Skip to main content

High-Speed Piezo Force Microscopy: Novel Observations of Ferroelectric Domain Poling, Nucleation, and Growth

  • Chapter
  • First Online:
Scanning Probe Microscopy of Functional Materials

Abstract

High-speed piezo force microscopy (HSPFM) has been developed to map ferroelectric properties with imaging rates beyond 1frame/s. In addition to efficient measurements of large areas, multiple samples, and various experimental conditions, this capability is particularly advantageous for monitoring ferroelectric domain poling dynamics. As discussed, this includes identifying switching mechanisms, elucidating the influence of structural defects, and especially quantifying and mapping nucleation times and growth rates. Domains written with tip speeds beyond 1cm/s are also presented and analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Alexe and A. Gruverman, Nanoscale Characterisation of Ferroelectric Materials – Scanning Probe Microscopy Approach (Springer, Berlin Heidlberg, 2004).

    Google Scholar 

  2. A. Gruverman, O. Auciello, and H. Tokumoto, Annu. Rev. Mater. Sci. 28, 101–123 (1998).

    Article  CAS  Google Scholar 

  3. S. Hong, Nanoscale Phenomena in Ferroelectric Thin Films (Kluwer Academic Publishers, Dordrecht, 2004).

    Google Scholar 

  4. S. V. Kalinin and D. A. Bonnell, Phys. Rev. B 63, 125411/1–13 (2001).

    Article  CAS  Google Scholar 

  5. J. W. Hong, K. H. Noh, S. Park, S. I. Kwun, and Z. G. Khim, Phys. Rev. B 58, 5078–5084 (1998).

    Article  CAS  Google Scholar 

  6. H. O. Jacobs, H. F. Knapp, S. Muller, and A. Stemmer, Ultramicroscopy 69, 39–49 (1997).

    Article  CAS  Google Scholar 

  7. B. D. Huey, Annu. Rev. Mater. Res. 37, 351–385 (2007).

    Article  CAS  Google Scholar 

  8. S. V. Kalinin and D. A. Bonnell, Phys. Rev. B 65, 125408 (2002).

    Article  Google Scholar 

  9. S. Hong, J. Woo, H. Shin, J. U. Jeon, Y. E. Pak, L. C. Enrico, S. Nava, K. Eunah, and N. Kwangsoo, J. Appl. Phys. 89, 1377–1386 (2001).

    Article  CAS  Google Scholar 

  10. O. Kolosov, A. Gruverman, J. Hatano, K. Takahashi, and H. Tokumoto, Phys. Rev. Lett. 74, 4309–4312 (1995).

    Article  CAS  Google Scholar 

  11. C. S. Ganpule, V. Nagarajan, B. K. Hill, A. L. Roytburd, E. D. Williams, R. Ramesh, S. P. Alpay, A. Roelofs, R. Waser, and L. M. Eng, J. Appl. Phys. 91, 1477–1481 (2002).

    Article  CAS  Google Scholar 

  12. L. M. Eng, H. J. Guntherodt, G. A. Schneider, U. Kopke, and J. M. Saldana, Appl. Phys. Lett. 74, 233–235 (1999).

    Article  CAS  Google Scholar 

  13. R. Nath, R. E. Garcia, J. E. Blendell, and B. D. Huey, JOM 59, 17–21 (2007).

    Article  CAS  Google Scholar 

  14. S. Jesse, B. J. Rodriguez, S. Choudhury, A. P. Baddorf, I. Vrejoiu, D. Hesse, M. Alexe, E. A. Eliseev, A. N. Morozovska, J. Zhang, L. Q. Chen, and S. V. Kalinin, Nat. Mater. 7, 209–215 (2008).

    Article  CAS  Google Scholar 

  15. C. H. Ahn, T. Tybell, L. Antognazza, K. Char, R. H. Hammond, M. R. Beasley, O. Fischer, and J. M. Triscone, Science 276, 1100–1103 (1997).

    Article  CAS  Google Scholar 

  16. S. V. Kalinin, D. A. Bonnell, T. Alvarez, X. Lei, Z. Hu, R. Shao, and J. H. Ferris, Adv. Mater. 16, 795–799 (2004).

    Article  CAS  Google Scholar 

  17. T. Tybell, P. Paruch, T. Giamarchi, and J. M. Triscone, Phys. Rev. Lett. 89, 097601 (2002).

    Article  CAS  Google Scholar 

  18. C. S. Ganpule, A. L. Roytburd, V. Nagarajan, B. K. Hill, S. B. Ogale, E. D. Williams, R. Ramesh, and J. F. Scott, Phys. Rev. B 65, 01401/7 (2002).

    CAS  Google Scholar 

  19. A. Gruverman, D. Wu, and J. F. Scott, Phys. Rev. Lett. 100, 097601/4 (2008).

    Article  CAS  Google Scholar 

  20. S. Hong, E. L. Colla, E. Kim, D. V. Taylor, A. K. Tagantsev, P. Muralt, K. No, and N. Setter, J. Appl. Phys. 86, 607–613 (1999).

    Article  CAS  Google Scholar 

  21. Y. W. So, D. J. Kim, T. W. Noh, J. G. Yoon, and T. K. Song, Appl. Phys. Lett. 86, (9), 092905/3 (2005).

    Article  CAS  Google Scholar 

  22. A. Roelofs, U. Bottger, R. Waser, F. Schlaphof, S. Trogisch, and L. M. Eng, Appl. Phys. Lett. 77, 3444–3446 (2000).

    Article  CAS  Google Scholar 

  23. S. V. Kalinin, B. J. Rodriguez, K. Seung-Hyun, S. K. Hong, A. Gruverman, and E. A. Eliseev, Appl. Phys. Lett. 152906-1-3 (2008).

    Google Scholar 

  24. R. Nath, Y. H. Chu, N. A. Polomoff, R. Ramesh, and B. D. Huey, Appl. Phys. Lett. 93, (7), 072905/4 (2008).

    Article  CAS  Google Scholar 

  25. R. Nath, Ph.D. Thesis, University of Connecticut, 2008.

    Google Scholar 

  26. B. J. Rodriguez, C. Callahan, S. V. Kalinin, and R. Proksch, Nanotechnology 18, (47), 475504/6 (2007).

    Google Scholar 

  27. A. D. L. Humphris, M. J. Miles, and J. K. Hobbs, Appl. Phys. Lett. 86, (3), 034106/3 (2005).

    Article  CAS  Google Scholar 

  28. P. Vettiger, M. Despont, U. Drechsler, U. Durig, W. Haberle, M. I. Lutwyche, H. E. Rothuizen, R. Stutz, R. Widmer, and G. K. Binnig, IBM J. Res. Dev. 44, 323–340 (2000).

    Article  CAS  Google Scholar 

  29. S. R. Manalis, S. C. Minne, and C. F. Quate, Appl. Phys. Lett. 68, 871–873 (1996).

    Article  CAS  Google Scholar 

  30. L. M. Picco, L. Bozec, A. Ulcinas, D. J. Engledew, M. Antognozzi, M. A. Horton, and M. J. Miles, Nanotechnology 18, (4), 044030/4 (2007).

    Article  CAS  Google Scholar 

  31. P. K. Hansma, G. Schitter, G. E. Fantner, and C. Prater, Science 314, 601–602 (2006).

    Article  CAS  Google Scholar 

  32. T. Ando, N. Kodera, E. Takai, D. Maruyama, K. Saito, and A. Toda, Proc. Natl. Acad. Sci. USA 98, 12468–12472 (2001).

    Article  CAS  Google Scholar 

  33. Y. G. Cui, Y. Arai, T. Asai, B. G. Ju, and W. Gao, Int. J. Precis. Eng. Manuf. 9, 27–32 (2008).

    Google Scholar 

  34. H. Kawakatsu, S. Kawai, D. Saya, M. Nagashio, D. Kobayashi, H. Toshiyoshi, and H. Fujita, Rev. Sci. Instrum. 73, 2317–2320 (2002).

    Article  CAS  Google Scholar 

  35. S. Hosaka, K. Etoh, A. Kikukawa, and H. Koyanagi, J. Vac. Sci. Technol. B 18, 94–99 (2000).

    Article  CAS  Google Scholar 

  36. T. Takahashi and S. Ono, Ultramicroscopy 105, 42–50 (2005).

    Article  CAS  Google Scholar 

  37. I. B. Misirlioglu, A. L. Vasiliev, S. P. Alpay, M. Aindow, and R. Ramesh, J. Mater. Sci. 41, 697–707 (2006).

    Article  CAS  Google Scholar 

  38. C. S. Ganpule, V. Nagarajan, H. Li, A. S. Ogale, D. E. Steinhauer, S. Aggarwal, E. Williams, R. Ramesh, and P. De Wolf, Appl. Phys. Lett. 77, 292–294 (2000).

    Article  CAS  Google Scholar 

  39. R. Nath and B. D. Huey, http://ftp.aip.org/epaps/appl_phys_lett/E-APPLAB-93-044832/elbowall.mov (2008).

  40. B. J. Rodriguez, S. Jesse, M. Alexe, and S. V. Kalinin, Adv. Mater. 20, 109–114 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bryan D. Huey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Huey, B.D., Nath, R. (2010). High-Speed Piezo Force Microscopy: Novel Observations of Ferroelectric Domain Poling, Nucleation, and Growth. In: Kalinin, S., Gruverman, A. (eds) Scanning Probe Microscopy of Functional Materials. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7167-8_11

Download citation

Publish with us

Policies and ethics