Advertisement

Genetic Studies of Schizophrenia

  • Brien Riley
Chapter
Part of the Advances in Neurobiology book series (NEUROBIOL, volume 2)

Abstract

Both genetic and non-genetic risk factors are thought to contribute to liability for, and the development of, schizophrenia. Genetic epidemiology consistently supports the involvement of genes in liability. Molecular genetic studies have made slow progress in identifying specific liability genes, but recent progress suggests that a number of specific genes contributing to risk have been identified. These collective results are complex and inconsistent with a single common DNA variant in any gene influencing risk across human populations. No specific genetic variant influencing risk has yet been unambiguously identified. Contemporary approaches hold great promise to further elucidate liability genes and their potential inter-relationship. In order to understand why researchers have come to these conclusions, we will review what is known about the genetic epidemiology and molecular genetics of schizophrenia in some detail. We will also consider how this field of study informs our understanding of the potential structure of non-genetic risk factors.

Keywords

Schizophrenia Genetic epidemiology Family Twin Adoption Linkage Association Molecular genetics 

References

  1. Addington, A. M., Gornick, M., Sporn, A. L., Gogtay, N., Greenstein, D., Lenane, M., et al. (2004). Polymorphisms in the 13q33.2 gene G72/G30 are associated with childhood-onset schizophrenia and psychosis not otherwise specified. Biological Psychiatry, 55, 976–980.CrossRefPubMedGoogle Scholar
  2. Allen, N. C., Bagade, S., McQueen, M. B., Ioannidis, J. P., Kavvoura, F. K., Khoury, M. J., et al. (2008). Systematic meta-analyses and field synopsis of genetic association studies in schizophrenia: The SzGene database. Nature Genetics, 40, 827–834.CrossRefPubMedGoogle Scholar
  3. Altshuler, D., & Daly, M. (2007). Guilt beyond a reasonable doubt. Nature Genetics, 39, 813–815.CrossRefPubMedGoogle Scholar
  4. Antonarakis, S. E., Blouin, J. L., Curran, M., Luebbert, H., Kazazian, H. H., Dombroski, B. A., et al. (1996). Linkage and sib-pair analysis reveal a potential schizophrenia susceptibility gene on chromosome 13q32. American Journal of Human Genetics, 59, A210.Google Scholar
  5. Badner, J. A., & Gershon, E. S. (2002). Meta-analysis of whole-genome linkage scans of bipolar disorder and schizophrenia. Molecular Psychiatry, 7, 405–411.CrossRefPubMedGoogle Scholar
  6. Bailey, J. A., & Eichler, E. E. (2006). Primate segmental duplications: Crucibles of evolution, diversity and disease. Nature Reviews. Genetics, 7, 552–564.CrossRefPubMedGoogle Scholar
  7. Bajestan, S. N., Sabouri, A. H., Nakamura, M., Takashima, H., Keikhaee, M. R., Behdani, F., et al. (2006). Association of AKT1 haplotype with the risk of schizophrenia in Iranian population. American Journal of Medical Genetics. Part B: Neuropsychiatric Genetics, 141, 383–386.CrossRefGoogle Scholar
  8. Bakker, S. C., Hoogendoorn, M. L., Hendriks, J., Verzijlbergen, K., Caron, S., Verduijn, W., et al. (2007). The PIP5K2A and RGS4 genes are differentially associated with deficit and non-deficit schizophrenia. Genes, Brain, and Behavior, 6, 113–119.CrossRefPubMedGoogle Scholar
  9. Bakker, S. C., Hoogendoorn, M. L., Selten, J. P., Verduijn, W., Pearson, P. L., Sinke, R. J., et al. (2004). Neuregulin 1: Genetic support for schizophrenia subtypes. Molecular Psychiatry, 9, 1061–1063.CrossRefPubMedGoogle Scholar
  10. Baron, M. (1996). Linkage results in schizophrenia. American Journal of Medical Genetics, 67, 121–123.CrossRefPubMedGoogle Scholar
  11. Benson, M. A., Newey, S. E., Martin-Rendon, E., Hawkes, R., & Blake, D. J. (2001). Dysbindin, a novel coiled-coil-containing protein that interacts with the dystrobrevins in muscle and brain. The Journal of Biological Chemistry, 276, 24232–24241.CrossRefPubMedGoogle Scholar
  12. Benzel, I., Bansal, A., Browning, B. L., Galwey, N. W., Maycox, P. R., McGinnis, R., et al. (2007). Interactions among genes in the ErbB-Neuregulin signalling network are associated with increased susceptibility to schizophrenia. Behavioral and Brain Functions, 3, 31.CrossRefPubMedGoogle Scholar
  13. Breen, G., Prata, D., Osborne, S., Munro, J., Sinclair, M., Li, T., et al. (2006). Association of the dysbindin gene with bipolar affective disorder. The American Journal of Psychiatry, 163, 1636–1638.CrossRefPubMedGoogle Scholar
  14. Brzustowicz, L. M., Hodgkinson, K. A., Chow, E. W. C., Honer, W. G., & Bassett, A. S. (2000). Location of a major susceptibility locus for familial schizophrenia on chromosome 1q21-q22. Science, 288, 678–682.CrossRefPubMedGoogle Scholar
  15. Brzustowicz, L. M., Honer, W. G., Chow, E. W. C., Little, D., Hodgkinson, K., & Bassett, A. (1999). Linkage of familial schizophrenia to chromosome 13q32. American Journal of Human Genetics, 65, 1096–1103.CrossRefPubMedGoogle Scholar
  16. Budel, S., Shim, S. O., Feng, Z., Zhao, H., Hisama, F., & Strittmatter, S. M. (2008). No association between schizophrenia and polymorphisms of the PlexinA2 gene in Chinese Han Trios. Schizophrenia Research, 99, 365–366.CrossRefPubMedGoogle Scholar
  17. Busfield, F., Duffy, D. L., Kesting, J. B., Walker, S. M., Lovelock, P., Good, D., et al. (2002). A genomewide search for type 2 diabetes-susceptibility genes in indigenous Australians. American Journal of Human Genetics, 70, 349–357.CrossRefPubMedGoogle Scholar
  18. Callicott, J. H., Straub, R. E., Pezawas, L., Egan, M. F., Mattay, V. S., Hariri, A. R., et al. (2005). Variation in DISC1 affects hippocampal structure and function and increases risk for schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, 102, 8627–8632.CrossRefPubMedGoogle Scholar
  19. Cannon, T. D., Hennah, W., van Erp, T. G., Thompson, P. M., Lonnqvist, J., Huttunen, M., et al. (2005). Association of DISC1/TRAX haplotypes with schizophrenia, reduced prefrontal gray matter, and impaired short- and long-term memory. Archives of General Psychiatry, 62, 1205–1213.CrossRefPubMedGoogle Scholar
  20. Cardno, A. G., & Gottesman, I. I. (2000). Twin studies of schizophrenia: From bow-and-arrow concordances to Star Wars Mx and functional genomics. American Journal of Medical Genetics, 97, 12–17.CrossRefPubMedGoogle Scholar
  21. Cardno, A. G., Marshall, E. J., Coid, B., Macdonald, A. M., Ribchester, T. R., Davies, N. J., et al. (1999). Heritability estimates for psychotic disorders: The Maudsley twin psychosis series. Archives of General Psychiatry, 56, 162–168.CrossRefPubMedGoogle Scholar
  22. Caspi, A., McClay, J., Moffitt, T. E., Mill, J., Martin, J., Craig, I. W., et al. (2002). Role of genotype in the cycle of violence in maltreated children. Science, 297, 851–854.CrossRefPubMedGoogle Scholar
  23. Caspi, A., Sugden, K., Moffitt, T. E., Taylor, A., Craig, I. W., Harrington, H., et al. (2003). Influence of life stress on depression: Moderation by a polymorphism in the 5-HTT gene. Science, 301, 386–389.CrossRefPubMedGoogle Scholar
  24. Chen, Y. S., Akula, N., Tera-Wadleigh, S. D., Schulze, T. G., Thomas, J., Potash, J. B., et al. (2004). Findings in an independent sample support an association between bipolar affective disorder and the G72/G30 locus on chromosome 13q33. Molecular Psychiatry, 9, 87–92.CrossRefPubMedGoogle Scholar
  25. Chen, Q. Y., Chen, Q., Feng, G. Y., Lindpaintner, K., Wang, L. J., Chen, Z. X., et al. (2007). Case-control association study of disrupted-in-schizophrenia-1 (DISC1) gene and schizophrenia in the Chinese population. Journal of Psychiatric Research, 41, 428–434.CrossRefPubMedGoogle Scholar
  26. Chen, X., Dunham, C., Kendler, S., Wang, X., O’Neill, F. A., Walsh, D., et al. (2004). Regulator of G-protein signaling 4 (RGS4) gene is associated with schizophrenia in Irish high density families. American Journal of Medical Genetics, 129B, 23–26.CrossRefPubMedGoogle Scholar
  27. Chen, X., Wang, X., Hossain, S., O’Neill, F. A., Walsh, D., van den Oord, E., et al. (2007). Interleukin 3 and schizophrenia: The impact of sex and family history. Molecular Psychiatry, 12, 273–282.PubMedGoogle Scholar
  28. Chowdari, K. V., Mirnics, K., Semwal, P., Wood, J., Lawrence, E., Bhatia, T., et al. (2002). Association and linkage analyses of RGS4 polymorphisms in schizophrenia. Human Molecular Genetics, 11, 1373–1380.CrossRefPubMedGoogle Scholar
  29. Chumakov, I., Blumenfeld, M., Guerassimenko, O., Cavarec, L., Palicio, M., Abderrahim, H., et al. (2002). Genetic and physiological data implicating the new human gene G72 and the gene for D-amino acid oxidase in schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, 99, 13675–13680.CrossRefPubMedGoogle Scholar
  30. Coon, H., Holik, J., Hoff, M., Reimherr, F., Wender, P., Myles-Worsley, M., et al. (1994). Analysis of chromosome 22 markers in nine schizophrenia pedigrees. American Journal of Medical Genetics, 54, 72–79.CrossRefPubMedGoogle Scholar
  31. Coraddu, F., Sawcer, S., D’Alfonso, S., Lai, M., Hensiek, A., Solla, E., et al. (2001). A genome screen for multiple sclerosis in Sardinian multiplex families. European Journal of Human Genetics, 9, 621–626.CrossRefPubMedGoogle Scholar
  32. Cordeiro, Q., Talkowski, M. E., Chowdari, K. V., Wood, J., Nimgaonkar, V., & Vallada, H. (2005). Association and linkage analysis of RGS4 polymorphisms with schizophrenia and bipolar disorder in Brazil. Genes, Brain, and Behavior, 4, 45–50.CrossRefPubMedGoogle Scholar
  33. Corvin, A., McGhee, K. A., Murphy, K., Donohoe, G., Nangle, J. M., Schwaiger, S., et al. (2007). Evidence for association and epistasis at the DAOA/G30 and D-amino acid oxidase loci in an Irish schizophrenia sample. American Journal of Medical Genetics. Part B: Neuropsychiatric Genetics, 144B, 949–953.CrossRefGoogle Scholar
  34. Corvin, A. P., Morris, D. W., McGhee, K., Schwaiger, S., Scully, P., Quinn, J., et al. (2004). Confirmation and refinement of an ‘at-risk’ haplotype for schizophrenia suggests the EST cluster, Hs. 97362, as a potential susceptibility gene at the Neuregulin-1 locus. Molecular Psychiatry, 9, 208–213.CrossRefPubMedGoogle Scholar
  35. Datta, S. R., McQuillin, A., Puri, V., Choudhury, K., Thirumalai, S., Lawrence, J., et al. (2007). Failure to confirm allelic and haplotypic association between markers at the chromosome 6p22.3 dystrobrevin-binding protein 1 (DTNBP1) locus and schizophrenia. Behavioural and Brain Functions, 3, 50.CrossRefGoogle Scholar
  36. DeLuca, V., Voineskos, D., Shinkai, T., Wong, G., & Kennedy, J. L. (2005). Untranslated region haplotype in dysbindin gene: Analysis in schizophrenia. Journal of Neural Transmission, 112, 1263–1267.CrossRefGoogle Scholar
  37. DeRosse, P., Hodgkinson, C. A., Lencz, T., Burdick, K. E., Kane, J. M., Goldman, D., et al. (2007). Disrupted in schizophrenia 1 genotype and positive symptoms in schizophrenia. Biological Psychiatry, 61, 1208–1210.CrossRefPubMedGoogle Scholar
  38. Detera-Wadleigh, S. D., & McMahon, F. J. (2006). G72/G30 in schizophrenia and bipolar disorder: Review and meta-analysis. Biological Psychiatry, 60, 106–114.CrossRefPubMedGoogle Scholar
  39. Duan, S., Du, J., Xu, Y., Xing, Q., Wang, H., Wu, S., et al. (2005). Failure to find association between TRAR4 and schizophrenia in the Chinese Han population. Journal of Neural Transmission, 113, 5.Google Scholar
  40. Duan, J., Martinez, M., Sanders, A. R., Hou, C., Burrell, G. J., Krasner, A. J., et al. (2007). DTNBP1 (dystrobrevin binding protein 1) and schizophrenia: Association evidence in the 3′ end of the gene. Human Heredity, 64, 97–106.CrossRefPubMedGoogle Scholar
  41. Duan, J., Martinez, M., Sanders, A. R., Hou, C., Krasner, A. J., Schwartz, D. B., et al. (2005). Neuregulin 1 (NRG1) and schizophrenia: Analysis of a US family sample and the evidence in the balance. Psychological Medicine, 35, 1599–1610.CrossRefPubMedGoogle Scholar
  42. Duan, J., Martinez, M., Sanders, A. R., Hou, C., Saitou, N., Kitano, T., et al. (2004). Polymorphisms in the trace amine receptor 4 (TRAR4) gene on chromosome 6q23.2 are associated with susceptibility to schizophrenia. American Journal of Human Genetics, 75, 624–638.CrossRefPubMedGoogle Scholar
  43. Egan, M. F., Goldberg, T. E., Kolachana, B. S., Callicott, J. H., Mazzanti, C. M., Straub, R. E., et al. (2001). Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, 98, 6917–6922.CrossRefPubMedGoogle Scholar
  44. Ekelund, J., Hovatta, I., Parker, A., Paunio, T., Varilo, T., Martin, R., et al. (2001). Chromosome 1 loci in Finnish schizophrenia families. Human Molecular Genetics, 10, 1611–1617.CrossRefPubMedGoogle Scholar
  45. Ekelund, J., Lichtermann, D., Hovatta, I., Ellonen, P., Suvisaari, J., Terwilliger, J. D., et al. (2000). Genome-wide scan for schizophrenia in the Finnish population: Evidence for a locus on chromosome 7q22. Human Molecular Genetics, 9, 1049–1057.CrossRefPubMedGoogle Scholar
  46. Emamian, E. S., Hall, D., Birnbaum, M. J., Karayiorgou, M., & Gogos, J. A. (2004). Convergent evidence for impaired AKT1-GSK3beta signaling in schizophrenia. Nature Genetics, 36, 131–137.CrossRefPubMedGoogle Scholar
  47. Fallin, M. D., Lasseter, V. K., Avramopoulos, D., Nicodemus, K. K., Wolyniec, P. S., McGrath, J. A., et al. (2005). Bipolar I disorder and schizophrenia: A 440-single-nucleotide polymorphism screen of 64 candidate genes among Ashkenazi Jewish case-parent trios. American Journal of Human Genetics, 77, 918–936.CrossRefPubMedGoogle Scholar
  48. Farmer, A. E., McGuffin, P., & Gottesman, I. I. (1987). Twin concordance for DSM-III schizophrenia. Scrutinizing the validity of the definition. Archives of General Psychiatry, 44, 634–640.CrossRefPubMedGoogle Scholar
  49. Foley, D. L., Eaves, L. J., Wormley, B., Silberg, J. L., Maes, H. H., Kuhn, J., et al. (2004). Childhood adversity, monoamine oxidase a genotype, and risk for conduct disorder. Archives of General Psychiatry, 61, 738–744.CrossRefPubMedGoogle Scholar
  50. Frayling, T. M., Timpson, N. J., Weedon, M. N., Zeggini, E., Freathy, R. M., Lindgren, C. M., et al. (2007). A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science, 316, 889–894.CrossRefPubMedGoogle Scholar
  51. Freedman, R., Coon, H., Myles-Worsley, M., Orr-Urtreger, A., Olincy, A., Davis, A., et al. (1997). Linkage of a neurophysiological deficit in schizophrenia to a chromosome 15 locus. Proceedings of the National Academy of Sciences of the United States of America, 94, 587–592.CrossRefPubMedGoogle Scholar
  52. Fujii, T., Iijima, Y., Kondo, H., Shizuno, T., Hori, H., Nakabayashi, T., et al. (2007). Failure to confirm an association between the PLXNA2 gene and schizophrenia in a Japanese population. Progress in Neuropsychopharmacology & Biological Psychiatry, 31, 873–877.CrossRefGoogle Scholar
  53. Fukui, N., Muratake, T., Kaneko, N., Amagane, H., & Someya, T. (2006). Supportive evidence for neuregulin 1 as a susceptibility gene for schizophrenia in a Japanese population. Neuroscience Letters, 396, 117–120.CrossRefPubMedGoogle Scholar
  54. Funke, B., Finn, C. T., Plocik, A. M., Lake, S., DeRosse, P., Kane, J. M., et al. (2004). Association of the DTNBP1 locus with schizophrenia in a U.S. population. American Journal of Human Genetics, 75, 891–898.CrossRefPubMedGoogle Scholar
  55. Gejman, P. V., Sanders, A. R., Badner, J. A., Cao, Q., & Zhang, J. (2001). Linkage analysis of schizophrenia to chromosome 15. American Journal of Medical Genetics, 105, 789–793.CrossRefPubMedGoogle Scholar
  56. Georgieva, L., Dimitrova, A., Ivanov, D., Nikolov, I., Williams, N. M., Grozeva, D., et al. (2008). Support for neuregulin 1 as a susceptibility gene for bipolar disorder and schizophrenia. Biological Psychiatry, 64, 419–427.CrossRefPubMedGoogle Scholar
  57. Gerber, D. J., Hall, D., Miyakawa, T., Demars, S., Gogos, J. A., Karayiorgou, M., et al. (2003). Evidence for association of schizophrenia with genetic variation in the 8p21.3 gene, PPP3CC, encoding the calcineurin gamma subunit. Proceedings of the National Academy of Sciences of the United States of America, 100, 8993–8998.CrossRefPubMedGoogle Scholar
  58. Gill, M., Vallada, H., Collier, D., Sham, P., Holmans, P., Murray, R., et al. (1996). A combined analysis of D22S278 marker alleles in affected sib-pairs: Support for a susceptibility locus for schizophrenia at chromosome 22q12. American Journal of Medical Genetics, 67, 40–45.CrossRefPubMedGoogle Scholar
  59. Goldberg, T. E., Straub, R. E., Callicott, J. H., Hariri, A., Mattay, V. S., Bigelow, L., et al. (2006). The G72/G30 gene complex and cognitive abnormalities in schizophrenia. Neuropsychopharmacology, 31, 2022–2032.CrossRefPubMedGoogle Scholar
  60. Gonzalez, E., Kulkarni, H., Bolivar, H., Mangano, A., Sanchez, R., Catano, G., et al. (2005). The influence of CCL3L1 gene-containing segmental duplications on HIV-1/AIDS susceptibility. Science, 307, 1434–1440.CrossRefPubMedGoogle Scholar
  61. Gottesman, I. I. (1991). Schizophrenia genesis. New York: W H Freeman.Google Scholar
  62. Gottesman, I. I., & Shields, J. (1982). Schizophrenia: The epigenetic puzzle. Cambridge: Cambridge University Press.Google Scholar
  63. Green, E. K., Raybould, R., Macgregor, S., Gordon-Smith, K., Heron, J., Hyde, S., et al. (2005). Operation of the schizophrenia susceptibility gene, neuregulin 1, across traditional diagnostic boundaries to increase risk for bipolar disorder. Archives of General Psychiatry, 62, 642–648.CrossRefPubMedGoogle Scholar
  64. Guo, S., Tang, W., Shi, Y., Huang, K., Xi, Z., Xu, Y., et al. (2006). RGS4 polymorphisms and risk of schizophrenia: An association study in Han Chinese plus meta-analysis. Neuroscience Letters, 406, 122–127.CrossRefPubMedGoogle Scholar
  65. Hahn, C. G., Wang, H. Y., Cho, D. S., Talbot, K., Gur, R. E., Berrettini, W. H., et al. (2006). Altered neuregulin 1-erbB4 signaling contributes to NMDA receptor hypofunction in schizophrenia. Natural Medicines, 12, 824–828.CrossRefGoogle Scholar
  66. Hall, D., Gogos, J. A., & Karayiorgou, M. (2004). The contribution of three strong candidate schizophrenia susceptibility genes in demographically distinct populations. Genes, Brain, and Behavior, 3, 240–248.CrossRefPubMedGoogle Scholar
  67. Hall, J., Whalley, H. C., Job, D. E., Baig, B. J., McIntosh, A. M., Evans, K. L., et al. (2006). A neuregulin 1 variant associated with abnormal cortical function and psychotic symptoms. Nature Neuroscience, 9, 1477–1478.CrossRefPubMedGoogle Scholar
  68. Harrison, P. J., & Owen, M. J. (2003). Genes for schizophrenia? Recent findings and their pathophysiological implications. Lancet, 361, 417–419.CrossRefPubMedGoogle Scholar
  69. Hashimoto, L., Habita, C., Beressi, J. P., Delepine, M., Besse, C., Cambon-Thomsen, A., et al. (1994). Genetic mapping of a susceptibility locus for insulin-dependent diabetes mellitus on chromosome 11q. Nature, 371, 161–164.CrossRefPubMedGoogle Scholar
  70. Hattori, E., Liu, C., Badner, J. A., Bonner, T. I., Christian, S. L., Maheshwari, M., et al. (2003). Polymorphisms at the G72/G30 gene locus, on 13q33, are associated with bipolar disorder in two independent pedigree series. American Journal of Human Genetics, 72, 1131–1140.CrossRefPubMedGoogle Scholar
  71. He, Z., Li, Z., Shi, Y., Tang, W., Huang, K., Ma, G., et al. (2007). The PIP5K2A gene and schizophrenia in the Chinese population – A case-control study. Schizophrenia Research, 94, 359–365.CrossRefPubMedGoogle Scholar
  72. Hennah, W., Thomson, P., McQuillin, A., Bass, N., Loukola, A., Anjorin, A., et al. (2009). DISC1 association, heterogeneity and interplay in schizophrenia and bipolar disorder. Molecular Psychiatry, 14, 865–873.CrossRefPubMedGoogle Scholar
  73. Hennah, W., Varilo, T., Kestila, M., Paunio, T., Arajarvi, R., Haukka, J., et al. (2003). Haplotype transmission analysis provides evidence of association for DISC1 to schizophrenia and suggests sex-dependent effects. Human Molecular Genetics, 12, 3151–3159.CrossRefPubMedGoogle Scholar
  74. Heston, L. L. (1966). Psychiatric disorders in foster home reared children of schizophrenic mothers. The British Journal of Psychiatry, 112, 819–825.CrossRefPubMedGoogle Scholar
  75. Hodgkinson, C. A., Goldman, D., Jaeger, J., Persaud, S., Kane, J. M., Lipsky, R. H., et al. (2004). Disrupted in schizophrenia 1 (DISC1): Association with schizophrenia, schizoaffective disorder, and bipolar disorder. American Journal of Human Genetics, 75, 862–872.CrossRefPubMedGoogle Scholar
  76. Holliday, E. G., Handoko, H. Y., James, M. R., McGrath, J. J., Nertney, D. A., Tirupati, S., et al. (2006). Association study of the dystrobrevin-binding gene with schizophrenia in Australian and Indian samples. Twin Research and Human Genetics, 9, 531–539.CrossRefPubMedGoogle Scholar
  77. Hong, C. J., Hou, S. J., Yen, F. C., Liou, Y. J., & Tsai, S. J. (2006). Family-based association study between G72/G30 genetic polymorphism and schizophrenia. NeuroReport, 17, 1067–1069.CrossRefPubMedGoogle Scholar
  78. Hovatta, I., Varilo, T., Suvisaari, J., Terwilliger, J. D., Olikainen, V., Arajärvi, R., et al. (1999). A genome-wide screen for schizophrenia genes in an isolated Finnish subpopulation suggesting multiple susceptibility loci. American Journal of Human Genetics, 65, 1114–1124.CrossRefPubMedGoogle Scholar
  79. Hugot, J. P., Chamaillard, M., Zouali, H., Lesage, S., Cezard, J. P., Belaiche, J., et al. (2001). Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature, 411, 599–603.CrossRefPubMedGoogle Scholar
  80. Iafrate, A. J., Feuk, L., Rivera, M. N., Listewnik, M. L., Donahoe, P. K., Qi, Y., et al. (2004). Detection of large-scale variation in the human genome. Nature Genetics, 36, 949–951.CrossRefPubMedGoogle Scholar
  81. Ide, M., Ohnishi, T., Murayama, M., Matsumoto, I., Yamada, K., Iwayama, Y., et al. (2006). Failure to support a genetic contribution of AKT1 polymorphisms and altered AKT signaling in schizophrenia. Journal of Neurochemistry, 99, 277–287.CrossRefPubMedGoogle Scholar
  82. Ikeda, M., Iwata, N., Suzuki, T., Kitajima, T., Yamanouchi, Y., Kinoshita, Y., et al. (2004). Association of AKT1 with schizophrenia confirmed in a Japanese population. Biological Psychiatry, 56, 698–700.CrossRefPubMedGoogle Scholar
  83. Ikeda, M., Iwata, N., Suzuki, T., Kitajima, T., Yamanouchi, Y., Kinoshita, Y., et al. (2005). No association of haplotype-tagging SNPs in TRAR4 with schizophrenia in Japanese patients. Schizophrenia Research, 78, 127–130.CrossRefPubMedGoogle Scholar
  84. Ikeda, M., Takahashi, N., Saito, S., Aleksic, B., Watanabe, Y., Nunokawa, A., et al. (2008). Failure to replicate the association between NRG1 and schizophrenia using Japanese large sample. Schizophrenia Research, 101, 1–8.CrossRefPubMedGoogle Scholar
  85. Ingason, A., Soeby, K., Timm, S., Wang, A. G., Jakobsen, K. D., Fink-Jensen, A., et al. (2006). No significant association of the 5′ end of neuregulin 1 and schizophrenia in a large Danish sample. Schizophrenia Research, 83, 1–5.CrossRefPubMedGoogle Scholar
  86. International Schizophrenia Consortium. (2008). Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature, 455, 237–241.CrossRefGoogle Scholar
  87. Ishiguro, H., Horiuchi, Y., Koga, M., Inada, T., Iwata, N., Ozaki, N., et al. (2007). RGS4 is not a susceptibility gene for schizophrenia in Japanese: Association study in a large case-control population. Schizophrenia Research, 89, 161–164.CrossRefPubMedGoogle Scholar
  88. Iwata, N., Suzuki, T., Ikeda, M., Kitajima, T., Yamanouchi, Y., Inada, T., et al. (2004). No association with the neuregulin 1 haplotype to Japanese schizophrenia. Molecular Psychiatry, 9, 126–127.CrossRefPubMedGoogle Scholar
  89. Jamra, R. A., Klein, K., Villela, A. W., Becker, T., Schulze, T. G., Schmael, C., et al. (2006). Association study between genetic variants at the PIP5K2A gene locus and schizophrenia and bipolar affective disorder. American Journal of Medical Genetics. Part B: Neuropsychiatric Genetics, 141B, 663–665.CrossRefGoogle Scholar
  90. Joo, E. J., Lee, K. Y., Jeong, S. H., Ahn, Y. M., Koo, Y. J., & Kim, Y. S. (2006). The dysbindin gene (DTNBP1) and schizophrenia: No support for an association in the Korean population. Neuroscience Letters, 407, 101–106.CrossRefPubMedGoogle Scholar
  91. Joo, E. J., Lee, K. Y., Jeong, S. H., Chang, J. S., Ahn, Y. M., Koo, Y. J., et al. (2007). Dysbindin gene variants are associated with bipolar I disorder in a Korean population. Neuroscience Letters, 418, 272–275.CrossRefPubMedGoogle Scholar
  92. Kallmann, F. J. (1938). The genetics of schizophrenia. New York: Augustin.Google Scholar
  93. Kalsi, G., Chen, C. H., Smyth, C., Brynjolfsson, J., Sigmundson, T., Curtis, D., et al. (1996). Genetic linkage analysis in an Icelandic/British sample fails to exclude the putative chromosome 13q14.1-q32 schizophrenia susceptibility locus. American Journal of Human Genetics, 59, A388.Google Scholar
  94. Karayiorgou, M., Morris, M. A., Morrow, B., Shprintzen, R. J., Goldberg, R., Borrow, J., et al. (1995). Schizophrenia susceptibility associated with interstitial deletions of chromosome 22q11. Proceedings of the National Academy of Sciences of the United States of America, 92, 7612–7616.CrossRefPubMedGoogle Scholar
  95. Kendler, K. S., & Diehl, S. R. (1993). The genetics of schizophrenia: A current, genetic-epidemiologic perspective. Schizophrenia Bulletin, 19, 261–285.CrossRefPubMedGoogle Scholar
  96. Kendler, K. S., Gruenberg, A. M., & Tsuang, M. T. (1986). A DSM-III family study of the nonschizophrenic psychotic disorders. The American Journal of Psychiatry, 143, 1098–1105.PubMedGoogle Scholar
  97. Kendler, K. S., Kuhn, J. W., Prescott, C. A., Vittum, J., & Riley, B. (2005). The interaction of stressful life events and a serotonin transporter polymorphism in the prediction of episodes of major depression: A replication. Archives of General Psychiatry, 62, 529–535.CrossRefPubMedGoogle Scholar
  98. Kendler, K. S., McGuire, M., Gruenberg, A. M., Spellman, M., O’Hare, A., & Walsh, D. (1993). The Roscommon family study: II. The risk of nonschizophrenic nonaffective psychoses in relatives. Archives of General Psychiatry, 50, 645–652.CrossRefPubMedGoogle Scholar
  99. Kendler, K. S., Straub, R. E., MacLean, C. J., & Walsh, D. (1996). Reflections on the evidence for a vulnerability locus for schizophrenia on chromosome 6p24-22. American Journal of Medical Genetics, 67, 124–126.CrossRefPubMedGoogle Scholar
  100. Kety, S. S., Rosenthal, D., Wender, P. H., Schulsinger, F., & Jacobsen, B. (1968). The types and prevalence of mental illness in the biological and adoptive families of adopted schizophrenics. Journal of Psychiatric Research, 6, 345–362.CrossRefGoogle Scholar
  101. Kety, S. S., Wender, P. H., Jacobsen, B., Ingraham, L. J., Jansson, L., Faber, B., et al. (1994). Mental illness in the biological and adoptive relatives of schizophrenic adoptees: Replication of the Copenhagen study in the rest of Denmark. Archives of General Psychiatry, 51, 442–455.CrossRefPubMedGoogle Scholar
  102. Kim, H. J., Park, H. J., Jung, K. H., Ban, J. Y., Ra, J., Kim, J. W., et al. (2008). Association study of polymorphisms between DISC1 and schizophrenia in a Korean population. Neuroscience Letters, 430, 60–63.CrossRefPubMedGoogle Scholar
  103. Kirov, G., Ivanov, D., Williams, N. M., Preece, A., Nikolov, I., Milev, R., et al. (2004). Strong evidence for association between the dystrobrevin binding protein 1 gene (DTNBP1) and schizophrenia in 488 parent-offspring trios from Bulgaria. Biological Psychiatry, 55, 971–975.CrossRefPubMedGoogle Scholar
  104. Kockelkorn, T. T., Arai, M., Matsumoto, H., Fukuda, N., Yamada, K., Minabe, Y., et al. (2004). Association study of polymorphisms in the 5′ upstream region of human DISC1 gene with schizophrenia. Neuroscience Letters, 368, 41–45.CrossRefPubMedGoogle Scholar
  105. Korostishevsky, M., Kaganovich, M., Cholostoy, A., Ashkenazi, M., Ratner, Y., Dahary, D., et al. (2004). Is the G72/G30 locus associated with schizophrenia? Single nucleotide polymorphisms, haplotypes, and gene expression analysis. Biological Psychiatry, 56, 169–176.CrossRefPubMedGoogle Scholar
  106. Korostishevsky, M., Kremer, I., Kaganovich, M., Cholostoy, A., Murad, I., Muhaheed, M., et al. (2006). Transmission disequilibrium and haplotype analyses of the G72/G30 locus: Suggestive linkage to schizophrenia in Palestinian Arabs living in the North of Israel. American Journal of Medical Genetics. Part B: Neuropsychiatric Genetics, 141B, 91–95.CrossRefGoogle Scholar
  107. Kruglyak, L., Daly, M. J., Reeve-Daly, M. P., & Lander, E. S. (1996). Parametric and nonparametric linkage analysis: A unified multipoint approach. American Journal of Human Genetics, 58, 1347–1363.PubMedGoogle Scholar
  108. Laird, N. M., Horvath, S., & Xu, X. (2000). Implementing a unified approach to family-based tests of association. Genetic Epidemiology, 19(suppl 1), S36–S42.CrossRefPubMedGoogle Scholar
  109. Laitinen, T., Daly, M. J., Rioux, J. D., Kauppi, P., Laprise, C., Petays, T., et al. (2001). A susceptibility locus for asthma-related traits on chromosome 7 revealed by genome-wide scan in a founder population. Nature Genetics, 28, 87–91.PubMedGoogle Scholar
  110. Lander, E., & Kruglyak, L. (1995). Genetic dissection of complex traits: Guidelines for interpreting and reporting linkage results. Nature Genetics, 11, 241–247.CrossRefPubMedGoogle Scholar
  111. Law, A. J., Kleinman, J. E., Weinberger, D. R., & Weickert, C. S. (2007). Disease-associated intronic variants in the ErbB4 gene are related to altered ErbB4 splice-variant expression in the brain in schizophrenia. Human Molecular Genetics, 16, 129–141.CrossRefPubMedGoogle Scholar
  112. Lencz, T., Morgan, T. V., Athanasiou, M., Dain, B., Reed, C. R., Kane, J. M., et al. (2007). Converging evidence for a pseudoautosomal cytokine receptor gene locus in schizophrenia. Molecular Psychiatry, 12, 572–580.CrossRefPubMedGoogle Scholar
  113. Levinson, D. F., Holmans, P. A., Laurent, C., Riley, B., Pulver, A. E., Gejman, P. V., et al. (2002). No major schizophrenia locus detected on chromosome 1q in a large multicenter sample. Science, 296, 739–741.CrossRefPubMedGoogle Scholar
  114. Levinson, D. F., Wildenauer, D. B., Schwab, S. G., Albus, M., Hallmayer, J., Lerer, B., et al. (1996). Additional support for schizophrenia linkage on chromosomes 6 and 8: A multicenter study. American Journal of Medical Genetics, 67, 580–594.CrossRefGoogle Scholar
  115. Lewis, C. M., Levinson, D. F., Wise, L. H., DeLisi, L. E., Straub, R. E., Hovatta, I., et al. (2003). Genome scan meta-analysis of schizophrenia and bipolar disorder, part II: Schizophrenia. American Journal of Human Genetics, 73, 34–48.CrossRefPubMedGoogle Scholar
  116. Li, D., & He, L. (2006). Association study of the G-protein signaling 4 (RGS4) and proline dehydrogenase (PRODH) genes with schizophrenia: A meta-analysis. European Journal of Human Genetics, 14, 1130–1135.CrossRefPubMedGoogle Scholar
  117. Li, D., & He, L. (2007). G72/G30 genes and schizophrenia: A systematic meta-analysis of association studies. Genetics, 175, 917–922.CrossRefPubMedGoogle Scholar
  118. Li, T., Stefansson, H., Gudfinnsson, E., Cai, G., Liu, X., Murray, R. M., et al. (2004). Identification of a novel neuregulin 1 at-risk haplotype in Han schizophrenia Chinese patients, but no association with the Icelandic/Scottish risk haplotype. Molecular Psychiatry, 9, 698–704.PubMedGoogle Scholar
  119. Li, T., Zhang, F., Liu, X., Sun, X., Sham, P. C., Crombie, C., et al. (2005). Identifying potential risk haplotypes for schizophrenia at the DTNBP1 locus in Han Chinese and Scottish populations. Molecular Psychiatry, 10, 1037–1044.CrossRefPubMedGoogle Scholar
  120. Lieberman, J. A., Stroup, T. S., McEvoy, J. P., Swartz, M. S., Rosenheck, R. A., Perkins, D. O., et al. (2005). Effectiveness of antipsychotic drugs in patients with chronic schizophrenia. The New England Journal of Medicine, 353, 1209–1223.CrossRefPubMedGoogle Scholar
  121. Lin, M. W., Curtis, D., Williams, N., Arranz, M., Nanko, S., Collier, D., et al. (1995). Suggestive evidence for linkage of schizophrenia to markers on chromosome 13q14.1-q32. Psychiatric Genetics, 5, 117–126.CrossRefPubMedGoogle Scholar
  122. Lin, M. W., Sham, P., Hwu, H. G., Collier, D., Murray, R., & Powell, J. F. (1997). Suggestive evidence for linkage of schizophrenia to markers on chromosome 13 in Caucasian but not Oriental populations. Human Genetics, 99, 417–420.CrossRefPubMedGoogle Scholar
  123. Lindholm, E., Ekholm, B., Balciuniene, J., Johansson, G., Castensson, A., Koisti, M., et al. (1999). Linkage analysis of a large Swedish kindred provides further support for a susceptibility locus for schizophrenia on chromosome 6p23. American Journal of Medical Genetics, 88, 369–377.CrossRefPubMedGoogle Scholar
  124. Liu, Y. L., Fann, C. S., Liu, C. M., Chang, C. C., Wu, J. Y., Hung, S. I., et al. (2006a). No association of G72 and D-amino acid oxidase genes with schizophrenia. Schizophrenia Research, 87, 15–20.CrossRefPubMedGoogle Scholar
  125. Liu, Y. L., Fann, C. S., Liu, C. M., Chen, W. J., Wu, J. Y., Hung, S. I., et al. (2006b). A single nucleotide polymorphism fine mapping study of chromosome 1q42.1 reveals the vulnerability genes for schizophrenia, GNPAT and DISC1: Association with impairment of sustained attention. Biological Psychiatry, 60, 554–562.CrossRefPubMedGoogle Scholar
  126. Liu, Y. L., Fann, C. S., Liu, C. M., Wu, J. Y., Hung, S. I., Chan, H. Y., et al. (2006c). Absence of significant associations between four AKT1 SNP markers and schizophrenia in the Taiwanese population. Psychiatric Genetics, 16, 39–41.CrossRefPubMedGoogle Scholar
  127. Liu, X., He, G., Wang, X., Chen, Q., Qian, X., Lin, W., et al. (2004). Association of DAAO with schizophrenia in the Chinese population. Neuroscience Letters, 369, 228–233.CrossRefPubMedGoogle Scholar
  128. Liu, H., Heath, S. C., Sobin, C., Roos, J. L., Galke, B. L., Blundell, M. L., et al. (2002). Genetic variation at the 22q11 PRODH2/DGCR6 locus presents an unusual pattern and increases susceptibility to schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, 99, 3717–3722.CrossRefPubMedGoogle Scholar
  129. Liu, C. M., Hwu, H. G., Lin, M. W., Ou-Yang, W. C., Lee, S. F., Fann, C. S., et al. (2001). Suggestive evidence for linkage of schizophrenia to markers at chromosome 15q13-14 in Taiwanese families. American Journal of Medical Genetics, 105, 658–661.CrossRefPubMedGoogle Scholar
  130. Liu, C. M., Liu, Y. L., Fann, C. S., Yang, W. C., Wu, J. Y., Hung, S. I., et al. (2007). No association evidence between schizophrenia and dystrobrevin-binding protein 1 (DTNBP1) in Taiwanese families. Schizophrenia Research. doi:10.1016/j.schres.2007.02.003.Google Scholar
  131. Liu, Y. L., Shen-Jang, F. C., Liu, C. M., Wu, J. Y., Hung, S. I., Chan, H. Y., et al. (2006d). Evaluation of RGS4 as a candidate gene for schizophrenia. American Journal of Medical Genetics. Part B: Neuropsychiatric Genetics, 141, 418–420.CrossRefGoogle Scholar
  132. Ma, J., Qin, W., Wang, X. Y., Guo, T. W., Bian, L., Duan, S. W., et al. (2006). Further evidence for the association between G72/G30 genes and schizophrenia in two ethnically distinct populations. Molecular Psychiatry, 11, 479–487.CrossRefPubMedGoogle Scholar
  133. Mah, S., Nelson, M. R., DeLisi, L. E., Reneland, R. H., Markward, N., James, M. R., et al. (2006). Identification of the semaphorin receptor PLXNA2 as a candidate for susceptibility to schizophrenia. Molecular Psychiatry, 11, 471–478.CrossRefPubMedGoogle Scholar
  134. Martin, E. R., Monks, S. A., Warren, L. L., & Kaplan, N. L. (2000). A test for linkage and association in general pedigrees: The pedigree disequilibrium test. American Journal of Human Genetics, 67, 146–154.CrossRefPubMedGoogle Scholar
  135. Maziade, M., Bissonnette, L., Rouillard, E., Martinez, M., Turgeon, M., Charron, L., et al. (1997). 6p24-22 region and major psychoses in the Eastern Quebec population. Le Groupe IREP. American Journal of Medical Genetics, 74, 311–318.CrossRefPubMedGoogle Scholar
  136. McClellan, J. M., Susser, E., & King, M. C. (2007). Schizophrenia: A common disease caused by multiple rare alleles. The British Journal of Psychiatry, 190, 194–199.CrossRefPubMedGoogle Scholar
  137. McGue, M., Gottesman, I., & Rao, D. C. (1985). Resolving genetic models for the transmission of schizophrenia. Genetic Epidemiology, 2, 99–110.CrossRefPubMedGoogle Scholar
  138. Millar, J. K., Wilson-Annan, J. C., Anderson, S., Christie, S., Taylor, M. S., Semple, C. A. M., et al. (2000). Disruption of two novel genes by a translocation co-segregating with schizophrenia. Human Molecular Genetics, 9, 1415–1423.CrossRefPubMedGoogle Scholar
  139. Mirnics, K., Middleton, F. A., Lewis, D. A., & Levitt, P. (2001). Analysis of complex brain disorders with gene expression microarrays: Schizophrenia as a disease of the synapse. Trends in Neurosciences, 24, 479–486.CrossRefPubMedGoogle Scholar
  140. Moghaddam, B. (2003). Bringing order to the glutamate chaos in schizophrenia. Neuron, 40, 881–884.CrossRefPubMedGoogle Scholar
  141. Moises, H. W., Yang, L., Kristbjarnarson, H., Wiese, C., Byerley, W., Macciardi, F., et al. (1995). An international two-stage genome-wide search for schizophrenia susceptibility genes. Nature Genetics, 11, 321–324.CrossRefPubMedGoogle Scholar
  142. Morris, D. W., McGhee, K. A., Schwaiger, S., Scully, P., Quinn, J., Meagher, D., et al. (2003). No evidence for association of the dysbindin gene [DTNBP1] with schizophrenia in an Irish population-based study. Schizophrenia Research, 60, 167–172.CrossRefPubMedGoogle Scholar
  143. Morris, D. W., Rodgers, A., McGhee, K. A., Schwaiger, S., Scully, P., Quinn, J., et al. (2004). Confirming RGS4 as a susceptibility gene for schizophrenia. American Journal of Medical Genetics, 125B, 50–53.CrossRefPubMedGoogle Scholar
  144. Morton, N. E. (1955). Sequential tests for the detection of linkage. American Journal of Human Genetics, 7, 277–318.PubMedGoogle Scholar
  145. Mulle, J. G., Chowdari, K. V., Nimgaonkar, V., & Chakravarti, A. (2005). No evidence for association to the G72/G30 locus in an independent sample of schizophrenia families. Molecular Psychiatry, 10, 431–433.CrossRefPubMedGoogle Scholar
  146. Munafo, M. R., Thiselton, D. L., Clark, T. G., & Flint, J. (2006). Association of the NRG1 gene and schizophrenia: A meta-analysis. Molecular Psychiatry, 11, 539–546.CrossRefPubMedGoogle Scholar
  147. Murphy, K. C., Jones, L. A., & Owen, M. J. (1999). High rates of schizophrenia in adults with velo-cardio-facial syndrome. Archives of General Psychiatry, 56, 940–945.CrossRefPubMedGoogle Scholar
  148. Nicodemus, K. K., Luna, A., Vakkalanka, R., Goldberg, T., Egan, M., Straub, R. E., et al. (2006). Further evidence for association between ErbB4 and schizophrenia and influence on cognitive intermediate phenotypes in healthy controls. Molecular Psychiatry, 11, 1062–1065.CrossRefPubMedGoogle Scholar
  149. Norton, N., Moskvina, V., Morris, D. W., Bray, N. J., Zammit, S., Williams, N. M., et al. (2006). Evidence that interaction between neuregulin 1 and its receptor erbB4 increases susceptibility to schizophrenia. American Journal of Medical Genetics. Part B: Neuropsychiatric Genetics, 141, 96–101.CrossRefGoogle Scholar
  150. Norton, N., Williams, H. J., Dwyer, S., Carroll, L., Peirce, T., Moskvina, V., et al. (2007). Association analysis of AKT1 and schizophrenia in a UK case control sample. Schizophrenia Research, 91, 58–65.CrossRefGoogle Scholar
  151. Numakawa, T., Yagasaki, Y., Ishimoto, T., Okada, T., Suzuki, T., Iwata, N., et al. (2004). Evidence of novel neuronal functions of dysbindin, a susceptibility gene for schizophrenia. Human Molecular Genetics, 13, 2699–2708.CrossRefPubMedGoogle Scholar
  152. O’Donovan, M. C., Craddock, N., Norton, N., Williams, H., Peirce, T., Moskvina, V., et al. (2008). Identification of loci associated with schizophrenia by genome-wide association and follow-up. Nature Genetics, 40, 1053–1055.CrossRefPubMedGoogle Scholar
  153. Ogura, Y., Bonen, D. K., Inohara, N., Nicolae, D. L., Chen, F. F., Ramos, R., et al. (2001). A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature, 411, 603–606.CrossRefPubMedGoogle Scholar
  154. Ohtsuki, T., Inada, T., & Arinami, T. (2004). Failure to confirm association between AKT1 haplotype and schizophrenia in a Japanese case-control population. Molecular Psychiatry, 9, 981–983.CrossRefPubMedGoogle Scholar
  155. Pae, C. U., Serretti, A., Mandelli, L., Yu, H. S., Patkar, A. A., Lee, C. U., et al. (2007). Effect of 5-haplotype of dysbindin gene (DTNBP1) polymorphisms for the susceptibility to bipolar I disorder. American Journal of Medical Genetics. Part B: Neuropsychiatric Genetics, 144B, 701–703.CrossRefGoogle Scholar
  156. Pae, C. U., Yu, H. S., Amann, D., Kim, J. J., Lee, C. U., Lee, S. J., et al. (2008). Association of the trace amine associated receptor 6 (TAAR6) gene with schizophrenia and bipolar disorder in a Korean case control sample. Journal of Psychiatric Research, 42, 35–40.CrossRefPubMedGoogle Scholar
  157. Palo, O. M., Antila, M., Silander, K., Hennah, W., Kilpinen, H., Soronen, P., et al. (2007). Association of distinct allelic haplotypes of DISC1 with psychotic and bipolar spectrum disorders and with underlying cognitive impairments. Human Molecular Genetics, 16, 2517–2528.CrossRefPubMedGoogle Scholar
  158. Pedrosa, E., Ye, K., Nolan, K. A., Morrell, L., Okun, J. M., Persky, A. D., et al. (2007). Positive association of schizophrenia to JARID2 gene. American Journal of Medical Genetics. Part B: Neuropsychiatric Genetics, 144B, 45–51.CrossRefGoogle Scholar
  159. Perlis, R. H., Purcell, S., Fagerness, J., Kirby, A., Petryshen, T. L., Fan, J., et al. (2008). Family-based association study of lithium-related and other candidate genes in bipolar disorder. Archives of General Psychiatry, 65, 53–61.CrossRefPubMedGoogle Scholar
  160. Perry, G. H., Dominy, N. J., Claw, K. G., Lee, A. S., Fiegler, H., Redon, R., et al. (2007). Diet and the evolution of human amylase gene copy number variation. Nature Genetics, 39, 1256–1260.CrossRefPubMedGoogle Scholar
  161. Peters, K., Wiltshire, S., Henders, A. K., Dragovic, M., Badcock, J. C., Chandler, D., et al. (2008). Comprehensive analysis of tagging sequence variants in DTNBP1 shows no association with schizophrenia or with its composite neurocognitive endophenotypes. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 147B, 1159–1166.CrossRefGoogle Scholar
  162. Petretto, E., Liu, E. T., & Aitman, T. J. (2007). A gene harvest revealing the archeology and complexity of human disease. Nature Genetics, 39, 1299–1301.CrossRefPubMedGoogle Scholar
  163. Petryshen, T. L., Middleton, F. A., Kirby, A., Aldinger, K. A., Purcell, S., Tahl, A. R., et al. (2005). Support for involvement of neuregulin 1 in schizophrenia pathophysiology. Molecular Psychiatry, 10(366–374), 328.CrossRefGoogle Scholar
  164. Polymeropoulos, M. H., Coon, H., Byerley, W., Gershon, E. S., Goldin, L., Crow, T. J., et al. (1994). Search for a schizophrenia susceptibility locus on human chromosome 22. American Journal of Medical Genetics, 54, 93–99.CrossRefPubMedGoogle Scholar
  165. Prata, D., Breen, G., Osborne, S., Munro, J., St Clair, D., & Collier, D. (2008). Association of DAO and G72(DAOA)/G30 genes with bipolar affective disorder. American Journal of Medical Genetics. Part B: Neuropsychiatric Genetics, 147, 914–917.CrossRefGoogle Scholar
  166. Prescott, C. A., & Gottesman, I. I. (1993). Genetically mediated vulnerability to schizophrenia. The Psychiatric Clinics of North America, 16, 245–267.PubMedGoogle Scholar
  167. Pulver, A. E., Karayiorgou, M., Lasseter, V. K., Wolyniec, P., Kasch, L., Antonarakis, S., et al. (1994). Follow-up of a report of a potential linkage for schizophrenia on chromosome 22q12-q13.1: Part 2. American Journal of Medical Genetics, 54, 44–50.CrossRefPubMedGoogle Scholar
  168. Pulver, A. E., Karayiorgou, M., Wolyniec, P. S., Lasseter, V. K., Kasch, L., Nestadt, G., et al. (1994). Sequential strategy to identify a susceptibility gene for schizophrenia: Report of potential linkage on chromosome 22q12-q13.1: Part 1. American Journal of Medical Genetics, 54, 36–43.CrossRefPubMedGoogle Scholar
  169. Pulver, A. E., Lasseter, V. K., Kasch, L., Wolyniec, P., Nestadt, G., Blouin, J. L., et al. (1995). Schizophrenia: A genome scan targets chromosomes 3p and 8p as potential sites of susceptibility genes. American Journal of Medical Genetics, 60, 252–260.CrossRefPubMedGoogle Scholar
  170. Pulver, A. E., Nestadt, G., Goldberg, R., Shprintzen, R. J., Lamacz, M., Wolyniec, P. S., et al. (1994). Psychotic illness in patients diagnosed with velo-cardio-facial syndrome and their relatives. The Journal of Nervous and Mental Disease, 182, 476–478.CrossRefPubMedGoogle Scholar
  171. Purcell, S. M., Wray, N. R., Stone, J. L., Visscher, P. M., O’Donovan, M. C., Sullivan, P. F., et al. (2009). Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature, 460, 748–752.PubMedGoogle Scholar
  172. Qu, M., Tang, F., Yue, W., Ruan, Y., Lu, T., Liu, Z., et al. (2007). Positive association of the disrupted-in-Schizophrenia-1 gene (DISC1) with schizophrenia in the Chinese Han population. American Journal of Medical Genetics. Part B: Neuropsychiatric Genetics, 144, 266–270.CrossRefGoogle Scholar
  173. Ray, P. N., Belfall, B., Duff, C., Logan, C., Kean, V., Thompson, M. W., et al. (1985). Cloning of the breakpoint of an X;21 translocation associated with Duchenne muscular dystrophy. Nature, 318, 672–675.CrossRefPubMedGoogle Scholar
  174. Redon, R., Ishikawa, S., Fitch, K. R., Feuk, L., Perry, G. H., Andrews, T. D., et al. (2006). Global variation in copy number in the human genome. Nature, 444, 444–454.CrossRefPubMedGoogle Scholar
  175. Riley, B. P., Makoff, A., Mogudi-Carter, M., Jenkins, T., Williamson, R., Collier, D., et al. (2000). Haplotype transmission disequilibrium and evidence for linkage of the CHRNA7 gene region to schizophrenia in southern African Bantu families. American Journal of Medical Genetics, 96, 196–201.CrossRefPubMedGoogle Scholar
  176. Riley, B. P., & McGuffin, P. (2000). Linkage and associated studies of schizophrenia. American Journal of Medical Genetics, 97, 23–44.CrossRefPubMedGoogle Scholar
  177. Risch, N. (1990). Linkage strategies for genetically complex traits. I. Multilocus models. American Journal of Human Genetics, 46, 222–228.PubMedGoogle Scholar
  178. Risch, N., & Merikangas, K. (1996). The future of genetic studies of complex human diseases. Science, 273, 1516–1517.CrossRefPubMedGoogle Scholar
  179. Rizig, M. A., McQuillin, A., Puri, V., Choudhury, K., Datta, S., Thirumalai, S., et al. (2006). Failure to confirm genetic association between schizophrenia and markers on chromosome 1q23.3 in the region of the gene encoding the regulator of G-protein signaling 4 protein (RGS4). American Journal of Medical Genetics. Part B: Neuropsychiatric Genetics, 141, 296–300.CrossRefGoogle Scholar
  180. Rosa, A., Gardner, M., Cuesta, M. J., Peralta, V., Fatjo-Vilas, M., Miret, S., et al. (2007). Family-based association study of neuregulin-1 gene and psychosis in a Spanish sample. American Journal of Medical Genetics. Part B: Neuropsychiatric Genetics, 144B, 954–957.CrossRefGoogle Scholar
  181. Rudin, E. (1916). Zur Vererbung und Neuentstehung der Dementia Praecox. Berlin: Springer.Google Scholar
  182. Rujescu, D., Ingason, A., Cichon, S., Pietilainen, O. P., Barnes, M. R., Toulopoulou, T., et al. (2009). Disruption of the neurexin 1 gene is associated with schizophrenia. Human Molecular Genetics, 18, 988–996.PubMedGoogle Scholar
  183. Sachs, N. A., Sawa, A., Holmes, S. E., Ross, C. A., DeLisi, L. E., & Margolis, R. L. (2005). A frameshift mutation in disrupted in Schizophrenia 1 in an American family with schizophrenia and schizoaffective disorder. Molecular Psychiatry, 10, 758–764.CrossRefPubMedGoogle Scholar
  184. Saggers-Gray, L., Heriani, H., Handoko, H. Y., Irmansyah, I., Kusumawardhani, A. A., Widyawati, I., et al. (2008). Association of PIP5K2A with schizophrenia: A study in an indonesian family sample. American Journal of Medical Genetics. Part B: Neuropsychiatric Genetics, 147B, 1310–1313.CrossRefGoogle Scholar
  185. Sanders, A. R., Duan, J., Levinson, D. F., Shi, J., He, D., Hou, C., et al. (2008). No significant association of 14 candidate genes with schizophrenia in a large European ancestry sample: Implications for psychiatric genetics. The American Journal of Psychiatry, 165, 497–506.CrossRefPubMedGoogle Scholar
  186. Sawcer, S., Jones, H. B., Feakes, R., Gray, J., Smaldon, N., Chataway, J., et al. (1996). A genome screen in multiple sclerosis reveals susceptibility loci on chromosome 6p21 and 17q22. Nature Genetics, 13, 464–468.CrossRefPubMedGoogle Scholar
  187. Saxena, R., Voight, B. F., Lyssenko, V., Burtt, N. P., de Bakker, P. I., Chen, H., et al. (2007). Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science, 316, 1331–1336.CrossRefPubMedGoogle Scholar
  188. Schumacher, J., Jamra, R. A., Freudenberg, J., Becker, T., Ohlraun, S., Otte, A. C., et al. (2004). Examination of G72 and D-amino-acid oxidase as genetic risk factors for schizophrenia and bipolar affective disorder. Molecular Psychiatry, 9, 203–207.CrossRefPubMedGoogle Scholar
  189. Schwab, S. G., Albus, M., Hallmayer, J., Honig, S., Borrmann, M., Lichtermann, D., et al. (1995). Evaluation of a susceptibility gene for schizophrenia on chromosome 6p by multipoint affected sib-pair linkage analysis. Nature Genetics, 11, 325–327.CrossRefPubMedGoogle Scholar
  190. Schwab, S. G., Hoefgen, B., Hanses, C., Hassenbach, M. B., Albus, M., Lerer, B., et al. (2005). Further evidence for association of variants in the AKT1 gene with schizophrenia in a sample of European sib-pair families. Biological Psychiatry, 58, 446–450.CrossRefPubMedGoogle Scholar
  191. Schwab, S. G., Knapp, M., Mondabon, S., Hallmayer, J., Borrmann-Hassenbach, M., Albus, M., et al. (2003). Support for association of schizophrenia with genetic variation in the 6p22.3 gene, dysbindin, in sib-pair families with linkage and in an additional sample of triad families. American Journal of Human Genetics, 72, 185–190.CrossRefPubMedGoogle Scholar
  192. Schwab, S. G., Knapp, M., Sklar, P., Eckstein, G. N., Sewekow, C., Borrmann-Hassenbach, M., et al. (2006). Evidence for association of DNA sequence variants in the phosphatidylinositol-4-phosphate 5-kinase IIalpha gene (PIP5K2A) with schizophrenia. Molecular Psychiatry, 11, 837–846.CrossRefPubMedGoogle Scholar
  193. Scott, L. J., Mohlke, K. L., Bonnycastle, L. L., Willer, C. J., Li, Y., Duren, W. L., et al. (2007). A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science, 316, 1341–1345.CrossRefPubMedGoogle Scholar
  194. Sebat, J., Lakshmi, B., Malhotra, D., Troge, J., Lese-Martin, C., Walsh, T., et al. (2007). Strong association of de novo copy number mutations with autism. Science, 316, 445–449.CrossRefPubMedGoogle Scholar
  195. Sebat, J., Lakshmi, B., Troge, J., Alexander, J., Young, J., Lundin, P., et al. (2004). Large-scale copy number polymorphism in the human genome. Science, 305, 525–528.CrossRefPubMedGoogle Scholar
  196. Shaw, S. H., Kelly, M., Smith, A. B., Shields, G., Hopkins, P. J., Loftus, J., et al. (1998). A genome-wide search for schizophrenia susceptibility genes. American Journal of Medical Genetics, 81, 364–376.CrossRefPubMedGoogle Scholar
  197. Shi, J., Badner, J. A., Gershon, E. S., & Liu, C. (2008). Allelic association of G72/G30 with schizophrenia and bipolar disorder: A comprehensive meta-analysis. Schizophrenia Research, 98, 89–97.CrossRefPubMedGoogle Scholar
  198. Shi, J., Levinson, D. F., Duan, J., Sanders, A. R., Zheng, Y., Pe’er, I., et al. (2009). Common variants on chromosome 6p22.1 are associated with schizophrenia. Nature, 460, 753–757.PubMedGoogle Scholar
  199. Shifman, S., Bronstein, M., Sternfeld, M., Pisante-Shalom, A., Lev-Lehman, E., Weizman, A., et al. (2002). A highly significant association between a COMT haplotype and schizophrenia. American Journal of Human Genetics, 71, 1296–1302.CrossRefPubMedGoogle Scholar
  200. Shin, H. D., Park, B. L., Kim, E. M., Lee, S. O., Cheong, H. S., Lee, C. H., et al. (2007). Association analysis of G72/G30 polymorphisms with schizophrenia in the Korean population. Schizophrenia Research, 96, 119–124.CrossRefPubMedGoogle Scholar
  201. Shinkai, T., De Luca, V., Hwang, R., Muller, D. J., Lanktree, M., Zai, G., et al. (2007). Association analyses of the DAOA/G30 and D-amino-acid oxidase genes in schizophrenia: Further evidence for a role in schizophrenia. Neuromolecular Medicine, 9, 169–177.CrossRefPubMedGoogle Scholar
  202. Silberberg, G., Darvasi, A., Pinkas-Kramarski, R., & Navon, R. (2006). The involvement of ErbB4 with schizophrenia: Association and expression studies. American Journal of Medical Genetics. Part B: Neuropsychiatric Genetics, 141B, 142–148.CrossRefGoogle Scholar
  203. Sladek, R., Rocheleau, G., Rung, J., Dina, C., Shen, L., Serre, D., et al. (2007). A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature, 445, 881–885.CrossRefPubMedGoogle Scholar
  204. So, H. C., Chen, R. Y., Chen, E. Y., Cheung, E. F., Li, T., & Sham, P. C. (2008). An association study of RGS4 polymorphisms with clinical phenotypes of schizophrenia in a Chinese population. American Journal of Medical Genetics. Part B: Neuropsychiatric Genetics, 147B, 77–85.CrossRefGoogle Scholar
  205. Sobell, J. L., Richard, C., Wirshing, D. A., & Heston, L. L. (2005). Failure to confirm association between RGS4 haplotypes and schizophrenia in Caucasians. American Journal of Medical Genetics. Part B: Neuropsychiatric Genetics, 139, 23–27.CrossRefGoogle Scholar
  206. Song, W., Li, W., Feng, J., Heston, L. L., Scaringe, W. A., & Sommer, S. S. (2008). Identification of high risk DISC1 structural variants with a 2% attributable risk for schizophrenia. Biochemical and Biophysical Research Communications, 367, 700–706.CrossRefPubMedGoogle Scholar
  207. Spielman, R. S., & Ewens, W. J. (1996). The TDT and other family-based tests for linkage disequilibrium and association. American Journal of Human Genetics, 59, 983–989.PubMedGoogle Scholar
  208. St Clair, D., Blackwood, D., Muir, W., Carothers, A., Walker, M., Spowart, G., et al. (1990). Association within a family of a balanced autosomal translocation with major mental illness. Lancet, 336, 13–16.CrossRefPubMedGoogle Scholar
  209. St Clair, D., Xu, M., Wang, P., Yu, Y., Fang, Y., Zhang, F., et al. (2005). Rates of adult schizophrenia following prenatal exposure to the Chinese famine of 1959-1961. JAMA., 294, 557–562.CrossRefPubMedGoogle Scholar
  210. Stefansson, H., Ophoff, R. A., Steinberg, S., Andreassen, O. A., Cichon, S., Rujescu, D., et al. (2009). Common variants conferring risk of schizophrenia. Nature, 460, 744–747.PubMedGoogle Scholar
  211. Stefansson, H., Rujescu, D., Cichon, S., Pietilainen, O. P., Ingason, A., Steinberg, S., et al. (2008). Large recurrent microdeletions associated with schizophrenia. Nature, 455, 232–236.CrossRefPubMedGoogle Scholar
  212. Stefansson, H., Sarginson, J., Kong, A., Yates, P., Steinthorsdottir, V., Gudfinnsson, E., et al. (2003). Association of neuregulin 1 with schizophrenia confirmed in a Scottish population. American Journal of Human Genetics, 72, 83–87.CrossRefPubMedGoogle Scholar
  213. Stefansson, H., Sigurdsson, E., Steinthorsdottir, V., Bjornsdottir, S., Sigmundsson, T., Ghosh, S., et al. (2002). Neuregulin 1 and susceptibility to schizophrenia. American Journal of Human Genetics, 71, 877–892.CrossRefPubMedGoogle Scholar
  214. Steinthorsdottir, V., Thorleifsson, G., Reynisdottir, I., Benediktsson, R., Jonsdottir, T., Walters, G. B., et al. (2007). A variant in CDKAL1 influences insulin response and risk of type 2 diabetes. Nature Genetics, 39, 770–775.CrossRefPubMedGoogle Scholar
  215. Straub, R. E., Jiang, Y., MacLean, C. J., Ma, Y., Webb, B. T., Myakishev, M. V., et al. (2002). Genetic variation in the 6p22.3 gene DTNBP1, the human ortholog of mouse dysbindin, is associated with schizophrenia. American Journal of Human Genetics, 71, 337–348.CrossRefPubMedGoogle Scholar
  216. Straub, R. E., MacLean, C. J., O’Neill, F. A., Burke, J., Murphy, B., Duke, F., et al. (1995). A potential vulnerability locus for schizophrenia on chromosome 6p24-22: Evidence for genetic heterogeneity. Nature Genetics, 11, 287–293.CrossRefPubMedGoogle Scholar
  217. Sullivan, P. F. (2005). The genetics of schizophrenia. PLoS Medicine, 2, e212.CrossRefPubMedGoogle Scholar
  218. Sullivan, P. F., Kendler, K. S., & Neale, M. C. (2003). Schizophrenia as a complex trait: Evidence from a meta-analysis of twin studies. Archives of General Psychiatry, 60, 1187–1192.CrossRefPubMedGoogle Scholar
  219. Sullivan, P. F., Lin, D., Tzeng, J. Y., van den Oord, E., Perkins, D., Stroup, T. S., et al. (2008). Genomewide association for schizophrenia in the CATIE study: Results of stage 1. Molecular Psychiatry, 13, 570–584.CrossRefPubMedGoogle Scholar
  220. Sun, S., Wang, F., Wei, J., Cao, L. Y., Wu, G. Y., Lu, L., et al. (2008). Association between interleukin-3 receptor alpha polymorphism and schizophrenia in the Chinese population. Neuroscience Letters, 440, 35–37.CrossRefPubMedGoogle Scholar
  221. Susser, E. S., & Lin, S. P. (1992). Schizophrenia after prenatal exposure to the Dutch Hunger Winter of 1944-1945. Archives of General Psychiatry, 49, 983–988.CrossRefPubMedGoogle Scholar
  222. Szeszko, P. R., Hodgkinson, C. A., Robinson, D. G., DeRosse, P., Bilder, R. M., Lencz, T., et al. (2008). DISC1 is associated with prefrontal cortical gray matter and positive symptoms in schizophrenia. Biological Psychology, 79, 103–110.CrossRefPubMedGoogle Scholar
  223. Takeshita, M., Yamada, K., Hattori, E., Iwayama, Y., Toyota, T., Iwata, Y., et al. (2008). Genetic examination of the PLXNA2 gene in Japanese and Chinese people with schizophrenia. Schizophrenia Research, 99, 359–364.CrossRefPubMedGoogle Scholar
  224. Talbot, K., Eidem, W. L., Tinsley, C. L., Benson, M. A., Thompson, E. W., Smith, R. J., et al. (2004). Dysbindin-1 is reduced in intrinsic, glutamatergic terminals of the hippocampal formation in schizophrenia. The Journal of Clinical Investigation, 113, 1353–1363.PubMedGoogle Scholar
  225. Talkowski, M. E., Seltman, H., Bassett, A. S., Brzustowicz, L. M., Chen, X., Chowdari, K. V., et al. (2006). Evaluation of a susceptibility gene for schizophrenia: Genotype based meta-analysis of RGS4 polymorphisms from thirteen independent samples. Biological Psychiatry, 60, 152–162.CrossRefPubMedGoogle Scholar
  226. Tang, J. X., Chen, W. Y., He, G., Zhou, J., Gu, N. F., Feng, G. Y., et al. (2004). Polymorphisms within 5′ end of the Neuregulin 1 gene are genetically associated with schizophrenia in the Chinese population. Molecular Psychiatry, 9, 11–12.CrossRefPubMedGoogle Scholar
  227. Tang, J. X., Zhou, J., Fan, J. B., Li, X. W., Shi, Y. Y., Gu, N. F., et al. (2003). Family-based association study of DTNBP1 in 6p22.3 and schizophrenia. Molecular Psychiatry, 8, 717–718.CrossRefPubMedGoogle Scholar
  228. Thiselton, D. L., Vladimirov, V. I., Kuo, P. H., McClay, J., Wormley, B., Fanous, A., et al. (2008). AKT1 is associated with schizophrenia across multiple symptom dimensions in the Irish study of high density schizophrenia families. Biological Psychiatry, 63, 449–457.CrossRefPubMedGoogle Scholar
  229. Thiselton, D. L., Webb, B. T., Neale, B. M., Ribble, R. C., O’Neill, F. A., Walsh, D., et al. (2004). No evidence for linkage or association of neuregulin-1 (NRG1) with disease in the Irish study of high-density schizophrenia families (ISHDSF). Molecular Psychiatry, 9, 777–783.CrossRefPubMedGoogle Scholar
  230. Thomson, P. A., Christoforou, A., Morris, S. W., Adie, E., Pickard, B. S., Porteous, D. J., et al. (2007). Association of neuregulin 1 with schizophrenia and bipolar disorder in a second cohort from the Scottish population. Molecular Psychiatry, 12, 94–104.CrossRefPubMedGoogle Scholar
  231. Thomson, P. A., Wray, N. R., Millar, J. K., Evans, K. L., Hellard, S. L., Condie, A., et al. (2005). Association between the TRAX/DISC locus and both bipolar disorder and schizophrenia in the Scottish population. Molecular Psychiatry, 10(657–668), 616.CrossRefGoogle Scholar
  232. Tienari, P. (1991). Interaction between genetic vulnerability and family environment: The Finnish adoptive family study of schizophrenia. Acta Psychiatrica Scandinavica, 84, 460–465.CrossRefPubMedGoogle Scholar
  233. Tienari, P., Wynne, L. C., Sorri, A., Lahti, I., Laksy, K., Moring, J., et al. (2004). Genotype-environment interaction in schizophrenia-spectrum disorder. Long-term follow-up study of Finnish adoptees. British Journal of Psychiatry, 184, 216–222.CrossRefPubMedGoogle Scholar
  234. Tochigi, M., Zhang, X., Ohashi, J., Hibino, H., Otowa, T., Rogers, M., et al. (2006). Association study of the dysbindin (DTNBP1) gene in schizophrenia from the Japanese population. Neuroscience Research, 56, 154–158.CrossRefPubMedGoogle Scholar
  235. Tosato, S., Dazzan, P., & Collier, D. (2005). Association between the neuregulin 1 gene and schizophrenia: A systematic review. Schizophrenia Bulletin, 31, 613–617.CrossRefPubMedGoogle Scholar
  236. Tosato, S., Ruggeri, M., Bonetto, C., Bertani, M., Marrella, G., Lasalvia, A., et al. (2007). Association study of dysbindin gene with clinical and outcome measures in a representative cohort of Italian schizophrenic patients. American Journal of Medical Genetics. Part B: Neuropsychiatric Genetics, 144B, 647–659.CrossRefGoogle Scholar
  237. Tsuang, D. W., Skol, A. D., Faraone, S. V., Bingham, S., Young, K. A., Prabhudesai, S., et al. (2001). Examination of genetic linkage of chromosome 15 to schizophrenia in a large Veterans Affairs Cooperative Study sample. American Journal of Medical Genetics, 105, 662–668.CrossRefPubMedGoogle Scholar
  238. Turunen, J. A., Peltonen, J. O., Pietilainen, O. P., Hennah, W., Loukola, A., Paunio, T., et al. (2007). The role of DTNBP1, NRG1, and AKT1 in the genetics of schizophrenia in Finland. Schizophrenia Research, 91, 27–36.CrossRefPubMedGoogle Scholar
  239. Tuzun, E., Sharp, A. J., Bailey, J. A., Kaul, R., Morrison, V. A., Pertz, L. M., et al. (2005). Fine-scale structural variation of the human genome. Nature Genetics, 37, 727–732.CrossRefPubMedGoogle Scholar
  240. Van Den Bogaert, A., Schumacher, J., Schulze, T. G., Otte, A. C., Ohlraun, S., Kovalenko, S., et al. (2003). The DTNBP1 (dysbindin) gene contributes to schizophrenia, depending on family history of the disease. American Journal of Human Genetics, 73, 1438–1443.CrossRefGoogle Scholar
  241. van den Oord, E., Sullivan, P. F., Chen, X., Kendler, K. S., & Riley, B. (2003). Identification of a high risk haplotype for the dystrobrevin binding protein 1 (DTNBP1) gene in the Irish study of high density schizophrenia families. Molecular Psychiatry, 8, 499–510.CrossRefPubMedGoogle Scholar
  242. Vilella, E., Costas, J., Sanjuan, J., Guitart, M., De, D. Y., Carracedo, A., et al. (2007). Association of schizophrenia with DTNBP1 but not with DAO, DAOA, NRG1 and RGS4 nor their genetic interaction. Journal of Psychiatric Research, 42, 278–288. doi:10.1016/j.jpsychires.2007.02.005.CrossRefPubMedGoogle Scholar
  243. Vionnet, N., Hani, E., Dupont, S., Gallina, S., Francke, S., Dotte, S., et al. (2000). Genomewide search for type 2 diabetes-susceptibility genes in French whites: Evidence for a novel susceptibility locus for early-onset diabetes on chromosome 3q27-qter and independent replication of a type 2-diabetes locus on chromosome 1q21-q24. American Journal of Human Genetics, 67, 1470–1480.CrossRefPubMedGoogle Scholar
  244. Vladimirov, V., Thiselton, D. L., Kuo, P. H., McClay, J., Fanous, A., Wormley, B., et al. (2007). A region of 35 kb containing the trace amine associate receptor 6 (TAAR6) gene is associated with schizophrenia in the Irish study of high-density schizophrenia families. Molecular Psychiatry, 12, 842–853.CrossRefPubMedGoogle Scholar
  245. Walsh, T., McClellan, J. M., McCarthy, S. E., Addington, A. M., Pierce, S. B., Cooper, G. M., et al. (2008). Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science, 320, 539–543.CrossRefPubMedGoogle Scholar
  246. Walss-Bass, C., Raventos, H., Montero, A. P., Armas, R., Dassori, A., Contreras, S., et al. (2006). Association analyses of the neuregulin 1 gene with schizophrenia and manic psychosis in a Hispanic population. Acta Psychiatrica Scandinavica, 113, 314–321.CrossRefPubMedGoogle Scholar
  247. Wang, X., He, G., Gu, N., Yang, J., Tang, J., Chen, Q., et al. (2004). Association of G72/G30 with schizophrenia in the Chinese population. Biochemical and Biophysical Research Communications, 319, 1281–1286.CrossRefPubMedGoogle Scholar
  248. Weickert, C. S., Straub, R. E., McClintock, B. W., Matsumoto, M., Hashimoto, R., Hyde, T. M., et al. (2004). Human dysbindin (DTNBP1) gene expression in normal brain and in schizophrenic prefrontal cortex and midbrain. Archives of General Psychiatry, 61, 544–555.CrossRefPubMedGoogle Scholar
  249. Williams, H. J., Owen, M. J., & O’Donovan, M. C. (2007). Is COMT a susceptibility gene for schizophrenia? Schizophrenia Bulletin, 33, 635–641.CrossRefPubMedGoogle Scholar
  250. Williams, N. M., Preece, A., Morris, D. W., Spurlock, G., Bray, N. J., Stephens, M., et al. (2004). Identification in 2 independent samples of a novel schizophrenia risk haplotype of the dystrobrevin binding protein gene (DTNBP1). Archives of General Psychiatry, 61, 336–344.CrossRefPubMedGoogle Scholar
  251. Williams, N. M., Preece, A., Spurlock, G., Norton, N., Williams, H. J., McCreadie, R. G., et al. (2004). Support for RGS4 as a susceptibility gene for schizophrenia. Biological Psychiatry, 55, 192–195.CrossRefPubMedGoogle Scholar
  252. Williams, N. M., Preece, A., Spurlock, G., Norton, N., Williams, H. J., Zammit, S., et al. (2003). Support for genetic variation in neuregulin 1 and susceptibility to schizophrenia. Molecular Psychiatry, 8, 485–487.CrossRefPubMedGoogle Scholar
  253. Wiltshire, S., Hattersley, A. T., Hitman, G. A., Walker, M., Levy, J. C., Sampson, M., et al. (2001). A genomewide scan for loci predisposing to type 2 diabetes in a U.K. population (the Diabetes UK Warren 2 Repository): Analysis of 573 pedigrees provides independent replication of a susceptibility locus on chromosome 1q. American Journal of Human Genetics, 69, 553–569.CrossRefPubMedGoogle Scholar
  254. Wood, L. S., Pickering, E. H., & Dechairo, B. M. (2007). Significant support for DAO as a schizophrenia susceptibility locus: Examination of five genes putatively associated with schizophrenia. Biological Psychiatry, 61, 1195–1199.CrossRefPubMedGoogle Scholar
  255. Xu, J., Pato, M. T., Torre, C. D., Medeiros, H., Carvalho, C., Basile, V. S., et al. (2001). Evidence for linkage disequilibrium between the alpha 7-nicotinic receptor gene (CHRNA7) locus and schizophrenia in Azorean families. American Journal of Medical Genetics, 105, 669–674.CrossRefPubMedGoogle Scholar
  256. Xu, B., Roos, J. L., Levy, S., van Rensburg, E. J., Gogos, J. A., & Karayiorgou, M. (2008). Strong association of de novo copy number mutations with sporadic schizophrenia. Nature Genetics, 40, 880–885.CrossRefPubMedGoogle Scholar
  257. Xu, M. Q., Xing, Q. H., Zheng, Y. L., Li, S., Gao, J. J., He, G., et al. (2007). Association of AKT1 gene polymorphisms with risk of schizophrenia and with response to antipsychotics in the Chinese population. The Journal of Clinical Psychiatry, 68, 1358–1367.CrossRefPubMedGoogle Scholar
  258. Yang, J. Z., Si, T. M., Ruan, Y., Ling, Y. S., Han, Y. H., Wang, X. L., et al. (2003). Association study of neuregulin 1 gene with schizophrenia. Molecular Psychiatry, 8, 706–709.CrossRefPubMedGoogle Scholar
  259. Yue, W., Liu, Z., Kang, G., Yan, J., Tang, F., Ruan, Y., et al. (2006). Association of G72/G30 polymorphisms with early-onset and male schizophrenia. NeuroReport, 17, 1899–1902.CrossRefPubMedGoogle Scholar
  260. Zeggini, E., Weedon, M. N., Lindgren, C. M., Frayling, T. M., Elliott, K. S., Lango, H., et al. (2007). Replication of genome-wide association signals in U.K. samples reveals risk loci for type 2 diabetes. Science, 316, 1336–1341.CrossRefPubMedGoogle Scholar
  261. Zhang, F., Sarginson, J., Crombie, C., Walker, N., St Clair, D., & Shaw, D. (2006). Genetic association between schizophrenia and the DISC1 gene in the Scottish population. American Journal of Medical Genetics. Part B: Neuropsychiatric Genetics, 141, 155–159.CrossRefGoogle Scholar
  262. Zhang, F., St Clair, D., Liu, X., Sun, X., Sham, P. C., Crombie, C., et al. (2005). Association analysis of the RGS4 gene in Han Chinese and Scottish populations with schizophrenia. Genes, Brain, and Behavior, 4, 444–448.CrossRefPubMedGoogle Scholar
  263. Zhang, X., Tochigi, M., Ohashi, J., Maeda, K., Kato, T., Okazaki, Y., et al. (2005). Association study of the DISC1/TRAX locus with schizophrenia in a Japanese population. Schizophrenia Research, 79, 175–180.CrossRefPubMedGoogle Scholar
  264. Zhao, X., Leotta, A., Kustanovich, V., Lajonchere, C., Geschwind, D. H., Law, K., et al. (2007). A unified genetic theory for sporadic and inherited autism. Proceedings of the National Academy of Sciences of the United States of America, 104, 12831–12836.CrossRefPubMedGoogle Scholar
  265. Zhao, X., Shi, Y., Tang, J., Tang, R., Yu, L., Gu, N., et al. (2004). A case control and family based association study of the neuregulin1 gene and schizophrenia. Journal of Medical Genetics, 41, 31–34.CrossRefPubMedGoogle Scholar
  266. Zou, F., Li, C., Duan, S., Zheng, Y., Gu, N., Feng, G., et al. (2005). A family-based study of the association between the G72/G30 genes and schizophrenia in the Chinese population. Schizophrenia Research, 73, 257–261.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Departments of Psychiatry and Human & Molecular Genetics, and Virginia Institute for Psychiatric and Behavioral GeneticsVirginia Commonwealth UniversityRichmondUSA

Personalised recommendations