Pteridophyte spores viability

Chapter

Abstract

Spore viability is defined as the time that spores retain their capacity to germinate. It is a factor of primary importance in the establishment of fern species and populations in a new habitat after spore dispersal. Viability is typically maintained for a long period in pteridophytes, but there are great variations in both interspecific and intraspecific levels.

Factors affecting viability are either intrinsic, such as genotype, age and dormancy, or extrinsic, such as the conditions of physical environment or presence of competitors. One of the main features that affect fern spores viability is the presence of chlorophyll in the cell. Green spores have chloroplasts and their germination ability does not persist long after harvest, showing a viability that is in the range of few weeks. Most pteridophytes have non-chlorophyllous spores whose viability is much higher, of about 3 years on average. For a long time, fern spores viability has been measured by means of germination percentage. This is a very simple method but requires a certain time to ensure that all or most viable spores germinate. Ultimately, some other detection techniques have been proposed, based on the capacity of living cells to enzymatically react with some chemicals giving colour or fluorescence. These methods allow estimating viability in a shorter time. Since spore viability is important for ex-situ conservation purposes, a relatively high amount of studies concerning germination and loss of viability of spores have been carried out in the last 2 decades. Several methods have been assayed to preserve spores of a number of species. Viability of most pteridophyte spores was believed to be retained when stored in dry and cold conditions. However, several exceptions have been found. Also of interest is the cryopreservation technique, very useful when dealing with economical interesting plants, as an important component in plant biotechnology programmes.

Keywords

Hydrolysis Toxicity Chlorophyll Bromide Respiration 

References

  1. Aragon, C. F., and Pangua, E. 2004. Spore viability under different storage conditions in four rupicolous Asplenium L. taxa. Amer. Fern J. 94:28–38.CrossRefGoogle Scholar
  2. Ashcroft, C. J., and Sheffield, E. 2000. The effect of spore density on germination and development in Pteridium, monitored using a novel culture technique. Amer. Fern J. 90:91–99.CrossRefGoogle Scholar
  3. Ballesteros, D., Estrelles, E., and Ibars, A. M. 2006. Responses of pteridophyte spores to ultrafreezing temperatures for long-term conservation in germplasm banks. Fern Gaz. 17:293–302.Google Scholar
  4. Beri, A., and Bir, S. S. 1993. Germination of stored spores of Pteris vittata L. Amer. Fern J. 83:73–78.CrossRefGoogle Scholar
  5. Bhardwaja, T. N., and Sen, S. 1966. Effect of temperature on the viability of spores of the water fern Marsilea. Sci. Cult. 32:47–48.Google Scholar
  6. Catalá, M., Esteban, M., Rodríguez-Gil, J., and Quintanilla, L. 2009. Development of a naturally miniaturised testing method based on the mitochondrial activity of fern spores: a new higher plant bioassay. Chemosphere 77:983–988.CrossRefPubMedGoogle Scholar
  7. Clarke, J. M., Gillings, M. R., Altavilla, N., and Beattie, A. J. 2001. Potential problems with fluorescein diacetate assays of cell viability when testing natural products for antimicrobial activity.J. Microbiol. Methods 46:261–267.CrossRefPubMedGoogle Scholar
  8. Conway, E. 1949. The autecology of bracken (Pteridium aquilinum (L.) Kuhn). The germination of the spore, and the development of the prothallus and the young sporophyte. Proc. Roy. Soc. Edinburgh 63 B:325–342.Google Scholar
  9. Courbet, H. 1963. Fern spores. Their ability to germinate. Duration of their germinative capacity. A test for the rapid determination of their viability. Their sugar and amino acid content. Bull. Acad. Soc. Lorraines. Sci. 3:53–65.Google Scholar
  10. Dyer, A. F. 1994. Natural soil spore banks: can they be used to retrieve lost ferns? Biodiversity Conserv. 3:160–175.CrossRefGoogle Scholar
  11. Dyer, A. F., and Lindsay, S. 1992. Soil spore banks of temperate ferns. Amer. Fern J. 82:89–122.CrossRefGoogle Scholar
  12. Gullvag, B. M. 1968. On the fine structure of the spores of Equisetum fluviatile var. verticillatum studied in the quiescent, germinated and non-viable state. Grana 8:23–69.CrossRefGoogle Scholar
  13. Gullvag, B. M. 1969. Primary storage products of some pteridophyte spores – a fine structural study. Phytomorphol.19:82–92.Google Scholar
  14. Hauke, R. L. 1978. Taxonomic monograph of Equisetum subgenus Equisetum. Nova Hedwigia 30:385–455.Google Scholar
  15. Haupt, W. 1992. Phytochrome-mediated fern-spore germination – a temperature-sensitive phase in the transduction chain after the action of PFR. J. Plant Physiol. 140:575–581.Google Scholar
  16. Herrero, A., Prada, C., and Pajaron, S. 2002. Gametophyte morphology and gametangial ontogeny of Asplenium foreziense and related taxa (Aspleniaceae : Pteridophyta). Bot. J. Linnean Soc. 139:87–98.CrossRefGoogle Scholar
  17. Heslop-Harrison, J., and Heslop-Harrison, Y. 1970. Evaluation of pollen viability by enzymatically induced fluorescence – intracellular hydrolysis of fluorescein diacetate. Stain Technol. 45:115–120.PubMedGoogle Scholar
  18. Johnson, D. M. 1985. New records for longevity of Marsilea sporocarps. Amer. Fern J. 75:30–31.CrossRefGoogle Scholar
  19. Khare, P. B., and Kaur, S. 1983. Gametophyte differentiation of pentaploid Pteris vittata L. Proc. Indian Natn. Sci. Acad. B49:740–742.Google Scholar
  20. Kiss, H. G., and Kiss, J. Z. 1998. Spore germination in populations of Schizaea pusilla from New Jersey and Nova Scotia. International J. Plant Sci. 159:848–852.CrossRefGoogle Scholar
  21. Kott, L. S., and Britton, D. M. 1982. A comparative study of spore germination of some Isoetes species of northeastern North America. Can. J. Bot. 60:1679–1687.CrossRefGoogle Scholar
  22. Kott, L. S., and Peterson, R. L. 1974. Comparative study of gametophyte development of diploid and tetraploid races of Polypodium virginianum. Can. J.Bot. 52:91–96.CrossRefGoogle Scholar
  23. Lebkuecher, J. G. 1997. Desiccation-time limits of photosynthetic recovery in Equisetum hyemale (Equisetaceae) spores. Amer. J. Bot. 84:792–797.CrossRefGoogle Scholar
  24. Lin, C. H., Chen, B. S., Yu, C. W., and Chiang, S. W. 2001. A water-based triphenyltetrazolium chloride method for the evaluation of green plant tissue viability. Phytochem. Anal. 12:211–213.CrossRefPubMedGoogle Scholar
  25. Lindsay, S., and Dyer, A. 1990. Fern spore banks: implications for gametophyte establishment. In Taxonomía, biogeografía y conservación de pteridófitos, ed. J. Rita, pp. 243–253. Palma de Mallorca: Sociedad de Historia Nartural de las Islas Baleares.Google Scholar
  26. Lloyd, R., and Klekowski, E. J. 1970. Spore germination and viability in pteridophyta: evolutionary significance of chlorophyllous spores. Biotropica 2:129–137.CrossRefGoogle Scholar
  27. Nauyalis, I. I. 1989. Factors of the formation of fern gametophytes in nature. Botanicheskii Zhurnal 74:844–852.Google Scholar
  28. Norton, J. D. 1966. Testing of Plum Pollen Viability with Tetrazolium Salts. Proc. Am. Soc. Hortic. Sci. 89:132–134.Google Scholar
  29. Okada, Y. 1929. Notes on the germination of the spores of some Pteridophytes with special regard to their viability. Sci. Rept. Tdhoku Imp. Univ. Biol. 4:127–182.Google Scholar
  30. Olsen, L. T., and Gullvag, B. M. 1974. A fine structural and cytochemical study of mature and germinating spores of Equisetum arvense. Grana 13:113–118.CrossRefGoogle Scholar
  31. Pangua, E., Lindsay, S., and Dyer, A. 1994. Spore germination and gametophyte development in three species of Asplenium. Ann. Bot. 73:587–593.CrossRefGoogle Scholar
  32. Pangua, E., Quintanilla, L. G., Sancho, A., and Pajaron, S. 2003. A comparative study of the gametophytic generation in the Polystichum aculeatum group (Pteridophyta). Int. J. Plant Sci. 164:295–303.CrossRefGoogle Scholar
  33. Pence, V. C. 2000. Survival of chlorophyllous and nonchlorophyllous fern spores through exposure to liquid nitrogen. Amer. Fern J. 90:119–126.CrossRefGoogle Scholar
  34. Pence, V. C. 2008. Ex situ conservation of ferns and lycophytes – approaches and techniques. In Biology and evolution of ferns and lycophytes, ed. T. A. Ranker, and C. H. Hauffler, pp. 284–300. Cambridge: University Press.Google Scholar
  35. Penrod, K. A., and McCormick, L. H. 1996. Abundance of viable hay-scented fern spores germinated from hardwood forest soils at various distances from a source. Amer. Fern J. 86:69–79.CrossRefGoogle Scholar
  36. Perez-Garcia, B., Mendoza-Ruiz, A., Sanchez-Coronado, M. E., and Orozco-Segovia, A. 2007. Effect of light and temperature on germination of spores of four tropical fern species. Acta Oecol. Int. J. Ecol. 32:172–179.CrossRefGoogle Scholar
  37. Prada, C., Pangua, E., Pajaron, S., Herrero, A., Escudero, A., and Rubio, A. 1995. A comparative-study of gametophyte morphology, gametangial ontogeny and sex expression in the Asplenium adiantum-nigrum complex (Aspleniaceae, Pteridophyta). Ann. Bot. Fenn. 32:107–115.Google Scholar
  38. Quintanilla, L. G., and Escudero, A. 2006. Spore fitness components do not differ between diploid and allotetraploid species of Dryopteris (Dryopteridaceae). Ann. Bot. 98:609–618.CrossRefPubMedGoogle Scholar
  39. Quintanilla, L. G., Amigo, J., Pangua, E., and Pajaron, S. 2002. Effect of storage method on spore viability in five globally threatened fern species. Ann. Bot. 90:461–467.CrossRefPubMedGoogle Scholar
  40. Raghavan, V. 1989. Developmental biology of fern gametophytes. Cambridge: University Press.CrossRefGoogle Scholar
  41. Schmitz, G., Randi, G. A. M., Puchalskil, A., Santos, D. D. S., and Dos Reis, M. S. 2006. Variability in the germination of spores among and within natural populations of the endangered tree fern Dicksonia sellowiana hook. (Xaxim). Braz. Arch. Biol. Technol. 49:1–10.Google Scholar
  42. Schneller, J. J. 1998. How much genetic variation in fern populations is stored in the spore banks? A study of Athyrium filix-femina (L) Roth. Bot. J. Linnean Soc. 127:195–206.Google Scholar
  43. Schneller, J. 2008. Antheridiogens. In Biology and evolution of ferns and lycophytes, ed. T. A. Ranker, and C. H. Hauffler, pp. 134–158. Cambridge: University Press.Google Scholar
  44. Sheffield, E. 1996. From pteridophyte spore to sporophyte in the natural environment. In Pteridology in Perspective, ed. M. G. J. M. Camus, R. Johns, pp. 541–549. Royal Botanic Gardens, KewGoogle Scholar
  45. Shorina, N. I. 2001. Population biology of gametophytes in homosporous polypodiophyta. Russ. J. Ecol. 32:164–169.CrossRefGoogle Scholar
  46. Smith, D. L., and Robinson, P. M. 1975. Effects of spore age on germination and gametophyte development in Polypodium vulgare L. New Phytol. 74:101–108.CrossRefGoogle Scholar
  47. Steward, N., Martin, R., Engasser, J. M., and Goergen, J. L. 1999. A new methodology for plant cell viability assessment using intracellular esterase activity. Plant Cell Rep. 19:171–176.CrossRefGoogle Scholar
  48. Stokey, A. G. 1940. Spore germination and vegetative stages of the gametophytes of Hymenophyllum and Trichomanes. Bot. Gaz. 101:759–790.CrossRefGoogle Scholar
  49. Stokey, A. G. 1951. Duration of viability of spores of the Osmundaceae. Amer. Fern J. 41:111–115.CrossRefGoogle Scholar
  50. Stokey, A. G., and Atkinson, L. R. 1958. The gametophyte of the Grammitidaceae. Phytomorphology 8:391–403.Google Scholar
  51. Vizintin, L., and Bohanec, B. 2004. In vitro manipuilation of cucumber (Cucumis sativus L.) pollen and microspores: Isolation procedures, viability tessits, germination, maturation. Acta Biol. Cracov. Ser. Bot. 46:177–183.Google Scholar
  52. Wada, M. 2008. Photoresponses in fern gametophytes. In Biology and evolution of ferns and lycophytes, ed. T. A. Ranker, and C. H. Hauffler, pp. 3–48. Cambridge: University Press.Google Scholar
  53. Weinberg, E. S., and Voeller, B. R. 1969. Induction of fern spore germination. Proc. Natl. Acad. Sci. USA 64:835–842.CrossRefPubMedGoogle Scholar
  54. Whittier, D. P. 1970. Rate of gametophyte maturation in sexual and apogamous species of ferns. Phytomorphol. 20:30–35.Google Scholar
  55. Whittier, D. P. 1990. Factors affecting the viability of Psilotum spores. Amer. Fern J. 80:90–96.CrossRefGoogle Scholar
  56. Whittier, D. P. 1996. Extending the viability of Equisetum hyemale spores. Amer. Fern J. 86:114–118.CrossRefGoogle Scholar
  57. Whittier, D. P. 1998. Germination of spores of the Lycopodiaceae in axenic culture. Amer. Fern J. 88:106–113.CrossRefGoogle Scholar
  58. Whittier, D. P., and Moyroud, R. 1993. The promotion of spore germination and gametophyte development in Ophioglossum palmatum by low pH. Amer. Fern J. 83:41–46.CrossRefGoogle Scholar
  59. Windham, M., Wolf, P., and Ranker, T. 1986. Factors affecting prolonged spore viability in herbarium collections of three species of Pellaea. Amer. Fern J. 76:141–148.CrossRefGoogle Scholar
  60. Wollersheim, M. 1957. Untersuchungen über die keimungsphysiologie der sporen von Equisetum arvense and Equisetum limosum. Z. Bot. 45:145–149.Google Scholar
  61. Yamori, W., Kogami, H., Yoshimura, Y., Tsuji, T., and Masuzawa, T. 2006. A new application of the SFDA-staining method to assessment of the freezing tolerance in leaves of alpine plants. Polar Biosci. 20:82–91.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Departamento de Biología Vegetal I, Facultad de Ciencias BiológicasUniversidad Complutense de MadridMadridSpain

Personalised recommendations