Skip to main content

Dynamic Nanomechanical Characterization Using Multiple-Frequency Method

  • Chapter
  • First Online:
Scanning Probe Microscopy of Functional Materials
  • 1748 Accesses

Abstract

Macroscopic behavior of materials, whether synthetic or biological, depends on the morphology and characteristics of their microscopic constituents. Improving the performance of engineered materials and understanding the design principles of biomaterials demand tools that can characterize material properties with nanoscale resolution. What is the spatial arrangement of the components of a heterogeneous material? Are the material properties of those components different from their respective bulk properties? How do material properties change near the interfaces? What is the influence of temperature, electric or magnetic fields, or solvents? Answering these questions is of critical importance to the rational design of advanced materials and to the analysis of biological materials. In this chapter, we focus on the recent advances in the measurement and characterization of dynamic nanomechanical properties with high spatial resolution using specially designed atomic force microscope cantilevers. We will first describe the basic operation principles of this method and present results to judge its performance on various material systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Garcia and R. Perez, “Dynamic atomic force microscopy methods,” Surf. Sci. Rep. 47 197–301 (2002).

    Article  CAS  Google Scholar 

  2. J. Israelachvili, Intermolecular and Surface Forces. (Academic Press, London, 2003).

    Google Scholar 

  3. O. Sahin, “Accessing time-varying forces on the vibrating tip of the dynamic atomic force microscope to map material composition,” Israel J. Chem. 48 55–63 (2008).

    Article  CAS  Google Scholar 

  4. R. W. Stark and W. M. Heckl, “Fourier transformed atomic force microscopy:tapping mode atomic force microscopy beyond the Hookian approximation,” Surf. Sci. 457 219–228 (2000).

    Article  CAS  Google Scholar 

  5. M. Stark, R. W. Stark, W. M. Heckl et al., “Inverting dynamic force microscopy:From signals to time-resolved interaction forces,” Proc. Natl. Acad. Sci. U.S.A. 99 8473–8478 (2002).

    Article  CAS  Google Scholar 

  6. U. Rabe, K. Janser, and W. Arnold, “Vibrations of free and surface-coupled atomic force microscope cantilevers:Theory and experiment,” Rev. Sci. Instrum. 67 3281–3293 (1996).

    Article  CAS  Google Scholar 

  7. J. Tamayo and R. Garcia, “Deformation, contact time, and phase contrast in tapping mode scanning force microscopy,” Langmuir 12 4430–4435 (1996).

    Article  CAS  Google Scholar 

  8. R. W. Stark, “Optical lever detection in higher eigenmode dynamic atomic force microscopy,” Rev. Sci. Instrum. 75 5053–5055 (2004).

    Article  CAS  Google Scholar 

  9. O. Sahin, S. Magonov, C. Su et al., “An atomic force microscope tip designed to measure time-varying nanomechanical forces,” Nat. Nanotechnol. 2 507–514 (2007).

    Article  Google Scholar 

  10. O. Sahin and N. Erina, “High-resolution and large dynamic range nanomechanical mapping in tapping-mode atomic force microscopy,” Nanotechnology 19 445717 9 (2008).

    Article  Google Scholar 

  11. J. P. Cleveland, B. Anczykowski, A. E. Schmid et al., “Energy dissipation in tapping-mode atomic force microscopy,” Appl. Phys. Lett. 72 2613–2615 (1998).

    Article  CAS  Google Scholar 

  12. L. Zitzler, S. Herminghaus, and F. Mugele, “Capillary forces in tapping mode atomic force microscopy,” Phys. Rev. B 66 155436 8 (2002).

    Article  Google Scholar 

  13. D. Klinov and S. Magonov, “True molecular resolution in tapping-mode atomic force microscopy with high-resolution probes,” Appl. Phys. Lett. 84 2697–2699 (2004).

    Article  CAS  Google Scholar 

  14. S. De Feyter and F. C. De Schryver, “Two-dimensional supramolecular self-assembly probed by scanning tunneling microscopy,” Chem. Soc. Rev. 32 139–150 (2003).

    Article  CAS  Google Scholar 

  15. I. M. Ward, An Introduction to the Mechanical Properties of Solid Polymers. (Wiley, Chichester, UK, 2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ozgur Sahin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Sahin, O. (2010). Dynamic Nanomechanical Characterization Using Multiple-Frequency Method. In: Kalinin, S., Gruverman, A. (eds) Scanning Probe Microscopy of Functional Materials. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7167-8_6

Download citation

Publish with us

Policies and ethics