Skip to main content

Genome-Wide Expression Profiles of Amygdala and Hippocampus in Mice After Fear Conditioning

  • Chapter
  • First Online:
Genomics, Proteomics, and the Nervous System

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 2))

  • 965 Accesses

Abstract

The amygdala and hippocampus are known to be involved in the formation of fear conditioning memories, and both contextual and cued fear memory requires activation of the NMDA receptors. However, the global molecular responses to fear conditioning in the amygdala and hippocampus are still poorly understood. We have systematically analyzed the gene expression profiles in these two brain regions of mice after fear conditioning treatment using high-density microarrays containing 11,000 genes and expressed sequence tags. A total of 222 genes in the amygdala and 145 genes in the hippocampus exhibit dynamic changes in their expression levels. The overall patterns of gene expression as well as the individual genes are drastically different in amygdala and hippocampus. However, a number of genes display similar regulatory responses in both brain regions. Based on the expression kinetics, the genes can be further grouped into eight and six unique clusters in amygdale and hippocampus, respectively. Our gene expression analysis demonstrates that different genomic responses are initiated in the amygdala and hippocampus, two brain regions that play distinct roles in associative memory formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AMPA:

Amino-3-hydroxy-5-methyl-4-isoxalone propionic acid

APP:

Amyloid precursor protein

ARF:

ADP-ribosylation factor

CaMKII:

Calcium-calmodulin-kinase II

CCT:

Chaperonin-containing TCP

CS:

Conditioned stimulus

Cx30:

Connexin-30

ESTs:

Expressed sequence tags

FXR1:

Fragile-X-related gene 1

GABA:

Gamma-aminobutyric acid

GABARAP:

GABA receptor-associated protein

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

GluR1:

Glutamate receptor 1

IAP:

Integrin-associated protein

KLC1:

Kinesin light chain 1

MAP:

Microtubule-associated protein

MOBP:

Myelin-associated oligodendrocytic basic protein

NF1:

Neurofibromatosis type 1

NMDA:

N-methyl-d-aspartate

NP25:

Neuronal protein 25

NSG1:

Neuron-specific gene family member 1

OSP:

Oligodendrocyte-specific protein

PIP5K:

Phosphatidylinositol-4-phosphate-5-kinase

PKC:

Protein kinase C

PLD:

Phospholipase D

PLP:

Proteolipid protein

PP:

Protein phosphatases

PP1:

Protein phosphatases 1

PP2A:

Protein phosphatases 2A

Stat3:

Signal transducer and activator of transcription

US:

Unconditioned stimulus

VAMP:

Vesicle-associated membrane protein

References

  • Abeliovich, A., Paylor, R., Chen, C., Kim, J. J., Wehner, J. M., & Tonegawa, S. (1993). PKCγ mutant mice exhibit mild deficits in spatial and contextual learning. Cell, 75, 1263–1271.

    Article  PubMed  CAS  Google Scholar 

  • Aggleton, J. P. (2000). The amygdala: A functional analysis. Oxford: Oxford University Press.

    Google Scholar 

  • Anagnostaras, S. G., Maren, S., & Fanselow, M. S. (1999). Temporally graded retrograde amnesia of contextual fear after hippocampal damage in rats: Within-subjects examination. The Journal of Neuroscience, 19, 1106–1114.

    PubMed  CAS  Google Scholar 

  • Antoniadis, E., & McDonald, R. (2001). Amygdala, hippocampus, and unconditioned fear. Experimental Brain Research, 138, 200–209.

    Article  CAS  Google Scholar 

  • Blair, H. T., Schafe, G. E., Bauer, E. P., Rodrigues, S. M., & LeDoux, J. E. (2001). Synaptic plasticity in the lateral amygdala: A cellular hypothesis of fear conditioning. Learning & Memory, 8, 229–242.

    Article  CAS  Google Scholar 

  • Bourtchuladze, R., Frenguelli, B., Blendy, J., Cioffi, D., Schutz, G., & Silva, A. J. (1994). Deficient long-term memory in mice with a targeted mutation of the camp-responsive element-binding protein. Cell, 79, 59–68.

    Article  PubMed  CAS  Google Scholar 

  • Bronstein, J. M., Popper, P., Micevych, P. E., & Farber, D. B. (1996). Isolation and characterization of a novel oligodendrocyte-specific protein. Neurology, 47, 772–778.

    Article  PubMed  CAS  Google Scholar 

  • Carroll, R. C., Beattie, E. C., von Zastrow, M., & Malenka, R. C. (2001). Role of AMPA receptor endocytosis in synaptic plasticity. Nature Reviews. Neuroscience, 2, 315–324.

    Article  PubMed  CAS  Google Scholar 

  • Chen, L., Wang, H., Vicini, S., & Olsen, R. W. (2000). The γ-aminobutyric acid type A (GABAA) receptor-associated protein (GABARAP) promotes GABAA receptor clustering and modulates the channel kinetics. Proceedings of the National Academy of Sciences of the United States of America, 97, 11557–11562.

    Article  PubMed  CAS  Google Scholar 

  • Cirelli, C., & Tononi, G. (1999). Differences in gene expression during sleep and wakefulness. Annals of Medicine, 31, 117–124.

    Article  PubMed  CAS  Google Scholar 

  • Couve, A., Kittler, J. T., Uren, J. M., Calver, A. R., Pangalos, M. N., Walsh, F. S., et al. (2001). Association of GABAB receptors and members of the 14-3-3 family of signaling proteins. Molecular and Cellular Neurosciences, 17, 317–328.

    Article  PubMed  CAS  Google Scholar 

  • Davis, M. (1997). Neurobiology of fear responses: The role of the amygdala. The Journal of Neuropsychiatry and Clinical Neurosciences, 9, 382–402.

    PubMed  CAS  Google Scholar 

  • Eisen, M. B., Spellman, P. T., Brown, P. O., & Botstein, D. (1998). Cluster analysis and display of genome-wide expression patterns. Proceedings of the National Academy of Sciences of the United States of America, 95, 14863–14868.

    Article  PubMed  CAS  Google Scholar 

  • Falls, W. A., Miserendino, M. J., & Davis, M. (1992). Extinction of fear-potentiated startle: Blockade by infusion of an NMDA antagonist into the amygdala. The Journal of Neuroscience, 12, 854–863.

    PubMed  CAS  Google Scholar 

  • Fanselow, M. S. (1994). Neural organization of the defensive behavior system responsible for fear. Psychonomic Bulletin & Review, 1, 429–438.

    Article  Google Scholar 

  • Fanselow, M. S., & LeDoux, J. E. (1999). Why we think plasticity underlying Pavlovian fear conditioning occurs in the basolateral amygdala. Neuron, 23, 229–232.

    Article  PubMed  CAS  Google Scholar 

  • Faundez, V., Horng, J.-T., & Kelly, R. B. (1997). ADP ribosylation factor 1 is required for ­synaptic vesicle budding in PC12 cells. The Journal of Cell Biology, 138, 505–515.

    Article  PubMed  CAS  Google Scholar 

  • Fendt, M., & Fanselow, M. S. (1999). The neuroanatomical and neurochemical basis of ­conditioned fear. Neuroscience and Biobehavioral Reviews, 23, 743–760.

    Article  PubMed  CAS  Google Scholar 

  • Frankland, P. W., Cestari, V., Filipkowski, R. K., McDonald, R. J., & Silva, A. (1998). The dorsal hippocampus is essential for context discrimination, but not for contextual conditioning. Behavioral Neuroscience, 112, 863–874.

    Article  PubMed  CAS  Google Scholar 

  • Gale, G. D., Anagnostaras, S. G., Godsil, B. P., Mitchell, S., Nozawa, T., Sage, J. R., et al. (2004). Role of the basolateral amygdala in the storage of fear memories across the adult lifetime of rats. The Journal of Neuroscience, 24, 3810–3815.

    Article  PubMed  CAS  Google Scholar 

  • Guo, H.-F., Tong, J., Hannan, F., Luo, L., & Zhong, Y. (2000). A neurofibromatosis-1-regulated pathway is required for learning in drosophila. Nature, 403, 895–898.

    Article  PubMed  CAS  Google Scholar 

  • Hakak, Y., Walker, J. R., Li, C., Wong, W. H., Davis, K. L., Buxbaum, J. D., et al. (2001). Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, 98, 4746–4751.

    Article  PubMed  CAS  Google Scholar 

  • Ho, L., Guo, Y., Spielman, L., Petrescu, O., Haroutunian, V., Purohit, D., et al. (2001). Altered expression of a-type but not b-type synapsin isoform in the brain of patients at high risk for Alzheimer’s disease assessed by DNA microarray technique. Neuroscience Letters, 298, 191–194.

    Article  PubMed  CAS  Google Scholar 

  • Hosack, D., Dennis, G., Sherman, B., Lane, H., & Lempicki, R. (2003). Identifying biological themes within lists of genes with EASE. Genome Biology, 4, R70.

    Article  PubMed  Google Scholar 

  • Hu, Y., & Tsien, J. Z. (2002). Functional genomics: profiling the brain and cognition with DNA microarrays. Applied Genomics and Proteomics, 1(4), 219–226.

    CAS  Google Scholar 

  • Huerta, P. T., Sun, L. D., Wilson, M. A., & Tonegawa, S. (2000). Formation of temporal memory requires NMDA receptors within CA1 pyramidal neurons. Neuron, 25, 473–480.

    Article  PubMed  CAS  Google Scholar 

  • Jiang, C. H., Tsien, J. Z., Schultz, P. G., & Hu, Y. (2001). The effects of aging on gene expression in the hypothalamus and cortex of mice. Proceedings of the National Academy of Sciences of the United States of America, 98, 1930–1934.

    Article  PubMed  CAS  Google Scholar 

  • Jolles, J., Bothmer, J., Markerink, M., & Ravid, R. (1992). Phosphatidylinositol kinase is reduced in Alzheimer’s disease. Journal of Neurochemistry, 58, 2326–2329.

    Article  PubMed  CAS  Google Scholar 

  • Kim, J. J., & Fanselow, M. S. (1992). Modality-specific retrograde amnesia of fear. Science, 256, 675–677.

    Article  PubMed  CAS  Google Scholar 

  • Kim, J. J., & Jung, M. W. (2006). Neural circuits and mechanisms involved in Pavlovian fear conditioning: A critical review. Neuroscience and Biobehavioral Reviews, 30, 188–202.

    Article  PubMed  Google Scholar 

  • LeDoux, J. E. (2000). Emotion circuits in the brain. Annual Review of Neuroscience, 23, 155–184.

    Article  PubMed  CAS  Google Scholar 

  • Lee, M.-L. T., Kuo, F. C., Whitmore, G. A., & Sklar, J. (2000). Importance of replication in microarray gene expression studies: Statistical methods and evidence from repetitive cDNA hybridizations. Proceedings of the National Academy of Sciences of the United States of America, 97, 9834–9839.

    Article  PubMed  CAS  Google Scholar 

  • Li, X. F., Stutzmann, G. E., & LeDoux, J. E. (1996). Convergent but temporally separated inputs to lateral amygdala neurons from the auditory thalamus and auditory cortex use different ­postsynaptic receptors: In vivo intracellular and extracellular recordings in fear conditioning pathways. Learning & Memory, 3, 229–242.

    Article  CAS  Google Scholar 

  • Lipshutz, R. J., Fodor, S. P. A., Gingeras, T. R., & Lockhart, D. J. (1999). High density synthetic oligonucleotide arrays. Nature Genetics, 21, 20–24.

    Article  PubMed  CAS  Google Scholar 

  • Lisman, J. E., & Zhabotinsky, A. M. (2001). A model of synaptic memory: A CaMKII/PP1 switch that potentiates transmission by organizing an AMPA receptor anchoring assembly. Neuron, 31, 191–201.

    Article  PubMed  CAS  Google Scholar 

  • Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods, 25, 402–408.

    Article  PubMed  CAS  Google Scholar 

  • Livesey, F. J., Furukawa, T., Steffen, M. A., Church, G. M., & Cepko, C. L. (2000). Microarray analysis of the transcriptional network controlled by the photoreceptor homeobox gene Crx. Current Biology, 10, 301–310.

    Article  PubMed  CAS  Google Scholar 

  • Llorca, O., Martin-Benito, J., Grantham, J., Ritco-Vonsovici, M., Willison, K. R., Carrascosa, J. L., et al. (2001). The “sequential allosteric ring” mechanism in the eukaryotic chaperonin-assisted folding of actin and tubulin. The EMBO Journal, 20, 4065–4075.

    Article  PubMed  CAS  Google Scholar 

  • Lockhart, D. J., Dong, H., Byrne, M. C., Follettie, M. T., Gallo, M. V., Chee, M. S., et al. (1996). Expression monitoring by hybridization to high-density oligonucleotide arrays. Nature Biotechnology, 14, 1675–1680.

    Article  PubMed  CAS  Google Scholar 

  • Luo, Z., & Geschwind, D. H. (2001). Microarray applications in neuroscience. Neurobiology of Disease, 8, 183–193.

    Article  PubMed  CAS  Google Scholar 

  • Malinow, R., & Malenka, R. C. (2002). AMPA receptor trafficking and synaptic plasticity. Annual Review of Neuroscience, 25, 103–126.

    Article  PubMed  CAS  Google Scholar 

  • Maren, S. (2001). Neurobiology of pavlovian fear conditioning. Annual Review of Neuroscience, 24, 897–931.

    Article  PubMed  CAS  Google Scholar 

  • Maren, S., Aharonov, G., & Fanselow, M. S. (1997). Neurotoxic lesions of the dorsal hippocampus and pavlovian fear conditioning in rats. Behavioural Brain Research, 88, 261–274.

    Article  PubMed  CAS  Google Scholar 

  • McCallion, A. S., Stewart, G. J., Montague, P., Griffiths, I. R., & Davies, R. W. (1999). Splicing pattern, transcript start distribution, and DNA sequence of the mouse gene (mobp) encoding myelin-associated oligodendrocytic basic protein. Molecular and Cellular Neurosciences, 13, 229–236.

    Article  PubMed  CAS  Google Scholar 

  • McKernan, M. G., & Shinnick-Gallagher, P. (1997). Fear conditioning induces a lasting potentiation of synaptic currents in vitro. Nature, 390, 607–611.

    Article  PubMed  CAS  Google Scholar 

  • Mei, B., Li, C., Dong, S., Jiang, C. H., Wang, H., & Hu, Y. (2005). Distinct gene expression profiles in hippocampus and amygdala after fear conditioning. Brain Research Bulletin, 67, 1–12.

    Article  PubMed  CAS  Google Scholar 

  • Menet, V., Gimenez, Y., Ribotta, M., Chauvet, N., Drian, M. J., Lannoy, J., et al. (2001). Inactivation of the glial fibrillary acidic protein gene, but not that of vimentin, improves ­neuronal survival and neurite growth by modifying adhesion molecule expression. The Journal of Neuroscience, 21, 6147–6158.

    PubMed  CAS  Google Scholar 

  • Mody, M., Cao, Y., Cui, Z., Tay, K.-Y., Shyong, A., Shimizu, E., et al. (2001). Genome-wide gene expression profiles of the developing mouse hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 98, 8862–8867.

    Article  PubMed  CAS  Google Scholar 

  • Mulkey, R. M., Endo, S., Shenolikar, S., & Malenka, R. C. (1994). Involvement of a calcineurin/inhibitor-1 phosphatase cascade in hippocampal long-term depression. Nature, 369, 486–488.

    Article  PubMed  CAS  Google Scholar 

  • Nisenbaum, L. K. (2002). The ultimate chip shot: Can microarray technology deliver for neuroscience? Genes, Brain, and Behavior, 1, 27–34.

    Article  PubMed  CAS  Google Scholar 

  • Oude Weernink, P. A., Schmidt, M., & Jakobs, K. H. (2004). Regulation and cellular roles of phosphoinositide 5-kinases. European Journal of Pharmacology, 500, 87–99.

    Article  PubMed  CAS  Google Scholar 

  • Paradee, W., Melikian, H. E., Rasmussen, D. L., Kenneson, A., Conn, P. J., & Warren, S. T. (1999). Fragile X mouse: Strain effects of knockout phenotype and evidence suggesting ­deficient amygdala function. Neuroscience, 94, 185–192.

    Article  PubMed  CAS  Google Scholar 

  • Pare, D., Quirk, G. J., & Ledoux, J. E. (2004). New vistas on amygdala networks in conditioned fear. Journal of Neurophysiology, 92, 1–9.

    Article  PubMed  Google Scholar 

  • Pavlov, I. P. (1927). Conditioned reflexes: An investigation of the physiological activity of the cerebral cortex. London: Oxford University Press.

    Google Scholar 

  • Phillips, R. G., & LeDoux, J. E. (1992). Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behavioral Neuroscience, 106, 274–285.

    Article  PubMed  CAS  Google Scholar 

  • Pongrac, J., Middleton, F. A., Lewis, D. A., Levitt, P., & Mirnics, K. (2002). Gene expression profiling with DNA microarrays: Advancing our understanding of psychiatric disorders. Neurochemical Research, 27, 1049–1063.

    Article  PubMed  CAS  Google Scholar 

  • Rampon, C., Jiang, C. H., Dong, H., Tang, Y.-P., Lockhart, D. J., Schultz, P. G., et al. (2000). Effects of environmental enrichment on gene expression in the brain. Proceedings of the National Academy of Sciences of the United States of America, 97, 12880–12884.

    Article  PubMed  CAS  Google Scholar 

  • Rash, J. E., Yasumura, T., Dudek, F. E., & Nagy, J. I. (2001). Cell-specific expression of ­connexins and evidence of restricted gap junctional coupling between glial cells and between neurons. The Journal of Neuroscience, 21, 1983–2000.

    PubMed  CAS  Google Scholar 

  • Robinson, S. R. (2000). Neuronal expression of glutamine synthetase in Alzheimer’s disease indicates a profound impairment of metabolic interactions with astrocytes. Neurochemistry International, 36, 471–482.

    Article  PubMed  CAS  Google Scholar 

  • Rodrigues, S. M., Schafe, G. E., & LeDoux, J. E. (2001). Intra-amygdala blockade of the NR2B subunit of the NMDA receptor disrupts the acquisition but not the expression of fear ­conditioning. The Journal of Neuroscience, 21, 6889–6896.

    PubMed  CAS  Google Scholar 

  • Rodrigues, S. M., Schafe, G. E., & LeDoux, J. E. (2004). Molecular mechanisms underlying emotional learning and memory in the lateral amygdala. Neuron, 44, 75–91.

    Article  PubMed  CAS  Google Scholar 

  • Rogan, M. T., Staubli, U. V., & LeDoux, J. E. (1997). Fear conditioning induces associative long-term potentiation in the amygdala. Nature, 390, 604–607.

    Article  PubMed  CAS  Google Scholar 

  • Rosis, S., Johnson, L. R., & LeDoux, J. E. (2003). gabaa receptors contribute to synaptic integration in lateral amygdala neurons. Program No. 623.2. 2003 Abstract Viewer/Itinerary Planner. Washington, DC: Society for Neuroscience. (http://www.sfn.org/index.cfm?pagename=abstracts_archive&task=view&controlID=10796&year=2003&CFID=5270238&CFTOKEN=82264079&jsessionid=b430adb20d7a27561761)

  • Sandberg, R., Yasuda, R., Pankratz, D. G., Carter, T. A., Del Rio, J. A., Wodicka, L., et al. (2000). Regional and strain-specific gene expression mapping in the adult mouse brain. Proceedings of the National Academy of Sciences of the United States of America, 97, 11038–11043.

    Article  PubMed  CAS  Google Scholar 

  • Sara, S. J. (2000). Retrieval and reconsolidation: Toward a neurobiology of remembering. Learning & Memory, 7, 73–84.

    Article  CAS  Google Scholar 

  • Scales, S. J., & Scheller, R. H. (1999). Cell biology: Lipid membranes shape up. Nature, 401, 123–124.

    Article  PubMed  CAS  Google Scholar 

  • Schena, M., Shalon, D., Davis, R. W., & Brown, P. O. (1995). Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 270, 467–470.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, A., Wolde, M., Thiele, C., Fest, W., Kratzin, H., Podtelejnikov, A. V., et al. (1999). Endophilin I mediates synaptic vesicle formation by transfer of arachidonate to lysophosphatidic acid. Nature, 401, 133–141.

    Article  PubMed  CAS  Google Scholar 

  • Selden, N. R. W., Everitt, B. J., Jarrard, L. E., & Robbins, T. W. (1991). Complementary roles for the amygdala and hippocampus in aversive conditioning to explicit and contextual cues. Neuroscience, 42, 335–350.

    Article  PubMed  CAS  Google Scholar 

  • Silva, A. J., Frankland, P. W., Marowitz, Z., Friedman, E., Lazlo, G., Cioffi, D., et al. (1997).A mouse model for the learning and memory deficits associated with neurofibromatosis type I. Nature Genetics, 15, 281–284.

    Article  PubMed  CAS  Google Scholar 

  • Singer, W. D., Brown, A. H. A., & Sternweis, P. C. (1997). Regulation of eukaryotic phosphatidylinositol-specific phospholipase C and phospholipase D. Annual Review of Biochemistry, 66, 475–509.

    Article  PubMed  CAS  Google Scholar 

  • Skoulakis, E. M. C., & Davis, R. L. (1996). Olfactory learning deficits in mutants for leonardo, a Drosophila gene encoding a 14-3-3 protein. Neuron, 17, 931–944.

    Article  PubMed  CAS  Google Scholar 

  • Strack, S., Barban, M. A., Wadzinski, B. E., & Colbran, R. J. (1997). Differential inactivation of postsynaptic density-associated and soluble Ca2+/calmodulin-dependent protein kinase II by protein phosphatases 1 and 2a. Journal of Neurochemistry, 68, 2119–2128.

    Article  PubMed  CAS  Google Scholar 

  • Tang, Y.-P., Shimizu, E., Dube, G. R., Rampon, C., Kerchner, G. A., Zhuo, M., et al. (1999). Genetic enhancement of learning and memory in mice. Nature, 401, 63–69.

    Article  PubMed  CAS  Google Scholar 

  • Thibault, C., Lai, C., Wilke, N., Duong, B., Olive, M. F., Rahman, S., et al. (2000). Expression profiling of neural cells reveals specific patterns of ethanol-responsive gene expression. Molecular Pharmacology, 58, 1593–1600.

    PubMed  CAS  Google Scholar 

  • Tsien, J. Z. (2000). Linking hebb’s coincidence-detection to memory formation. Current Opinion in Neurobiology, 10, 266–273.

    Article  PubMed  CAS  Google Scholar 

  • Tsien, J. Z., Huerta, P. T., & Tonegawa, S. (1996). The essential role of hippocampal CA1 NMDA receptor-dependent synaptic plasticity in spatial memory. Cell, 87, 1327–1338.

    Article  PubMed  CAS  Google Scholar 

  • Ullian, E. M., Sapperstein, S. K., Christopherson, K. S., & Barres, B. A. (2001). Control of ­synapse number by glia. Science, 291, 657–661.

    Article  PubMed  CAS  Google Scholar 

  • Van Dam, D., D’Hooge, R., Hauben, E., Reyniers, E., Gantois, I., Bakker, C. E., et al. (2000). Spatial learning, contextual fear conditioning and conditioned emotional response in FMR1 knockout mice. Behavioural Brain Research, 117, 127–136.

    Article  PubMed  Google Scholar 

  • van Rossum, D., & Hanisch, U.-K. (1999). Cytoskeletal dynamics in dendritic spines: Direct modulation by glutamate receptors? Trends in Neurosciences, 22, 290–295.

    Article  PubMed  Google Scholar 

  • Wada, R., Tifft, C. J., & Proia, R. L. (2000). Microglial activation precedes acute neurodegeneration in sandhoff disease and is suppressed by bone marrow transplantation. Proceedings of the National Academy of Sciences of the United States of America, 97, 10954–10959.

    Article  PubMed  CAS  Google Scholar 

  • Walker, D. L., & Davis, M. (2002). The role of amygdala glutamate receptors in fear learning, fear-potentiated startle, and extinction. Pharmacology, Biochemistry and Behavior, 71, 379–392.

    Article  CAS  Google Scholar 

  • Wang, H., Bedford, F. K., Brandon, N. J., Moss, S. J., & Olsen, R. W. (1999). GABAA-receptor-associated protein links GABAA receptors and the cytoskeleton. Nature, 397, 69–72.

    Article  PubMed  CAS  Google Scholar 

  • Wang, K., Gan, L., Jeffery, E., Gayle, M., Gown, A. M., Skelly, M., et al. (1999). Monitoring gene expression profile changes in ovarian carcinomas using cDNA microarray. Gene, 229, 101–108.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Y., Barbacioru, C., Hyland, F., Xiao, W., Hunkapiller, K., Blake, J., et al. (2006). Large scale real-time PCR validation on gene expression measurements from two commercial long-oligonucleotide microarrays. BMC Genomics, 7, 59.

    Article  PubMed  Google Scholar 

  • Watson, J. B., & Rayner, R. (1920). Conditioned emotional reactions. Journal of Experimental Psychology, 3, 1–14. (http://en.wikipedia.org/wiki/Little_Albert_experiment).

    Article  Google Scholar 

  • Windoffer, R., Borchert-Stuhlträger, M., Haass, N. K., Thomas, S., Hergt, M., Bulitta, C. J., et al. (1999). Tissue expression of the vesicle protein pantophysin. Cell and Tissue Research, 296, 499–510.

    Article  PubMed  CAS  Google Scholar 

  • Yool, D. A., Klugmann, M., McLaughlin, M., Vouyiouklis, D. A., Dimou, L., Barrie, J. A., et al. (2001). Myelin proteolipid proteins promote the interaction of oligodendrocytes and axons. Journal of Neuroscience Research, 63, 151–164.

    Article  PubMed  CAS  Google Scholar 

  • Yoshikawa, T., Nagasugi, Y., Azuma, T., Kato, M., Sugano, S., Hashimoto, K., et al. (2000). Isolation of novel mouse genes differentially expressed in brain using cDNA microarray. Biochemical and Biophysical Research Communications, 275, 532–537.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from the Shanghai Municipal Education Commission and the Ministry of Science and Technology of China (2003AA221061), and grants from the Science and Technology Commission of Shanghai Municipality (05PJ14044 and 06DZ19002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinghe Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Zhao, Z., Hu, Y. (2011). Genome-Wide Expression Profiles of Amygdala and Hippocampus in Mice After Fear Conditioning. In: Clelland, J. (eds) Genomics, Proteomics, and the Nervous System. Advances in Neurobiology, vol 2. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7197-5_12

Download citation

Publish with us

Policies and ethics