir, R. L. (2004). MAPK cascade signalling and synaptic plasticity. Nature Reviews. Neuroscience, 5, 173–183.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, J. B., Crews, S. T., & Goodman, C. S. (1988). Molecular genetics of the single-minded locus: A gene involved in the development of the Drosophila nervous system. Cell, 52, 133–141.

    Article  PubMed  CAS  Google Scholar 

  • Tong, X. K., Hussain, N. K., de Heuvel, E., Kurakin, A., Abi-Jaoude, E., et al. (2000). The endocytic protein intersectin is a major binding partner for the Ras exchange factor mSos1 in rat brain. The EMBO Journal, 19, 1263–1271.

    Article  PubMed  CAS  Google Scholar 

  • Toyoda, A., Noguchi, H., Taylor, T. D., Ito, T., Pletcher, M. T., et al. (2002). Comparative genomic sequence analysis of the human chromosome 21 Down syndrome critical region. Genome Research, 12, 1323–1332.

    Article  PubMed  CAS  Google Scholar 

  • Tsukahara, F., Hattori, M., Muraki, T., & Sakaki, Y. (1996). Identification and cloning of a novel cDNA belonging to tetratricopeptide repeat gene fa mily from Down syndrome-critical region 21q22.2. Journal of Biochemistry, 120, 820–827.

    Article  PubMed  CAS  Google Scholar 

  • Vacik, T., Ort, M., Gregorova, S., Strnad, P., Blatny, R., et al. (2005). Segmental trisomy of chromosome 17: A mouse model of human aneuploidy syndromes. Proceedings of the National Academy of Sciences of the United States of America, 102, 4500–4505.

    Article  PubMed  CAS  Google Scholar 

  • Vega, R. B., Rothermel, B. A., Weinheimer, C. J., Kovacs, A., Naseem, R. H., et al. (2003). Dual roles of modulatory calcineurin-interacting protein 1 in cardiac hypertrophy. Proceedings of the National Academy of Sciences of the United States of America, 100, 669–674.

    Article  PubMed  CAS  Google Scholar 

  • Vialard, F., Toyama, K., Vernoux, S., Carlson, E. J., Epstein, C. J., et al. (2000). Over-expression of mSim2 gene in the zona limitans of the diencephalon of segmental trisomy 16 Ts1Cje fetuses, a mouse model for trisomy 21: A novel whole-mount RNA hybridization assay. Developmental Brain Research, 121, 73–78.

    Article  PubMed  CAS  Google Scholar 

  • Vicari, S. (2004). Memory development and intellectual disabilities. Acta Paediatrica, 93(Suppl), 60–63.

    PubMed  CAS  Google Scholar 

  • Vicari, S. (2006). Motor development and neuropsychological patterns in persons with trisomy 21. Behavior Genetics, 36, 355–364.

    Article  PubMed  Google Scholar 

  • Villar, A. J., Belichenko, P. V., Gillespie, A. M., Kozy, H. M., Mobley, W. C., et al. (2005). Identification and characterization of a new Down syndrome model, Ts[Rb(12.1716)]2Cje, resulting from a spontaneous Robertsonian fusion between T(1716)65Dn and mouse chromosome 12. Mammalian Genome, 16, 79–90.

    Article  PubMed  CAS  Google Scholar 

  • Vonorov, S. V., Frere, S. G., Giovedi, S., Pollina, E. A., Borel, C., et al. (2008). Synaptojanin 1-linked phosphoinositide dyshomeostasis and cognitive deficits in mouse models of Down’s syndrome. Proceedings of the National Academy of Sciences of the United States of America, 105, 9415–9420.

    Article  Google Scholar 

  • Vuksic, M., Petanjek, Z., Rasin, M., & Kostovic, I. (2002). Perinatal growth of prefrontal layer III pyramidal in Down syndrome. Pediatric Neurology, 27, 36–38.

    Article  PubMed  Google Scholar 

  • Wang, C. C., Kadota, M., Nishigaki, R., Kazuki, Y., Shirayoshi, Y., et al. (2004). Molecular hierarchy in neurons differentiated from mouse ES cells containing a single human chromosome 21. Biochemical and Biophysical Research Communications, 314, 335–350.

    Article  PubMed  CAS  Google Scholar 

  • Wang, P. P., Doherty, S., Hesselink, J. R., & Bellugi, U. (1992). Callosal morphology concurs with neurobehavioral and neuropathological findings in two neurodevelopmental disorders. Archives of Neurology, 49, 407–411.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Y., Stricker, H. M., Gou, D., & Liu, L. (2007). MicroRNA: Past and present. Frontiers Bioscience, 12, 2316–2329.

    Article  CAS  Google Scholar 

  • Watson, D. K., McWilliams-Smith, M. J., Nunn, M. F., Duesberg, P. H., O’Brien, S. J., et al. (1985). The ets sequence from the transforming gene of avian erythroblastosis virus, E26, has unique domains on human chromosomes 11 and 21: Both loci are transcriptionally active. Proceedings of the National Academy of Sciences of the United States of America, 82, 7294–7298.

    Article  PubMed  CAS  Google Scholar 

  • Weis, S., Weber, G., Neuhold, A., & Rett, A. (1991). Down syndrome: MR quantification of brain structures and comparison with normal control subjects. American Journal of Neuroradiology, 12, 1207–1211.

    PubMed  CAS  Google Scholar 

  • Weitzdoerfer, R., Stolzlechner, D., Dierssen, M., Ferreres, J., Fountoulakis, M., et al. (2001). Reduction of nucleoside diphosphate kinase B, Rab GDP-dissociation inhibitor beta and histidine triad nucleotidebinding protein in fetal Down syndrome brain. Journal of Neural Transmission, 61, 347–359.

    PubMed  Google Scholar 

  • Whitaker-Azmitia, P. M., Wingate, M., Borella, A., Gerlai, R., Roder, J., et al. (1997). Transgenic mice overexpressing the neurotrophic factor S-100 beta show neuronal cytoskeletal and behavioral signs of altered aging processes: Implications for Alzheimer’s disease and Down’s syndrome. Brain Research, 776, 51–60.

    Article  PubMed  CAS  Google Scholar 

  • Winocur, G., Roder, J., & Lobaugh, N. (2001). Learning and memory in S100-beta transgenic mice: An analysis of impaired and preserved function. Neurobiology of Learning and Memory, 75, 230–243.

    Article  PubMed  CAS  Google Scholar 

  • Wishart, J. G. (1995). Cognitive abilities in children with Down syndrome: Developmental instability and motivational deficits. In C. J. Epstein, T. Hassold, I. T. Lott, et al. (Eds.), Etiology and pathogenesis of Down syndrome (pp. 57–91). New York: Wiley-Liss.

    Google Scholar 

  • Wisniewski, K. E. (1990). Down syndrome children often have brain with maturation delay, retardation of growth, and cortical dysgenesis. American Journal of Medical Genetics, 7, 274–281.

    PubMed  CAS  Google Scholar 

  • Wisniewski, K. E., & Bobinski, M. (1991). Hypothalamic abnormalities in Down syndrome. Progress in Clinical and Biological Research, 373, 153–167.

    PubMed  CAS  Google Scholar 

  • Wisniewski, K. E., & Schmidt-Sidor, B. (1989). Postnatal delay of myelin formation in brains from Down syndrome infants and children. Clinical Neuropathology, 8, 55–62.

    PubMed  CAS  Google Scholar 

  • Wolvetang, E. J., Bradfield, O. M., Hatzistavrou, T., Crack, P. J., Busciglio, J., et al. (2003). Overexpression of the chromosome 21 transcription factor Ets2 induces neuronal apoptosis. Neurobiology of Disease, 14, 349–356.

    Article  PubMed  CAS  Google Scholar 

  • Wolvetang, E. J., Bradfield, O. M., Tymms, M., Zavarsek, S., Hatzistavrou, T., et al. (2003). The chromosome 21 transcription factor ETS2 transactivates the beta-APP promoter: Implications for Down syndrome. Biochimica et Biophysica Acta, 1628, 105–110.

    Article  PubMed  CAS  Google Scholar 

  • Woods, Y. L., Rena, G., Morrice, N., Barthel, A., Becker, W., et al. (2001). The kinase DYRK1A phosphorylates the transcription factor FKHR at Ser329 in vitro, a novel in vivo phosphorylation site. The Biochemical Journal, 355, 597–607.

    PubMed  CAS  Google Scholar 

  • Yamabhai, M., Hoffman, N. G., Hardison, N. L., McPherson, P. S., Castagnoli, L., et al. (1998). Intersectin, a novel adaptor protein with two Eps15 homology and five Src homology 3 domains. The Journal of Biological Chemistry, 273, 31401–31407.

    Article  PubMed  CAS  Google Scholar 

  • Yamakawa, K., Huot, Y. K., Haendelt, M. A., Hubert, R., Chen, X. N., et al. (1998). DSCAM: A novel member of the immunoglobulin superfamily maps in a Down syndrome region and is involved in the development of the nervous system. Human Molecular Genetics, 7, 227–237.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto, H., Flannery, M. L., Kupriyanov, S., Pearce, J., McKercher, S. R., et al. (1998). Defective trophoblast function in mice with a targeted mutation of Ets2. Genes & Development, 12, 1315–1326.

    Article  CAS  Google Scholar 

  • Yang, E. J., Ahn, Y. S., & Chung, K. C. (2001). Protein kinase Dyrk1 activates cAMP response element-binding protein during neuronal differentiation in hippocampal progenitor cells. The Journal of Biological Chemistry, 276, 39819–39824.

    Article  PubMed  CAS  Google Scholar 

  • Yates, C. M., Simpson, J., Gordon, A., Maloney, A. F., Allison, Y., et al. (1983). Catecholamines and cholinergic enzymes in pre-senile and senile Alzheimer-type dementia and Down’s syndrome. Brain Research, 280, 119–126.

    Article  PubMed  CAS  Google Scholar 

  • Yoo, J. H., Valdovinos, M. G., & Williams, D. C. (2007). Relevance of donepezil in enhancing learning and memory in spetial populations. A review of the literature. Journal of Autism and Developmental Disorders, 37, 1883–1901.

    Article  PubMed  Google Scholar 

  • Yu, Y., Chu, P. Y., Bowser, D. N., Keating, D. J., Dubach, D. (2008). Mice deficient for the chromosome 21 ortholog Itsn1 exhibit vesicle trafficking abnormalities. Human Molecular Genetics. doi:10.1093/hng/ddn224.

    Google Scholar 

  • Yvert, G., Brem, R. B., Whittle, J., Akey, J. M., Foss, E., et al. (2003). Trans-acting regulatory variation in Saccharomyces cerevisiae and the role of transcription factors. Nature Genetics, 35, 57–64.

    Article  PubMed  CAS  Google Scholar 

  • Zang, D. W., Yang, Q., Wang, H. X., Egan, G., Lopes, E. C., et al. (2004). Magnetic resonance imaging reveals neuronal degeneration in the brainstem of the superoxide dismutase 1 transgenic mouse model of amyotrophic lateral sclerosis. The European Journal of Neuroscience, 20, 1745–1751.

    Article  PubMed  Google Scholar 

  • Zeng, H., Chattarji, S., Barbarosie, M., Rondi-Reig, L., Philpot, B. D., et al. (2001). Forebrain-specific calcineurin knochout selectively impairs bidirectional synaptic plasticity and working/episodic-like memory. Cell, 107, 617–629.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to J. M. Delabar (University Paris 7) for his continuous support. We thank our colleagues of the Department of Molecular Biology-Jacques Monod at the Pateur Insitute (Paris) for their advice and support. We also thank L. Peltzer (University of French Polynesia) and C. Tetaria (Hospital Centre of French Polynesia) for their continuous support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Rachidi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rachidi, M., Lopes, C. (2011). Mental Retardation and Human Chromosome 21 Gene Overdosage: From Functional Genomics and Molecular Mechanisms Towards Prevention and Treatment of the Neuropathogenesis of Down Syndrome. In: Clelland, J. (eds) Genomics, Proteomics, and the Nervous System. Advances in Neurobiology, vol 2. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7197-5_2

Download citation

Publish with us

Policies and ethics