Skip to main content

Scanning Ion Conductance Microscopy

  • Chapter
  • First Online:
Scanning Probe Microscopy of Functional Materials

Abstract

In 1981, the age of the scanning probe microscopes (SPMs) began when Binnig, Rohrer, and cowokers developed the first scanning tunneling microscope (STM) [1]. Their setup was based on measuring an electrical tunneling current between a sharp metal tip and a conducting sample. For the first time, a sample surface could be imaged with true atomic resolution in real space. The STM launched the development of several other types of SPMs. In general, these microscopes consist of a small, submicrometer probe, which senses a certain physical interaction with the sample and which is scanned over the sample to generate an image. For example, Pohl et al. invented the scanning near-field optical microscope (SNOM) in 1984 [2], which uses an evanescent electromagnetic field in the subwavelength range to image the sample. In 1986, Binnig and co-workers developed the atomic force microscope (AFM), which is based on measuring the mechanical forces between a sharp tip and the sample [3]. The AFM is not limited to conducting or transparent samples and has become one of the most important tools in nanoscale science. The AFM also works in aqueous environments, such as buffer solutions and so is well suited for biological samples [4]. Since then, several related SPMs have been developed, such as the magnetic force microscope [5,6] the electrical force microscope [7], and the scanning electrochemical force microscope (SECM) [8].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Binnig G, Rohrer H (1982) Surface studies by scanning tunneling microscopy. Phys. Rev. Lett. 49:57–61.

    Article  Google Scholar 

  2. Pohl DW, Denk W, Lanz M (1984) Optical stethoscopy:image recording with resolution λ/20. Appl. Phys. Lett. 44(7):651–653.

    Article  Google Scholar 

  3. Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys. Rev. Lett. 56(9):930–933.

    Article  Google Scholar 

  4. Drake B, Prater CB, Weisenhorn AL, Gould SA, Albrecht TR, Quate CF, Cannell DS, Hansma HG, Hansma PK (1989) Imaging crystals, polymers, and processes in water with the atomic force microscope. Science 243(4898):1586–1589.

    Article  CAS  Google Scholar 

  5. Sáenz JJ, García N, Grütter P, Meyer E, Heinzelmann H, Wiesendanger R, Rosenthaler L, Hidber HR, Güntherodt HJ (1987) Observation of magnetic forces by the atomic force microscope. J. Appl. Phys. 62(10):4293–4295.

    Article  Google Scholar 

  6. Martin Y, Wickramasinghe HK (1987) Magnetic imaging by “force microscopy” with 1000Å resolution. Appl. Phys. Lett. 50(20):1455–1457.

    Article  Google Scholar 

  7. Martin Y, Abraham DW, Wickramasinghe HK (1988) High-resolution capacitance measurement and potentiometry by force microscopy. Appl. Phys. Lett. 52(13):1103–1105.

    Article  Google Scholar 

  8. Bard AJ, Fan F-RF, Kwak J, Lev O (1989) Scanning electrochemical microscopy. Introduction and principles. Anal. Chem. 61(2):132–138.

    Article  CAS  Google Scholar 

  9. Prater CB, Drake B, Gould SAC, Hansma HG, Hansma PK (1990) Scanning ion-conductance microscope and atomic force microscope. Scanning 12(1):50–52.

    Google Scholar 

  10. Hansma PK, Drake B, Marti O, Gould SA, Prater CB (1989) The scanning ion-conductance microscope. Science 243(4891):641–643.

    Article  CAS  Google Scholar 

  11. Korchev YE, Milovanovic M, Bashford CL, Bennett DC, Sviderskaya EV, Vodyanoy I, Lab MJ (1997) Specialized scanning ion-conductance microscope for imaging of living cells. J. Microsc. 188(Pt 1):17–23.

    Article  CAS  Google Scholar 

  12. Nitz H, Kamp J, Fuchs H (1998) A combined scanning ion-conductance and shear-force microscope. Probe Microscopy 1:187–200.

    CAS  Google Scholar 

  13. Olin H (1994) Design of a scanning probe microscope. Meas. Sci. Technol. 5:976–984.

    Article  Google Scholar 

  14. Pastré D, Iwamoto H, Liu J, Szabo G, Shao Z (2001) Characterization of AC mode scanning ion-conductance microscopy. Ultramicroscopy 90(1):13–19.

    Article  Google Scholar 

  15. Proksch R, Lal R, Hansma PK, Morse D, Stucky G (1996) Imaging the internal and external pore structure of membranes in fluid:tapping mode scanning ion conductance microscopy. Biophys. J. 71(4):2155–2157.

    Article  CAS  Google Scholar 

  16. Schäffer TE, Ionescu-Zanetti C, Proksch R, Fritz M, Walters DA, Almqvist N, Zaremba CM, Belcher AM, Smith BL, Stucky GD, Morse DE, Hansma PK (1997) Does abalone nacre form by heteroepitaxial nucleation or by growth through mineral bridges? Chem. Mater. 9(8):1731–1740.

    Article  Google Scholar 

  17. Shevchuk AI, Gorelik J, Harding SE, Lab MJ, Klenerman D, Korchev YE (2001) Simultaneous measurement of Ca2+ and cellular dynamics:combined scanning ion conductance and optical microscopy to study contracting cardiac myocytes. Biophys. J. 81(3):1759–1764.

    Article  CAS  Google Scholar 

  18. Rheinlaender J, Schäffer TE (2009) Image formation, resolution, and height measurement in scanning ion conductance microscopy. J. Appl. Phys. 105(9):094905.

    Article  Google Scholar 

  19. Böcker M, Muschter S, Schmitt EK, Steinem C, Schäffer TE (2009) Imaging and patterning of pore-suspending membranes with scanning ion conductance microscopy. Langmuir 25(5):3022–3028.

    Article  Google Scholar 

  20. Korchev YE, Bashford CL, Milovanovic M, Vodyanoy I, Lab MJ (1997) Scanning ion conductance microscopy of living cells. Biophys. J. 73(2):653–658.

    Article  CAS  Google Scholar 

  21. Böcker M, Anczykowski B, Wegener J, Schäffer TE (2007) Scanning ion conductance microscopy with distance-modulated shear force control. Nanotechnology 18(14):145505–145506.

    Article  Google Scholar 

  22. Korchev YE, Raval M, Lab MJ, Gorelik J, Edwards CR, Rayment T, Klenerman D (2000) Hybrid scanning ion conductance and scanning near-field optical microscopy for the study of living cells. Biophys. J. 78(5):2675–2679.

    Article  CAS  Google Scholar 

  23. Mannelquist A, Iwamoto H, Szabo G, Shao Z (2001) Near-field optical microscopy with a vibrating probe in aqueous solution. Appl. Phys. Lett. 78(14):2076–2078.

    Article  CAS  Google Scholar 

  24. Mannelquist A, Iwamoto H, Szabo G, Shao Z (2002) Near field optical microscopy in aqueous solution:implementation and characterization of a vibrating probe. J. Microsc. 205(Pt 1):53–60.

    Article  CAS  Google Scholar 

  25. Shevchuk AI, Frolenkov GI, Sanchez D, James PS, Freedman N, Lab MJ, Jones R, Klenerman D, Korchev YE (2006) Imaging proteins in membranes of living cells by high-resolution scanning ion conductance microscopy. Angew. Chem. Int. Ed. Engl. 45(14):2212–2216.

    Article  CAS  Google Scholar 

  26. Bockris JO, Reddy AKN, Modern Electrochemistry:Electrodics in Chemistry, Engineering, Biology, and Environmental Science. 2000, New York:Plenum Publishing Corporation.

    Google Scholar 

  27. Bruus H, Theoretical Microfluidics. Oxford Master Series in Physics. 2007, New York:Oxford University Press.

    Google Scholar 

  28. Brown KT, Flaming DG, Advanced Micropipette Techniques for Cell Physiology. 1986, New York:Wiley.

    Google Scholar 

  29. Ying LM, Bruckbauer A, Rothery AM, Korchev YE, Klenerman D (2002) Programmable delivery of DNA through a nanopipette. Anal. Chem. 74(6):1380–1385.

    Article  CAS  Google Scholar 

  30. Ying L, White SS, Bruckbauer A, Meadows L, Korchev YE, Klenerman D (2004) Frequency and voltage dependence of the dielectrophoretic trapping of short lengths of DNA and dCTP in a nanopipette. Biophys. J. 86(2):1018–1027.

    Article  CAS  Google Scholar 

  31. Hall JE (1975) Access resistance of a small circular pore. J. Gen. Physiol. 66:531–532.

    Article  CAS  Google Scholar 

  32. COMSOL, COMSOL Multiphysics. 2007, Stockholm, Sweden:COMSOL AB.

    Google Scholar 

  33. Korchev YE, Gorelik J, Lab MJ, Sviderskaya EV, Johnston CL, Coombes CR, Vodyanoy I, Edwards CR (2000) Cell volume measurement using scanning ion conductance microscopy. Biophys. J. 78(1):451–457.

    Article  CAS  Google Scholar 

  34. Korchev YE, Negulyaev YA, Edwards CR, Vodyanoy I, Lab MJ (2000) Functional localization of single active ion channels on the surface of a living cell. Nat. Cell. Biol. 2(9):616–619.

    Article  CAS  Google Scholar 

  35. Gitter AH, Bertog M, Schulzke J-D, Fromm M (1997) Measurement of paracellular epithelial conductivity by conductance scanning. Eur. J. Physiol. 434(6):830–840.

    Article  CAS  Google Scholar 

  36. Mann SA, Hoffmann G, Hengstenberg A, Schuhmann W, Dietzel ID (2002) Pulse-mode scanning ion conductance microscopy – a method to investigate cultured hippocampal cells. J. Neurosci. Methods 116(2):113–117.

    Article  CAS  Google Scholar 

  37. Happel P, Hoffmann G, Mann SA, Dietzel ID (2003) Monitoring cell movements and volume changes with pulse-mode scanning ion conductance microscopy. J. Microsc. 212(Pt 2):144–151.

    Article  CAS  Google Scholar 

  38. Beveridge TJ, Southam G, Jericho MH, Blackford BL (1990) High-resolution topography of the S-layer sheath of the archaebacterium Methanospirillum hungatei provided by scanning tunneling microscopy. J. Bacteriol. 172(11):6589–6595.

    CAS  Google Scholar 

  39. Radmacher M, Cleveland JP, Fritz M, Hansma HG, Hansma PK (1994) Mapping interaction forces with the atomic force microscope. Biophys. J. 66(6):2159–2165.

    Article  CAS  Google Scholar 

  40. Borgwarth K, Ebling DG, Heinze J (1994) Scanning electrochemical microscopy:a new scanning mode based on convective effects. Ber. Bunsenges. Phys. Chem. 98(10):1317–1321.

    CAS  Google Scholar 

  41. Novak P, Li C, Shevshuk AI, Stepanyan R, Caldwell M, Hughes S, Smart TG, Gorelik J, Ostanin VP, Lab MJ, Moss GWJ, Frolenkov GI, Klenerman D, Korchev YE (2009) Nanoscale live-cell imaging using hopping probe ion conductance microscopy. Nat. Methods 6:279–281.

    Article  CAS  Google Scholar 

  42. Gorelik J, Gu Y, Spohr HA, Shevchuk AI, Lab MJ, Harding SE, Edwards CR, Whitaker M, Moss GW, Benton DC, Sanchez D, Darszon A, Vodyanoy I, Klenerman D, Korchev YE (2002) Ion channels in small cells and subcellular structures can be studied with a smart patch-clamp system. Biophys. J. 83(6):3296–303.

    Article  CAS  Google Scholar 

  43. Gorelik J, Shevchuk AI, Frolenkov GI, Diakonov IA, Lab MJ, Kros CJ, Richardson GP, Vodyanoy I, Edwards CR, Klenerman D, Korchev YE (2003) Dynamic assembly of surface structures in living cells. Proc. Natl Acad. Sci. USA 100(10):5819–5822.

    Article  CAS  Google Scholar 

  44. Gorelik J, Zhang A, Shevchuk A, Frolenkov GI, Sanchez D, Lab MJ, Vodyanoy I, W ECR, Klenerman D, Korchev YE (2002) The use of scanning ion conductance microscopy to image A6 cells. Mol. Cell. Endocrinol. 217:101–108.

    Article  Google Scholar 

  45. Bruckbauer A, Ying LM, Rothery AM, Korchev YE, Klenerman D (2002) Characterization of a novel light source for simultaneous optical and scanning ion conductance microscopy. Anal. Chem. 74(11):2612–2616.

    Article  CAS  Google Scholar 

  46. Rothery AM, Gorelik J, Bruckbauer A, Yu W, Korchev YE, Klenerman D (2003) A novel light source for SICM-SNOM of living cells. J. Microsc. 209:94–101.

    Article  CAS  Google Scholar 

  47. Gorelik J, Shevchuk AI, Ramalho M, Elliott M, Lei C, Higgins CF, Lab MJ, Klenerman D, Krauzewicz N, Korchev YE (2002) Scanning surface confocal microscopy for simultaneous topographical and fluorescence imaging:application to single virus-like particle entry into a cell. Proc. Natl Acad. Sci. USA 99(25):16018–16023.

    Article  CAS  Google Scholar 

  48. Lewis A, Taha H, Strinkovski A, Manevitch A, Khatchatouriants A, Dekhter R, Ammann E (2003) Near-field optics:from subwavelength illumination to nanometric shadowing. Nat. Biotechnol. 21(11):1377–1386.

    Article  Google Scholar 

  49. Shalom S, Lieberman K, Lewis A, Cohen SR (1992) A micropipette force probe suitable for near-field scanning optical microscopy. Rev. Sci. Instrum. 63(9):4061–4065.

    Article  CAS  Google Scholar 

  50. Hansma PK, Cleveland JP, Radmacher M, Walters DA, Hillner PE, Bezanilla M, Fritz M, Vie D, Hansma HG, Prater CB, Massie J, Fukunaga L, Gurley J, Elings V (1994) Tapping mode atomic force microscopy in liquids. Appl. Phys. Lett. 64(13):1738–1740.

    Article  CAS  Google Scholar 

  51. Putman CAJ, Van der Werf KO, Grooth BGD, Hulst NFV, Greve J (1994) Tapping mode atomic force microscopy in liquid. Appl. Phys. Lett. 64(18):2454–2456.

    Article  CAS  Google Scholar 

  52. Betzig E, Trautman JK, Harris TD, Weiner JS, Kostelak RL (1991) Breaking the diffraction barrier:optical microscopy on a nanometric scale. Science 5000:1468–1470.

    Article  Google Scholar 

  53. Toledo-Crow R, Yang PC, Chen Y, Vaez-Iravani M (1992) Near-field differential scanning optical microscope with atomic force regulation. Appl. Phys. Lett. 60:2957–2959.

    Article  CAS  Google Scholar 

  54. Betzig E, Finn PL, Weiner JS (1992) Combined shear force and near-field scanning optical microscopy. Appl. Phys. Lett. 60(20):2484–2486.

    Article  CAS  Google Scholar 

  55. Karrai K, Grober RD (1995) Piezoelectric tip-sample distance control for near-field optical microscopes. Appl. Phys. Lett. 66(14):1842–1844.

    Article  CAS  Google Scholar 

  56. Brunner R, Hering O, Marti O, Hollricher O (1997) Piezoelectrical shear-force control on soft biological samples in aqueous solution. Appl. Phys. Lett. 71(25):3628–3630.

    Article  CAS  Google Scholar 

  57. Koopman M, de Bakker BI, Garcia-Parajo MF, van Hulst NF (2003) Shear force imaging of soft samples in liquid using a diving bell concept. Appl. Phys. Lett. 83(24):5083–5085.

    Article  CAS  Google Scholar 

  58. Rensen WHJ, van Hulst NF, Kammer SB (2000) Imaging soft samples in liquid with tuning fork based shear force microscopy. Appl. Phys. Lett. 77(10):1557–1559.

    Article  CAS  Google Scholar 

  59. Sánchez D, Johnson N, Li C, Novak P, Rheinlaender J, Zhang Y, Anand U, Praveen A, Gorelik J, Frolenkov G, Benham C, Lab M, Ostanin V, Schäffer TE, Klenerman D, Korchev YE (2008) Noncontact measurement of the local mechanical properties of living cells using pressure applied via a pipette. Biophys. J. 95(6):3017–3027.

    Article  Google Scholar 

  60. Lewis A, Kheifetz Y, Shambrodt E, Radko A, Khatchatryan E (1999) Fountain pen nanochemistry:atomic force control of chrome etching. Appl. Phys. Lett. 75(17):2689–2691.

    Article  CAS  Google Scholar 

  61. Müller A-D, Müller F, Hietschold M (1998) Electrochemical pattern formation in a scanning near-field optical microscope. Appl. Phys. A 66:453–456.

    Article  Google Scholar 

  62. Müller A-D, Müller F, Hietschold M (2000) Localized electrochemical deposition of metals using micropipettes. Thin Solid Films 366:32–36.

    Article  Google Scholar 

  63. Zhang H, Wu L, Huang F (1999) Electrochemical microprocess by scanning ionconductance microscopy. J. Vac. Sci. Technol. B 17(2):269–272.

    Article  CAS  Google Scholar 

  64. Hong M-H, Kim KH, Bae J, Jhe W (2000) Scanning nanolithography using a material-filled nanopipette. Appl. Phys. Lett. 77(16):2604–2606.

    Article  CAS  Google Scholar 

  65. Larson BJ, Gillmor SD, Lagally MG (2004) Controlled deposition of picoliter amounts of fluid using an ultrasonically driven micropipette. Rev. Sci. Instrum. 75(4):832–836.

    Article  CAS  Google Scholar 

  66. Rodolfa KT, Bruckbauer A, Zhou D, Korchev YE, Klenerman D (2005) Two-component graded deposition of biomolecules with a double-barreled nanopipette. Angew. Chem. 117(42):7014–7019.

    Article  Google Scholar 

  67. Bruckbauer A, Zhou D, Ying L, Korchev Y, Abell C, Klenerman D (2003) Multicomponent submicron features of biomolecules created by voltage controlled deposition from a nanopipet. J. Am. Chem. Soc. 125:9834–9839.

    Article  CAS  Google Scholar 

  68. Taha H, Marks RS, Levi AG, Rousso I, Newman J, Sukenik C, Lewis A (2003) Protein ­printing with an atomic force sensing nanofountainpen. Appl. Phys. Lett. 83(5):1041–1043.

    Article  CAS  Google Scholar 

  69. Schrlau MG, Falls EM, Ziober BL, Bau HM (2008) Carbon nanopipettes for cell probes and intracellular injection. Nanotechnology 2008(1):015101–015105.

    Article  Google Scholar 

  70. Laforge FO, Carpino J, Rotenberg SA, Mirkin MV (2007) Electrochemical attosyringe. Proc. Natl Acad. Sci. USA 104(29):11895–11900.

    Article  CAS  Google Scholar 

  71. Krishnamurthy V, Luk KY, Cornell B, Prashar J, di Maio IL, Islam H, Battle AR, Valenzuela SM, Martin DK (2007) Gramicidin ion channel-based biosensors:construction, stochastic dynamical models, and statistical detection algorithms. IEEE Sen. J. 7(9):1281–1288.

    Article  CAS  Google Scholar 

  72. Piper JD, Clarke RW, Korchev YE, Ying L, Klenerman D (2006) A renewable nanosensor based on a glass nanopipette. J. Am. Chem. Soc. 128(51):16462–16463.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tilman E. Schäffer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rheinlaender, J., Schäffer, T.E. (2010). Scanning Ion Conductance Microscopy. In: Kalinin, S., Gruverman, A. (eds) Scanning Probe Microscopy of Functional Materials. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7167-8_15

Download citation

Publish with us

Policies and ethics