Skip to main content

Functional Genomic Dissection of Speech and Language Disorders

  • Chapter
  • First Online:
Genomics, Proteomics, and the Nervous System

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 2))

Abstract

Mutations of the human FOXP2 gene have been shown to cause severe difficulties in learning to make coordinated sequences of articulatory gestures that underlie speech (developmental verbal dyspraxia or DVD). Affected individuals are impaired in multiple aspects of expressive and receptive linguistic processing and ­display abnormal grey matter volume and functional activation patterns in cortical and subcortical brain regions. The protein encoded by FOXP2 belongs to a divergent subgroup of forkhead-box transcription factors, with a distinctive DNA-binding domain and motifs that mediate hetero- and homodimerization. This chapter describes the successful use of FOXP2 as a unique molecular window into neurogenetic pathways that are important for speech and language development, adopting several complementary strategies. These include direct functional investigations of FOXP2 splice variants and the effects of etiological mutations. FOXP2’s role as a transcription factor also enabled the development of functional genomic routes for dissecting neurogenetic mechanisms that may be relevant for speech and language. By identifying downstream target genes regulated by FOXP2, it was possible to identify common regulatory themes in modulating synaptic plasticity, neurodevelopment, and axon guidance. These targets represent novel entrypoints into in vivo pathways that may be disturbed in speech and language disorders. The identification of FOXP2 target genes has also led to the discovery of a shared neurogenetic pathway between clinically distinct language disorders; the rare Mendelian form of DVD and a complex and more common form of language ­disorder known as Specific Language Impairment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ASD:

Autism spectrum disorder

CFDE:

Cortical dysplasia–focal epilepsy

ChIP:

Chromatin-immunoprecipitation

DVD:

Developmental verbal dyspraxia

EMSA:

Electrophoretic mobility shift assay

FOX:

Forkhead-box

NLS:

Nuclear localisation signal

SLI:

Specific language impairment

References

  • Aboitiz, F., & Garcia, V. R. (1997). The evolutionary origin of the language areas in the human brain. A neuroanatomical perspective. Brain Research Brain Research Reviews, 25(3), 381–396.

    Article  PubMed  CAS  Google Scholar 

  • Abrahams, B. S., & Geschwind, D. H. (2008). Advances in autism genetics: On the threshold of a new neurobiology. Nature Reviews Genetics, 9(5), 341–355.

    Article  PubMed  CAS  Google Scholar 

  • Abrahams, B. S., Tentler, D., Perederiy, J. V., Oldham, M. C., Coppola G., & Geschwind D. H. (2007). Genome-wide analyses of human perisylvian cerebral cortical patterning. Proc Natl Acad Sci U S A, 104(45), 17849–17854.

    Article  PubMed  CAS  Google Scholar 

  • Alarcon, M., Abrahams, B. S., Stone, J. L., Duvall, J. A., Perederiy, J. V., Bomar, J. M., et al. (2008). Linkage, association, and gene-expression analyses identify CNTNAP2 as an autism-susceptibility gene. Am J Hum Genet, 82(1), 150–159.

    Article  PubMed  CAS  Google Scholar 

  • Alarcon, M., Cantor, R. M., Liu, J., Gilliam T. C., & Geschwind D. H. (2002). Evidence for a language quantitative trait locus on chromosome 7q in multiplex autism families. Am J Hum Genet, 70(1), 60–71.

    Article  PubMed  CAS  Google Scholar 

  • Bartlett, C. W., Flax, J. F., Logue, M. W., Smith, B. J., Vieland, V. J., Tallal, P., et al. (2004). Examination of potential overlap in autism and language loci on chromosomes 2, 7, and 13 in two independent samples ascertained for specific language impairment. Hum Hered, 57(1),10–20.

    Article  PubMed  Google Scholar 

  • Bartlett, C. W., Flax, J. F., Logue, M. W., Vieland, V. J., Bassett, A. S., Tallal, P., et al. (2002). A major susceptibility locus for specific language impairment is located on 13q21. Am J Hum Genet, 71(1), 45–55.

    Article  PubMed  CAS  Google Scholar 

  • Belton, E., Salmond, C. H., Watkins, K. E., Vargha-Khadem, F., & Gadian, D. G. (2003). Bilateral brain abnormalities associated with dominantly inherited verbal and orofacial dyspraxia. Hum Brain Mapp, 18(3), 194–200.

    Article  PubMed  Google Scholar 

  • Bennett, C. L., Christie, J., Ramsdell, F., Brunkow, M. E., Ferguson, P. J., Whitesell, L., et al. (2001). The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet 27(1), 20–21.

    Article  PubMed  CAS  Google Scholar 

  • Berry, F. B., Saleem, R. A., & Walter, M. A. (2002). FOXC1 transcriptional regulation is mediated by N- and C-terminal activation domains and contains a phosphorylated transcriptional inhibitory domain. J Biol Chem, 277(12), 10292–10297.

    Article  PubMed  CAS  Google Scholar 

  • Berry, F. B., Tamimi, Y., Carle, M. V., Lehmann, O. J., & Walter, M. A. (2005). The establishment of a predictive mutational model of the forkhead domain through the analyses of FOXC2 missense mutations identified in patients with hereditary lymphedema with distichiasis. Hum Mol Genet, 14(18), 2619–2627.

    Article  PubMed  CAS  Google Scholar 

  • Bird, A. J., Blankman, E., Stillman, D. J., Eide, D. J., & Winge, D. R. (2004). The Zap1 transcriptional activator also acts as a repressor by binding downstream of the TATA box in ZRT2. Embo J, 23(5), 1123–1132.

    Article  PubMed  CAS  Google Scholar 

  • Birney, E., Stamatoyannopoulos, J. A., Dutta, A., Guigo, R., Gingeras, T. R., Margulies, E. H., et al. (2007). Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project.Nature, 447(7146), 799–816.

    Article  PubMed  CAS  Google Scholar 

  • Bishop, D. V., North, T., & Donlan, C. (1995). Genetic basis of specific language impairment: evidence from a twin study. Dev Med Child Neurol, 37(1), 56–71.

    Article  PubMed  CAS  Google Scholar 

  • Bruce, H. A., & Margolis, R. L. (2002). FOXP2: novel exons, splice variants, and CAG repeat length stability. Hum Genet, 111(2), 136–144.

    Article  PubMed  CAS  Google Scholar 

  • Cawley, S., Bekiranov, S., Ng, H. H., Kapranov, P., Sekinger, E. A., Kampa, D., et al. (2004). Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs. Cell, 116(4), 499–509.

    Article  PubMed  CAS  Google Scholar 

  • Crosson, B. (1985). Subcortical functions in language: a working model. Brain Lang, 25(2), 257–292.

    Article  PubMed  CAS  Google Scholar 

  • Doupe, A. J., & Kuhl, P. K. (1999). Birdsong and human speech: common themes and mechanisms. Annu Rev Neurosci, 22, 567–631.

    Article  PubMed  CAS  Google Scholar 

  • Enard, W., Przeworski, M., Fisher, S. E., Lai, C. S., Wiebe, V., Kitano, T., et al. (2002). Molecular evolution of FOXP2, a gene involved in speech and language. Nature, 418(6900), 869–872.

    Article  PubMed  CAS  Google Scholar 

  • Ferland, R. J., Cherry, T. J., Preware, P. O., Morrisey, E. E., & Walsh, C. A. (2003). Characterization of Foxp2 and Foxp1 mRNA and protein in the developing and mature brain. J Comp Neurol, 460(2), 266–279.

    Article  PubMed  CAS  Google Scholar 

  • Feuk, L., Kalervo, A., Lipsanen-Nyman, M., Skaug, J., Nakabayashi, K., Finucane, B., et al. (2006). Absence of a Paternally Inherited FOXP2 Gene in Developmental Verbal Dyspraxia. Am J Hum Genet, 79(5), 965–972.

    Article  PubMed  CAS  Google Scholar 

  • Fisher, S. E., & Marcus, G. F. (2006). The eloquent ape: genes, brains and the evolution of language. Nature Reviews Genetics, 7(1), 9–20.

    Article  PubMed  CAS  Google Scholar 

  • Fisher, S. E., & Scharff, C. (2009). FOXP2 as a molecular window into speech and language. Trends in Genetics, 25(4), 166–177.

    Article  PubMed  CAS  Google Scholar 

  • Fisher, S. E., Lai C. S., & Monaco, A. P. (2003). Deciphering the genetic basis of speech and language disorders. Annu Rev Neurosci, 26, 57–80.

    Article  PubMed  CAS  Google Scholar 

  • Fisher, S. E., Vargha-Khadem, F., Watkins, K. E., Monaco, A. P., & Pembrey, M. E. (1998). Localisation of a gene implicated in a severe speech and language disorder. Nat Genet, 18(2), 168–170.

    Article  PubMed  CAS  Google Scholar 

  • Friedman, J. I., Vrijenhoek, T., et al. (2008). CNTNAP2 gene dosage variation is associated with schizophrenia and epilepsy. Mol Psychiatry, 13(3), 261–266.

    Article  PubMed  CAS  Google Scholar 

  • Gaudet, J., & Mango, S. E. (2002). Regulation of organogenesis by the Caenorhabditis elegans FoxA protein PHA-4. Science 295(5556), 821–825.

    Google Scholar 

  • Geschwind, D. H., & Levitt, P. (2007). Autism spectrum disorders: developmental disconnection syndromes. Curr Opin Neurobiol, 17(1), 103–111.

    Article  PubMed  CAS  Google Scholar 

  • Gopnik, M., & Crago, M. B. (1991). Familial aggregation of a developmental language disorder. Cognition, 39(1), 1–50.

    Article  PubMed  CAS  Google Scholar 

  • Groszer, M., Keays, D. A., Deacon, R. M., de Bono, J. P., Prasad-Mulcare, S., Gaub, S., et al. (2008). Impaired synaptic plasticity and motor learning in mice with a point mutation implicated in human speech deficits. Curr Biol, 18(5), 354–362.

    Article  PubMed  CAS  Google Scholar 

  • Haesler, S., Rochefort, C., Georgi, B., Licznerski, P., Osten, P., & Scharff, C. (2007). Incomplete and inaccurate vocal imitation after knockdown of FoxP2 in songbird basal ganglia nucleus Area X. PLoS Biol, 5(12), e321.

    Article  PubMed  Google Scholar 

  • Hurst, J. A., Baraitser, M., Auger, E., Graham, F., & Norell, S. (1990). An extended family with a dominantly inherited speech disorder. Dev Med Child Neurol, 32(4), 352–355.

    Article  PubMed  CAS  Google Scholar 

  • Impey, S., McCorkle, S. R., Cha-Molstad, H., Dwyer, J. M., Yochum, G. S., Boss, J. M.. et al. (2004). Defining the CREB regulon: a genome-wide analysis of transcription factor regulatory regions. Cell, 119(7), 1041–1054.

    PubMed  CAS  Google Scholar 

  • Inda, M. C., DeFelipe, J., & Munoz, A. (2006). Voltage-gated ion channels in the axon initial segment of human cortical pyramidal cells and their relationship with chandelier cells. Proc Natl Acad Sci U S A, 103(8), 2920–2925.

    PubMed  CAS  Google Scholar 

  • Jacobs, F. M., van der Heide, L. P., Wijchers, P. J., Burbach, J. P., Hoekman, M. F., & Smidt, M. P. (2003). FoxO6, a novel member of the FoxO class of transcription factors with distinct shuttling dynamics. J Biol Chem, 278(38), 35959–35967.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, D. S., Mortazavi, A., Myers, R. M., & Wold, B. (2007). Genome-wide mapping of in vivo protein-DNA interactions. Science, 316(5830), 1497–1502.

    Article  PubMed  CAS  Google Scholar 

  • Kaestner, K. H., Knochel, W., & Martinez, D. E. (2000). Unified nomenclature for the winged helix/forkhead transcription factors. Genes Dev, 14(2), 142–146.

    PubMed  CAS  Google Scholar 

  • Katoh, M., & Katoh, M. (2004). Human FOX gene family (review). Int J Oncol, 25(5), 1495–1500.

    PubMed  CAS  Google Scholar 

  • Kim, T. H., & Ren, B. (2006). Genome-wide analysis of protein-DNA interactions. Annu Rev Genomics Hum Genet, 7, 81–102.

    Article  PubMed  Google Scholar 

  • Kimura, K., Wakamatsu, A., Suzuki, Y., Ota, T., Nishikawa, T., Yamashita, R., et al. (2006). Diversification of transcriptional modulation: large-scale identification and characterization of putative alternative promoters of human genes. Genome Res, 16(1), 55–65.

    Article  PubMed  CAS  Google Scholar 

  • Kopito, R. R. (2000). Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol, 10(12), 524–530.

    Article  PubMed  CAS  Google Scholar 

  • Lahey, M., & Edwards, J. (1995). Specific language impairment: Preliminary investigation of factors associated with family history and with patterns of language performance. Journal of Speech Hear Res, 38(3), 643–657.

    PubMed  CAS  Google Scholar 

  • Lai, C. S., Fisher, S. E., Hurst, J. A., Levy, E. R., Hodgson, S., Fox, M., et al. (2000). The SPCH1 region on human 7q31: genomic characterization of the critical interval and localization of translocations associated with speech and language disorder. Am J Hum Genet, 67(2), 357–368.

    Article  PubMed  CAS  Google Scholar 

  • Lai, C. S., Fisher, S. E., Hurst, J. A., Vargha-Khadem, F., & Monaco, A. P. (2001). A forkhead-domain gene is mutated in a severe speech and language disorder. Nature, 413(6855), 519–523.

    Article  PubMed  CAS  Google Scholar 

  • Lai, C. S., Gerrelli, D., Monaco, A. P., Fisher, S. E., & Copp, A. J. (2003). FOXP2 expression during brain development coincides with adult sites of pathology in a severe speech and language disorder. Brain, 126(Pt 11), 2455–2462.

    Article  PubMed  Google Scholar 

  • Lee, T. I., Johnstone, S. E. & Young, R. A. (2006). Chromatin immunoprecipitation and microarray-based analysis of protein location. Nat Protoc, 1(2): 729–748.

    Article  PubMed  CAS  Google Scholar 

  • Lehmann, O. J., Sowden, J. C., Carlsson, P. Jordan, T., & Bhattacharya, S. S. (2003). Fox’s in development and disease. Trends Genet, 19(6), 339–344.

    Article  PubMed  CAS  Google Scholar 

  • Lennon, P. A., Cooper, M. L., Peiffer, D. A., Gunderson, K. L., Patel, A., Peters, S., et al. (2007). Deletion of 7q31.1 supports involvement of FOXP2 in language impairment: clinical report and review. Am J Med Genet A, 143A(8), 791–798.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, B. A., Ekelman, B. L., & Aram, D. M., (1989). A familial study of severe phonological disorders. J Speech Hear Res, 32(4), 713–724.

    PubMed  CAS  Google Scholar 

  • Lewis, B. A., & Thompson, L. A. (1992). A study of developmental speech and language disorders in twins. J Speech Hear Res, 35(5), 1086–1094.

    PubMed  CAS  Google Scholar 

  • Li, S., Weidenfeld, J., & Morrisey, E. E. (2004). Transcriptional and DNA binding activity of the Foxp1/2/4 family is modulated by heterotypic and homotypic protein interactions. Mol Cell Biol, 24(2), 809–822.

    Article  PubMed  CAS  Google Scholar 

  • Liegeois, F., Baldeweg, T., Connelly, A., Gadian, D. G., Mishkin, M., & Vargha-Khadem, F. (2003). Language fMRI abnormalities associated with FOXP2 gene mutation. Nat Neurosci, 6(11), 1230–1237.

    Article  PubMed  CAS  Google Scholar 

  • Lu, M. M., Li, S., Yang, H., & Morrisey, E. E. (2002). Foxp4: a novel member of the Foxp subfamily of winged-helix genes co-expressed with Foxp1 and Foxp2 in pulmonary and gut tissues. Gene Expr Patterns, 2(3–4), 223–228.

    Article  PubMed  CAS  Google Scholar 

  • MacDermot, K. D., Bonora, E., Sykes, N., Coupe, A. M., Lai, C. S., Vernes, S. C., et al. (2005). Identification of FOXP2 truncation as a novel cause of developmental speech and language deficits. Am J Hum Genet, 76(6), 1074–1080.

    Article  PubMed  CAS  Google Scholar 

  • Marson, A., Kretschmer, K., Frampton, G. M., Jacobsen, E. S. Polansky, J. K., Macisaac, K. D., et al. (2007). Foxp3 occupancy and regulation of key target genes during T-cell stimulation. Nature, 445(7130), 931–935.

    Article  PubMed  CAS  Google Scholar 

  • Mikkelsen, T. S., Ku, M., Jaffe, D. B., Issac, B., Lieberman, E., Giannoukos, G., et al. (2007). Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature, 448(7153), 553–560.

    Article  PubMed  CAS  Google Scholar 

  • Mizutani, A., Matsuzaki, A., Momoi, M. Y., Fujita, E., Tanabe, Y., & Momoi, T. (2007). Intracellular distribution of a speech/language disorder associated FOXP2 mutant. Biochem Biophys Res Commun, 353(4), 869–874.

    Article  PubMed  CAS  Google Scholar 

  • Nakahata, S., & Kawamoto, S. (2005). Tissue-dependent isoforms of mammalian Fox-1 homologs are associated with tissue-specific splicing activities. Nucleic Acids Research, 33(7), 2078–2089.

    Article  PubMed  CAS  Google Scholar 

  • Neils, J., & Aram, D. M. (1986). Family history of children with developmental language disorders. Perceptual and Motor Skills, 63(2 Pt 1), 655–658.

    Article  PubMed  CAS  Google Scholar 

  • Newbury, D. F., Bonora, E., Lamb, J. A., Fisher, S. E., Lai, C. S., Baird, G., et al. (2002). FOXP2 is not a major susceptibility gene for autism or specific language impairment. Am J Hum Genet, 70(5), 1318–13127.

    Article  PubMed  CAS  Google Scholar 

  • Oberley, M. J., Tsao, J., Yau, P., & Farnham, P. J. (2004). High-throughput screening of chromatin immunoprecipitates using CpG-island microarrays. Methods Enzymol, 376, 315–334.

    Article  PubMed  CAS  Google Scholar 

  • Ojemann, G. A. (1991). Cortical organization of language. J Neurosci, 11(8), 2281–2287.

    PubMed  CAS  Google Scholar 

  • Poliak, S., & Peles, E. (2003). The local differentiation of myelinated axons at nodes of Ranvier. Nat Rev Neurosci, 4(12), 968–980.

    Article  PubMed  CAS  Google Scholar 

  • Poliak, S., Salomon, D., Elhanany, H., Sabanay, H., Kiernan, B., Pevny, L., et al. (2003). Juxtaparanodal clustering of Shaker-like K+ channels in myelinated axons depends on Caspr2 and TAG-1. J Cell Biol, 162(6), 1149–1160.

    Article  PubMed  CAS  Google Scholar 

  • Price, C. J. (2000). The anatomy of language: Contributions from functional neuroimaging. J Anat, 197(Pt 3), 335–359.

    Article  PubMed  Google Scholar 

  • Rasband, M. N. (2004). It’s “juxta” potassium channel! J Neurosci Res, 76(6), 749–757.

    Article  PubMed  CAS  Google Scholar 

  • Saleem, R. A., Banerjee-Basu, S., Berry, F. B., Baxevanis, A. D., & Walter, M. A., (2001). Analyses of the effects that disease-causing missense mutations have on the structure and function of the winged-helix protein FOXC1. Am J Hum Genet, 68(3), 627–641.

    Article  PubMed  CAS  Google Scholar 

  • Saleem, R. A., Banerjee-Basu, S., Berry, F. B., Baxevanis, A. D., & Walter, M. A. (2003). Structural and functional analyses of disease-causing missense mutations in the forkhead domain of FOXC1. Hum Mol Genet, 12(22), 2993–3005.

    Article  PubMed  CAS  Google Scholar 

  • Schroeder, D. I., & Myers, R. M. (2008). Multiple transcription start sites for FOXP2 with varying cellular specificities. Gene, 413(1–2), 42–48.

    Article  PubMed  CAS  Google Scholar 

  • Schubert, L. A., Jeffery, E., Zhang, Y., Ramsdell, F., & Ziegler, S. F. (2001). Scurfin (FOXP3) acts as a repressor of transcription and regulates T cell activation. J Biol Chem, 276(40), 37672–37679.

    Article  PubMed  CAS  Google Scholar 

  • Shu, W., Yang, H., Zhang, L., Lu, M. M., & Morrisey, E. E. (2001). Characterization of a new subfamily of winged-helix/forkhead (Fox) genes that are expressed in the lung and act as transcriptional repressors. J Biol Chem, 276(29), 27488–27497.

    Article  PubMed  CAS  Google Scholar 

  • SLIConsortium. (2002). A genomewide scan identifies two novel loci involved in specific language impairment. Am J Hum Genet, 70(2), 384–398.

    Article  Google Scholar 

  • Spiteri, E., Konopka, G., Coppola, G., Bomar, J., Oldham, M., Ou, J., et al. (2007). Identification of the Transcriptional Targets of FOXP2, a Gene Linked to Speech and Language, in Developing Human Brain. Am J Hum Genet, 81(6), 1144–1157.

    Article  PubMed  CAS  Google Scholar 

  • Strauss, K. A., Puffenberger, E. G., Huentelman, M. J., Gottlieb, S., Dobrin, S. E., Parod, J. M., et al. (2006). Recessive symptomatic focal epilepsy and mutant contactin-associated protein-like 2. N Engl J Med, 354(13), 1370–1377.

    Article  PubMed  CAS  Google Scholar 

  • Stroud, J. C., Wu, Y., Bates, D. L., Han, A., Nowick, K., Paabo, S., et al. (2006). Structure of the Forkhead Domain of FOXP2 Bound to DNA. Structure, 14(1), 159–166.

    Article  PubMed  CAS  Google Scholar 

  • Sun, Y. M., Greenway, D. J., Johnson, R., Street, M., Belyaev, N. D., Deuchars, J., et al. (2005). Distinct profiles of REST interactions with its target genes at different stages of neuronal development. Mol Biol Cell, 16(12), 5630–5638.

    Article  PubMed  CAS  Google Scholar 

  • Tallal, P., Ross, R., & Curtiss, S. (1989). Familial aggregation in specific language impairment. J Speech Hear Disord, 54(2), 167–173.

    PubMed  CAS  Google Scholar 

  • Tanaka, M., Kim, Y. M., Lee, G., Junn, E., Iwatsubo, T., & Mouradian, M. M. (2004). Aggresomes formed by alpha-synuclein and synphilin-1 are cytoprotective. J Biol Chem, 279(6), 4625–4631.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, J. P., Tanaka, F., Robitschek, J., Sandoval, C. M., Taye, A., Markovic-Plese, S., et al. (2003). Aggresomes protect cells by enhancing the degradation of toxic polyglutamine-containing protein. Hum Mol Genet, 12(7), 749–757.

    Article  PubMed  CAS  Google Scholar 

  • Teufel, A., Wong, E. A., Mukhopadhyay, M., Malik, N., & Westphal, H. (2003). FoxP4, a novel forkhead transcription factor. Biochim Biophys Acta, 1627(2–3), 147–152.

    Article  PubMed  CAS  Google Scholar 

  • Tomblin, J. B. (1989). Familial concentration of developmental language impairment. J Speech Hear Disord, 54(2), 287–295.

    PubMed  CAS  Google Scholar 

  • Tomblin, J. B., & Buckwalter, P. R. (1998). Heritability of poor language achievement among twins. J Speech, Lang Hear Res, 41(1), 188–199.

    PubMed  CAS  Google Scholar 

  • Tomblin, J. B., Records, N. L., Buckwalter, P., Zhang, X., Smith, E., & O’Brien, M. (1997). Prevalence of specific language impairment in kindergarten children. J Speech Lang Hear Res, 40(6), 1245–1260.

    PubMed  CAS  Google Scholar 

  • Traka, M., Goutebroze, L., Denisenko, N., Bessa, M., Nifli, A., Havaki, S., et al. (2003). Association of TAG-1 with Caspr2 is essential for the molecular organization of juxtaparanodal regions of myelinated fibers. J Cell Biol, 162(6), 1161–1172.

    Article  PubMed  CAS  Google Scholar 

  • Trinklein, N. D., Karaoz, U., Wu, J., Halees, A., Force Aldred, S., Collins, P. J., et al. (2007). Integrated analysis of experimental data sets reveals many novel promoters in 1% of the human genome. Genome Res, 17(6), 720–731.

    Article  PubMed  CAS  Google Scholar 

  • Vargha-Khadem, F., Watkins, K., Alcock, K., Fletcher, P., & Passingham, R. (1995). Praxic and nonverbal cognitive deficits in a large family with a genetically transmitted speech and language disorder. Proc Natl Acad Sci U S A, 92(3), 930–933.

    Article  PubMed  CAS  Google Scholar 

  • Vargha-Khadem, F., Watkins, K. E., Price, C. J., Ashburner, J., Alcock, K. J., Connelly, A., et al. (1998). Neural basis of an inherited speech and language disorder. Proc Natl Acad Sci U S A, 95(21), 12695–12700.

    Article  PubMed  CAS  Google Scholar 

  • Verkerk, A. J., Mathews, C. A., Joosse, M., Eussen, B. H., Heutink, P., & Oostra, B. A. (2003). CNTNAP2 is disrupted in a family with Gilles de la Tourette syndrome and obsessive compulsive disorder. Genomics, 82(1), 1–9.

    Article  PubMed  CAS  Google Scholar 

  • Vernes, S. C., Newbury, D. F., Abrahams, B.S., Winchester, L., Nicod, J., Groszer, M., et al. (2008). A functional genetic link between distinct developmental language disorders. N Engl J Med, 359(22), 2337–2345.

    Article  PubMed  CAS  Google Scholar 

  • Vernes, S. C., Nicod, J., Elahi, F. M., Coventry, J. A., Kenny, N., Coupe, A. M., et al. (2006). Functional genetic analysis of mutations implicated in a human speech and language disorder. Hum Mol Genet, 15(21), 3154–3167.

    Article  PubMed  CAS  Google Scholar 

  • Vernes, S. C., Spiteri, E., Nicod, J., Groszer, M., Taylor, J. M., Davies, K. E., et al. (2007). High-Throughput Analysis of Promoter Occupancy Reveals Direct Neural Targets of FOXP2, a Gene Mutated in Speech and Language Disorders. Am J Hum Genet, 81(6), 1232–1250.

    Article  PubMed  CAS  Google Scholar 

  • Wang, B., Lin, D., Li, C., & Tucker, P. (2003). Multiple domains define the expression and regulatory properties of Foxp1 forkhead transcriptional repressors. J Biol Chem, 278(27), 24259–24268.

    Article  PubMed  CAS  Google Scholar 

  • Washburn, B. K., & Esposito, R. E. (2001). Identification of the Sin3-binding site in Ume6 defines a two-step process for conversion of Ume6 from a transcriptional repressor to an activator in yeast. Mol Cell Biol, 21(6), 2057–2069.

    Article  PubMed  CAS  Google Scholar 

  • Watkins, K. E., Dronkers, N. F., & Vargha-Khadem, F. (2002a). Behavioural analysis of an inherited speech and language disorder: comparison with acquired aphasia. Brain 125(Pt3), 452–464.

    Article  PubMed  CAS  Google Scholar 

  • Watkins, K. E., Vargha-Khadem, F., Ashburner, J., Passingham, R. E., Connelly, A., Friston, K. J., et al. (2002b). MRI analysis of an inherited speech and language disorder: structural brain abnormalities. Brain 125(Pt 3), 465–478.

    Article  PubMed  CAS  Google Scholar 

  • Webb, J. L., Ravikumar, B., & Rubinsztein, D. C. (2004). Microtubule disruption inhibits autophagosome-lysosome fusion: implications for studying the roles of aggresomes in polyglutamine diseases. Int J Biochem Cell Biol, 36(12), 2541–2550.

    Article  CAS  Google Scholar 

  • Wei, C. L., Wu, Q., Vega, V. B., Chiu, K. P., Ng, P., Zhang, T., et al. (2006). A global map of p53 transcription-factor binding sites in the human genome. Cell, 124(1), 207–219.

    Article  PubMed  CAS  Google Scholar 

  • Weinmann, A. S., Yan, P. S., Oberley, M. J., Huang, T. H., & Farnham, P. J. (2002). Isolating human transcription factor targets by coupling chromatin immunoprecipitation and CpG island microarray analysis. Genes Dev, 16(2), 235–244.

    Article  PubMed  CAS  Google Scholar 

  • Wu, Y., Borde, M., Heissmeyer, V., Feuerer, M., Lapan, A. D., Stroud, J. C., et al. (2006). FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell 126(2), 375–387.

    Article  PubMed  CAS  Google Scholar 

  • Yuasa, J., Hirano, S., Yamagata, M., & Noda, M. (1996). Visual projection map specified by topographic expression of transcription factors in the retina. Nature, 382(6592), 632–635.

    Article  PubMed  CAS  Google Scholar 

  • Zheng, Y., Josefowicz, S. Z., Kas, A., Chu, T. T., Gavin, M. A., & Rudensky, A. Y. (2007). Genome-wide analysis of Foxp3 target genes in developing and mature regulatory T cells. Nature, 445 (7130), 936–940.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonja C. Vernes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Vernes, S.C., Fisher, S.E. (2011). Functional Genomic Dissection of Speech and Language Disorders. In: Clelland, J. (eds) Genomics, Proteomics, and the Nervous System. Advances in Neurobiology, vol 2. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7197-5_10

Download citation

Publish with us

Policies and ethics