Skip to main content

Toward Nanoscale Chemical Imaging: The Intersection of Scanning Probe Microscopy and Mass Spectrometry

  • Chapter
  • First Online:
  • 1765 Accesses

Abstract

Advances in analytical technology have pushed the limits of our understanding of chemical and physical phenomena as new tools create new opportunities for discovery. The levels of sensitivities and signal-to-noise levels of atmospheric pressure mass spectrometry techniques have increased to the point that the chemical content of nanometer-sized volumes of material can be determined. Advances in scanning probe technology, which have resulted in improved stability and material property determination, make interfacing with mass-spectrometry possible. Innovations in probe technology to couple or focus intense light or heat at the probe tip enable new ways to remove and transfer specific and highly localized material from the sample surface to the mass spectrometer. The marrying of these two previously separate fields of study creates a viable pathway for true nanoscale chemical imaging. This chapter will cover the recent advances in mass spectrometry that can most readily be coupled with ambient scanning probes and discuss the state-of-the-art efforts to combine these techniques.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Teale, W. D.; Paponov, I. A.; Palme, K. “Auxin in action:signaling, transport and the control of plant growth and development.” Nat. Rev. Mol. Cell Biol. 2006, 7, 847–859.

    Article  CAS  Google Scholar 

  2. Ng, C. K. Y.; Carr, K.; McAinsh, M. R.; Powell, B.; Hetherington, A. M. “Drought-induced guard cell signal transduction involves sphingosine-1-phosphate.” Nature 2001, 410, 596–599.

    Article  CAS  Google Scholar 

  3. Becker, J. S.; Zoriy, M.; Becker, J. S.; Pickhardt, C.; Przybylsky, J. “Determination of phosphorus and metal in human brain proteins after isolation be gel electrophoresis by laser ablation inductively coupled plasma source mass spectrometry.” J. Anal. Atom. Spectrom. 2004, 19, 149–152.

    Article  CAS  Google Scholar 

  4. Rasmussen, A.; Deckert, V. “New dimension in nano-imaging:breaking through the diffraction limit with scanning near-field optical microscopy.” Anal. Bioanal. Chem. 2005, 381, 162–172.

    Article  Google Scholar 

  5. Craig, D. Q. M.; Kett, V. L.; Andrews, C. S.; Royall, P. G. “Pharmaceutical applications of micro-thermal analysis.” J. Pharm. Sci. 2002, 91, 1201–1213.

    Article  CAS  Google Scholar 

  6. Winograd, N. “The magic of cluster SIMS.” Anal. Chem. 2005, 77, 142A–149A.

    Article  CAS  Google Scholar 

  7. Todd, P. J.; Schaaff, T. G.; Chaurand, P.; Caprioli, R. M.. “Organic ion imaging of biological tissue with MALDI and SIMS.” J. Mass Spectrom. 2001, 36, 355–369.

    Article  CAS  Google Scholar 

  8. Cornett, D. S.; Reyzer, M. L.; Chaurand, P.; Caprioli, R. M. “MALDI imaging mass spectrometry:molecular snapshots of biochemical systems.” Nat. Methods 2007, 4, 828–833.

    Article  CAS  Google Scholar 

  9. Bennighoven, A.; Rudenuer, F. G.; Werner, H. W. Secondary Ion Mass Spectrometry; John Wiley & Sons:New York, 1987.

    Google Scholar 

  10. Schweiters, J.; Cramer, H.-G.; Heller, T.; Jurgens, U.; Rulle, H. N.; Heller, T.; Zehnpfennig, J. F.; Bennighoven, A. Secondary Ion Mass Spectrometry Proceeding of the Eight International Conference(SIMS VIII). John Wiley & Sons:Chichester, UK, 1992; p. 497.

    Google Scholar 

  11. Horning, E. C.; Horning, M. G.; Carroll, D. I.; Dzidic, I.; Stillwell, R. N. “New pictogram detection system based on a mass spectrometer with an external ionization source at atmospheric pressure.” Anal. Chem. 1973, 45, 936–943.

    Article  CAS  Google Scholar 

  12. Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M. “Electrospray ionization for mass spectrometry of large biomolecules.” Science 1989, 246, 64–71.

    Article  CAS  Google Scholar 

  13. Gray, A. L. “Solid sample introduction by laser ablation for inductively coupled plasma source-mass spectrometry.” Analyst 1985, 110, 551–556.

    Article  CAS  Google Scholar 

  14. Novotny, L.; Stranick, S. J. “Near-field optical microscopy and spectroscopy with pointed probes.” Annu. Rev. Chem. 2006, 57, 303–331.

    Article  CAS  Google Scholar 

  15. Price, D. M.; Reading, M.; Hanniche, A.; Pollock, H. M. “Micro-thermal analysis:scanning thermal microscopy and localized thermal analysis.” Int. J. Pharm. 1999, 192, 85–96.

    Article  CAS  Google Scholar 

  16. Stockle, R.; Setz, P.; Deckert, V.; Lippet, T.; Wokaun, A.; Zenobi, R. “Nanoscale atmospheric pressure laser ablation-mass spectrometry.” Anal. Chem. 2001, 73, 1399–1402.

    Article  CAS  Google Scholar 

  17. Schmitz, T. A.; Gamez, G.; Setz, P. D.; Zhu, L.; Zenobi, R. “Towards nanoscale molecular analysis at atmospheric pressure by near-field laser ablation ion trap/time-of-flight mass spectrometer.” Anal. Chem. 2008, 80, 6537–6544.

    Article  CAS  Google Scholar 

  18. Meyer, K. A.; Ovchinnikova, O.; Ng, K.; Goeringer, D. E. “Development of scanning surface probe for nanoscale tip-enhanced desorption/ablation.” Rev. Sci. Instrum. 2008, 79, 123710.

    Article  Google Scholar 

  19. Bradshaw, J. A.; Ovchinnikova, O. S.; Meyer, K. A.; Goeringer, D. E. “Combined chemical and topographic imaging at atmospheric pressure via microprobe laser desorption/ionization mass spectrometry-atomic force microscopy.” Rapid Commun. Mass Spectrom. 2009, 23, 3781–3786.

    Article  CAS  Google Scholar 

  20. Becker, J. S.; Gordunoff, A.; Zoriy, M.; Izmer, A.; Kayser, M. “Evidence of near-field laser ablation inductively coupled plasma mass spectrometry (NF-LA-ICP-MS) at nanometer scale for elemental and isotopic analysis on gels and biological samples.” J. Anal. Atom. Spectrom. 2006, 21, 19–25.

    Article  CAS  Google Scholar 

  21. Zoriy, M. V.; Kayser, M.; Becker, J. S. “Possibility of nano-local elemental analysis by near-field laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS):New experimental arrangement and first application.” Int. J. Mass Spectrom. 2008, 273, 151–155.

    Article  CAS  Google Scholar 

  22. Price, D. M.; Reading, M.; Smith, R. M.; Pollock, H. M.; Hammiche, A. “Localized evolved gas analysis by micro-thermal analysis.” J. Therm. Anal. Calorim. 2001, 64, 309–314.

    Article  CAS  Google Scholar 

  23. Royall, P. G.; Craig, D. Q. M.; Grandy, D. B. “The use of micro-thermal analysis as a means of in situ characterization of pharmaceutical tablet coatings.” Thermochimica Acta, 2001, 380, 165–173.

    Article  CAS  Google Scholar 

  24. Williams, J. P.; Scrivens, J. H. “Rapid and accurate mass desorption electrospray ionisation tandem mass spectrometry of pharmaceutical samples.” Rapid Commun. Mass Spectrom. 2005, 19, 3643–3650.

    Article  CAS  Google Scholar 

  25. Cooks, R. G.; Gologan, B.; Takats, Z.; Wiseman, J. M.; Cotte-Rodriguez, I. “Method and system for desorption atmospheric pressure chemical ionization.” US Patent Application US2007/0187589A1, August 16, 2007.

    Google Scholar 

  26. Song, Y.; Cooks, R. G. “Atmospheric pressure ion/molecule reactions for the selective detection of nitroaromatic explosives using acetonitrile and air as reagents.” Rapid Commun. Mass Spectrom. 2006, 20, 3130–3138.

    Article  CAS  Google Scholar 

  27. Haapala, M.; Pol, J.; Saarela, V.; Arvola, V.; Kotiaho, T.; Ketola, R. A.; Franssila, S.; Kauppila, T. J.; Kostiainen, R. “Desorption atmospheric pressure photoionization.” Anal. Chem. 2008, 79, 7867–7872.

    Article  Google Scholar 

  28. Van Berkel, G.; Pasilis, S.; Ovchinnikova, O. “Established and emerging atmospheric pressure surface sampling/ionization techniques for mass spectrometry.” J. Mass Spectrom. 2008, 43, 1161–1180.

    Article  CAS  Google Scholar 

  29. Cody, R. B.; Laramée, J. A.; Durst, H. D. “Versatile new ion source for the analysis of materials in open air under ambient conditions.” Anal. Chem. 2005, 77, 2297–2302.

    Article  CAS  Google Scholar 

  30. Bell, K. L.; Dalgarno, A.; Kingston, A. E. “Penning ionization by metastable helium atoms.” J. Phys. B (Proc. Phys. Soc.) 1968, 1, 18–22.

    CAS  Google Scholar 

  31. McEwen, C. N.; Gutteridge, S. “Analysis of the inhibition of the ergosterol pathway in fungi using the atmospheric solids analysis probe (ASAP) method.” J. Am. Soc. Mass Spectrom. 2007, 18, 1274–1278.

    Article  CAS  Google Scholar 

  32. McEwen, C. N.; McKay, R. G.; Larsen, B. S. “Analysis of solids, liquids, and biological tissues using solids probe introduction at atmospheric pressure on commercial LC/MS instruments.” Anal. Chem. 2005, 77, 7826–7831.

    Article  CAS  Google Scholar 

  33. Vastola, F. J.; Mumma, R. O.; Pirone, A. J. “Analysis of organic salts by laser ionization.” Org. Mass Spectrom. 1970, 3, 101–104.

    Article  CAS  Google Scholar 

  34. Gross, J. “Matrix-assisted laser desorption/ionization.” In Mass Spectrometry a Textbook; Springer:Heidelberg, 2004, pp. 411–440.

    Google Scholar 

  35. Gunther, D.; Hattendorf, B. “Solid sample analysis using laser ablation inductively coupled plasma mass spectrometry.” Trends Analyt. Chem. 2005, 24, 255–265.

    Article  Google Scholar 

  36. Mokgalaka, N. S.; Gardea-Torresdey, J. L. Laser ablation inductively coupled plasma mass spectrometry:principles and applications. Appl. Spectrosc. Rev. 2006, 41, 131–150.

    Article  CAS  Google Scholar 

  37. Becker, J. S.; Zoriy, M.; Becker, J. S.; Dobrowolska, J.; Matusch, A. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) in elemental imaging of biological tissues and in proteomicsw. J. Analyt. Atom. Spectrom. 2007, 22, 736–744.

    Article  CAS  Google Scholar 

  38. Zoriy, M. V.; Becker, J. S. “Imaging of elements in thin cross sections of human brain samples by LA-ICP-MS:A study on reproducibility.” Int. J. Mass Spectrom. 2007, 264, (2–3), 175–180.

    CAS  Google Scholar 

  39. Zoriy, M. V.; Dehnhardt, M.; Reifenberger, G.; Zilles, K.; Becker, J. S. “Imaging of Cu, Zn, Pb and U in human brain tumor resections by laser ablation inductively coupled plasma mass spectrometry.” Int. J. Mass Spectrom. 2006, 257, (1–3), 27–33.

    CAS  Google Scholar 

  40. Chery, C. C.; Gunther, D.; Cornelis, R.; Vanhaecke, F.; Moens, L. “Detection of metals in proteins by means of polyacrylamide gel electrophoresis and laser ablation-inductively coupled plasma-mass spectrometry:Application to selenium.” Electrophoresis 2003, 24, (19–20), 3305–3313.

    Article  CAS  Google Scholar 

  41. Wind, M.; Feldmann, I.; Jakubowski, N.; Lehmann, W. D. “Spotting and quantification of phosphoproteins purified by gel electrophoresis and laser ablation-element mass spectrometry with phosphorus-31 detection.” Electrophoresis 2003, 24, (7–8), 1276–1280.

    Article  CAS  Google Scholar 

  42. Coon, J. J.; Steele, H. A.; Laipis, P. J.; Harrison, W. W. “Laser desorption-atmospheric pressure chemical ionization:a novel ion source for the direct coupling of polyacrylamide gel electrophoresis to mass spectrometry.” J. Mass Spectrom. 2002, 37, (11), 1163–1167.

    Article  CAS  Google Scholar 

  43. Coon, J. J.; Harrison, W. W. “Laser desorption-atmospheric pressure chemical ionization mass spectrometry for the analysis of peptides from aqueous solutions.” Analyt. Chem. 2002, 74, (21), 5600–5605.

    Article  CAS  Google Scholar 

  44. Coon, J. J.; McHale, K. J.; Harrison, W. W. “Atmospheric pressure laser desorption/chemical ionization mass spectrometry:a new ionization method based on existing themes.” Rapid Commun. Mass Spectrom. 2002, 16, (7), 681–685.

    Article  CAS  Google Scholar 

  45. Coon, J. J.; Steele, H. A.; Laipis, P. J.; Harrison, W. W. “Direct atmospheric pressure coupling of polyacrylamide gel electrophoresis to mass spectrometry for rapid protein sequence analysis.” J. Proteome Res. 2003, 2, (6), 610–617.

    Article  CAS  Google Scholar 

  46. Turney, K.; Harrison, W. W. “Corona discharge secondary ionization of laser desorbed neutral molecules from a liquid matrix at atmospheric pressure.” Spectrochim Acta Part B At. Spectrosc. 2006, 61, (6), 634–641.

    Article  Google Scholar 

  47. Shiea, J.; Huang, M. Z.; Hsu, H. J.; Lee, C. Y.; Yuan, C. H.; Beech, I.; Sunner, J. “Electrospray-assisted laser desorption/ionization mass spectrometry for direct ambient analysis of solids.” Rapid Commun. Mass Spectrom. 2005, 19, (24), 3701–3704.

    Article  CAS  Google Scholar 

  48. Huang, M. Z.; Hsu, H. J.; Lee, J. Y.; Jeng, J.; Shiea, J. “Direct protein detection from biological media through electrospray-assisted laser desorption ionization/mass spectrometry.” J. Proteome Res. 2006, 5, (5), 1107–1116.

    Article  CAS  Google Scholar 

  49. Nemes, P.; Vertes, A. “Laser ablation electrospray ionization for atmospheric pressure, in vivo, and imaging mass spectrometry.” Anal. Chem. 2007, 79, 8098–8106.

    Article  CAS  Google Scholar 

  50. Li, Y.; Shrestha, B.; Vertes, A. “Atmospheric pressure molecular imaging by infrared MALDI mass spectrometry.” Anal. Chem. 2007, 79, (2), 523–532.

    Article  CAS  Google Scholar 

  51. Doroshenko, V. M.; Laiko, V. V.; Taranenko, N. I.; Berkout, V. D.; Lee, H. S. “Recent developments in atmospheric pressure MALDI mass spectrometry.” Int. J. Mass Spectrom. 2002, 221, (1), 39–58.

    Article  CAS  Google Scholar 

  52. Li, Y.; Shrestha, B.; Vertes, A. “Atmospheric pressure infrared MALDI imaging mass spectrometry for plant metabolomics.” Analyt. Chem. 2008, 80, 407–420.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ovchinnikova, O.S. (2010). Toward Nanoscale Chemical Imaging: The Intersection of Scanning Probe Microscopy and Mass Spectrometry. In: Kalinin, S., Gruverman, A. (eds) Scanning Probe Microscopy of Functional Materials. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7167-8_7

Download citation

Publish with us

Policies and ethics