Skip to main content

Polarization Behavior in Thin Film Ferroelectric Capacitors at the Nanoscale

  • Chapter
  • First Online:
Scanning Probe Microscopy of Functional Materials

Abstract

A physical principle of most of ferroelectric-based devices is electrically induced polarization reversal, which on a microscopic level occurs via the nucleation and growth of a large number of domains. The dynamic characteristics of domain growth as well as static properties of domain structure to a large extent determine the ferroelectric device performance. Recent advances in the synthesis and fabrication of micro- and nanoscale ferroelectric structures [1–4] make it imperative to understand the domain switching behavior at this scale. A major limitation in acquiring this crucial information is the lack of experimental methods to characterize the domain kinetics with the nanometer length and nanosecond time resolution. The most effective approach to visualization of domain kinetics is based on linear coupling between ferroelectric and piezoelectric parameters, which on the experimental level can be detected either by X-ray scattering or by scanning force microscopy. High-resolution studies using time-resolved X-ray microdiffraction imaging [5–7] have demonstrated reproducible switching behavior of polarization from cycle to cycle and allowed direct measurements of domain wall velocity at high electric fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.S. Ganpule, A. Stanishevsky, S. Aggarwal, J. Melngailis, E. Williams, R. Ramesh, V. Joshi, C.P. de Araujo, Appl. Phys. Lett. 75, 3874 (1999)

    Article  CAS  Google Scholar 

  2. W.S. Yun, J.J. Urban, Q. Gu, H. Park, Nano Lett. 2, 447 (2002)

    Article  CAS  Google Scholar 

  3. Y. Luo, I. Szafraniak, N.D. Zakharov, V. Nagarajan, M. Steinhart, R.B. Wehrspohn, J.H. Wendorff, R. Ramesh, M. Alexe, Appl. Phys. Lett. 83, 440 (2003)

    Article  CAS  Google Scholar 

  4. F.D. Morrison, L. Ramsay, J.F. Scott, J. Phys.:Condens. Matter 15, L527 (2003)

    Article  CAS  Google Scholar 

  5. A. Grigoriev, D.-H. Do, D.M. Kim, C.-B. Eom, B. Adams, E. Dufresne, P.G. Evans, Phys. Rev. Lett. 96, 187601 (2006)

    Article  Google Scholar 

  6. D.H. Do, A. Grigoriev, D.M. Kim, C.-B. Eom, P.G. Evans, E.M. Dufresne, Integrated Ferroelectrics 101, 174 (2008)

    Article  CAS  Google Scholar 

  7. A. Grigoriev, R. Sichel, H.-N. Lee, E.C. Landahl, B. Adams, E.M. Dufresne, P.G. Evans, Phys. Rev. Lett. 100, 027604 (2008)

    Article  Google Scholar 

  8. M. Alexe, A. Gruverman (eds.), Nanoscale Characterization of Ferroelectric Materials:Scanning Probe Microscopy Approach, Springer, (2004[au1])

    Google Scholar 

  9. S. Jesse, A.P. Baddorf, S.V. Kalinin, Appl. Phys. Lett. 88, 062908 (2006)

    Article  Google Scholar 

  10. A. Gruverman, B.J. Rodriguez, R.J. Nemanich, A.I. Kingon, J.S. Cross, M. Tsukada, Appl. Phys. Lett. 82, 3071 (2003)

    Article  CAS  Google Scholar 

  11. P. Bintachitt, S. Trolier-McKinstry, K. Seal, S. Jesse, S.V. Kalinin, Appl. Phys. Lett. 94, 042906 (2009)

    Article  Google Scholar 

  12. S. Hong, E.L. Colla, E. Kim, D.V. Taylor, A.K. Tagantsev, P. Muralt, K. No, N. Setter, J. Appl. Phys. 86, 607 (1999)

    Article  CAS  Google Scholar 

  13. L. Tian, A. Vasudevarao, A.N. Morozovska, E.A. Eliseev, S.V. Kalinin, V. Gopalan, J. Appl. Phys. 104, 074110 (2008)

    Article  Google Scholar 

  14. S.V. Kalinin, B.J. Rodriguez, S.-H. Kim, S.-K. Hong, A. Gruverman, E.A. Eliseev, Appl. Phys. Lett. 92, 152906 (2008)

    Article  Google Scholar 

  15. R. Nath, Y.-H. Chu, N.A. Polomoff, R. Ramesh, B.D. Huey, Appl. Phys. Lett. 93, 072905 (2008)

    Article  Google Scholar 

  16. N.A. Polomoff, R. Nath, J.L. Bosse, B.D. Huey, J. Vac. Sci. Technol. B 27, 1011 (2009)

    Article  CAS  Google Scholar 

  17. C. Dehoff, B.J. Rodriguez, A.I. Kingon, R.J. Nemanich, A. Gruverman, J.S. Cross, Rev. Sci. Instrum. 76, 023708 (2005)

    Article  Google Scholar 

  18. A. Gruverman, D. Wu, J.F. Scott, Phys. Rev. Lett. 100, 097601 (2008)

    Article  CAS  Google Scholar 

  19. D.J. Kim, J.Y. Jo, T.H. Kim, S.M. Yang, B. Chen, Y.S. Kim, T.W. Noh, Appl. Phys. Lett. 91, 132903 (2007)

    Article  Google Scholar 

  20. S.M. Yang, J.Y. Jo, D.J. Kim, H. Sung, T.W. Noh, H.N. Lee, J.-G. Yoon, T.K. Song, Appl. Phys. Lett. 92, 252901 (2008)

    Article  Google Scholar 

  21. A. Gruverman, B.J. Rodriguez, C. Dehoff, J.D. Waldrep, A.I. Kingon, R.J. Nemanich, J.S. Cross, Appl. Phys. Lett. 87 082902 (2005)

    Article  Google Scholar 

  22. T. Hase, T. Shiosaki, Jpn. J. Appl. Phys. 30, 2159 (1991)

    Article  CAS  Google Scholar 

  23. Y. Ishibashi, Y. Takagi, J. Phys. Soc. Jap. 31, 506 (1971)

    Article  CAS  Google Scholar 

  24. O. Lohse et al., J. Appl. Phys. 89, 2332 (2001)

    Article  CAS  Google Scholar 

  25. X.F. Du, I.W. Chen, Appl. Phys. Lett. 72, 1923 (1998)

    Article  CAS  Google Scholar 

  26. A. Tagantsev et al., Phys. Rev. B 66, 214109 (2002)

    Article  Google Scholar 

  27. J.Y. Jo, H.S. Han, J.-G. Yoon, T.K. Song, S.-H. Kim, T.W. Noh, Phys. Rev. Lett. 99, 267602 (2007)

    Article  CAS  Google Scholar 

  28. W. Li, M. Alexe, Appl. Phys. Lett. 91, 262903 (2007)

    Article  Google Scholar 

  29. Y.W. So, D.J. Kim, T.W. Noh, J.-G. Yoon, T.K. Song, Appl. Phys. Lett. 86, 092905 (2005)

    Article  Google Scholar 

  30. J.Y. Jo, S.M. Yang, T.H. Kim, H.N. Lee, J.-G. Yoon, S. Park, Y. Jo, M.H. Jung, T.W. Noh, Phys. Rev. Lett. 102, 045701 (2009)

    Article  CAS  Google Scholar 

  31. N.A. Pertsev, A.G. Zembilgotov, A.K. Tagantsev, Phys. Rev. Lett. 80, 1988 (1998)

    Article  CAS  Google Scholar 

  32. N.A. Pertsev, G. Arlt, A.G. Zembilgotov, Microelectron. Eng. 29, 135 (1995)

    Article  CAS  Google Scholar 

  33. J.S. Speck, A. Seifert, W. Pompe, R. Ramesh, J. Appl. Phys. 76, 477 (1994)

    Article  CAS  Google Scholar 

  34. W. Pompe, X. Gong, Z. Suo, J.S. Speck, J. Appl. Phys. 74, 6012 (1993)

    Article  CAS  Google Scholar 

  35. A. Gruverman, J.S. Cross, W.S. Oates, Appl. Phys. Lett. 93, 242902 (2008)

    Article  Google Scholar 

  36. Y. Su, C. Landis, J. Mech. Phys. Solids, 55, 280 (2007)

    Article  CAS  Google Scholar 

  37. J.F. Scott, A. Gruverman, D. Wu, I. Vrejoiu, M. Alexe, J. Phys.:Condens. Matter 20, 425222 (2008)

    Article  Google Scholar 

  38. W. Kleemann, J. Dec, S.A. Prosandeev, T. Braun, P.A. Thomas, Ferroelectrics 334, 3 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation (Grant No. MRSEC DMR-0820521) and the Nebraska Center for Materials and Nanoscience at University of Nebraska-Lincoln. The author would like to thank Prof. T.W. Noh for his kind permission to use his data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Gruverman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gruverman, A. (2010). Polarization Behavior in Thin Film Ferroelectric Capacitors at the Nanoscale. In: Kalinin, S., Gruverman, A. (eds) Scanning Probe Microscopy of Functional Materials. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7167-8_18

Download citation

Publish with us

Policies and ethics