Skip to main content

Conservation of Fern Spores

  • Chapter
  • First Online:
Working with Ferns

Abstract

Ferns are a diverse and important group of plants, but diversity of ­species and populations are at risk from increasing social pressures, loss of habitat, and climate change. Ex situ conservation is a useful strategy to limit decline in genetic diversity and requires technologies to preserve fern germplasm. Fern spore storage has received little research attention but, by analogy to seeds, may benefit from the extensive knowledge of seed storage gained during the last 50 years. Fern species produce either nongreen or green spores, which have been considered to exhibit storage physiologies similar to orthodox and recalcitrant seeds, respectively. Consequently, dry storage conditions are conventionally recommended for nongreen spores and humid storage in the refrigerator over media is recommended for medium term storage of green spores and some nongreen spores not tolerant to desiccation. Recently, we have shown that water content of stored ferns can be precisely controlled by adjustments in relative humidity, and that this control can be used to maximize longevity at a range of storage temperatures. Spore longevity is unexpectedly poor when they are stored at temperatures between 0 and 25°C and this has necessitated the use of cryogenic technologies developed over the last 15 years for fern spore storage. Crystallization of triacylglycerols (TAG also known as storage lipids) appears to be associated with fern spore response to low temperature and is analogous to responses reported for seeds of tropical origin. These recent discoveries and perspectives suggest that fern spores exhibit a storage physiology that has been described as intermediate between recalcitrant and orthodox storage behavior or that they exhibit a storage physiology that remains uncharacterized. More research on fern spore storage physiology is needed to contrast and compare various responses of diverse plant germplasm to different storage conditions. The unicellular structure of the fern spore may provide a useful model system to obtain a greater understanding of multicellular germplasm to improve storage techniques lead to more effective conservation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal, D. C., Pawar, S. S., and Mascarenhas, A. F. 1993. Cryopreservation of spores of Cyathea spinulosa Wall. ex. Hook. f. An endangered tree fern. J. Plant Physiol. 142:124–126.

    Google Scholar 

  • Aragón, C. F. and Pangua, E. 2004. Spore viability under different storage conditions in four rupicolous Asplenium L. taxa. Am. Fern J. 941:28–38.

    Article  Google Scholar 

  • Ballesteros, D., Estrelles, E., and Ibars, A. M. 2006. Responses of Pteridophyte spores to ultrafreezing temperatures for long-term conservation in Germplasm Banks. Fern Gazette 17:293–302.

    Google Scholar 

  • Ballesteros, D. and Walters, C. 2007a. Water properties in fern spores: sorption characteristics relating to water affinity, glassy states and storage stability. J. Exp. Bot. 58:1185–1196.

    Article  CAS  PubMed  Google Scholar 

  • Ballesteros, D. and Walters, C. 2007b. Calorimetric properties of water and triacylglycerols in fern spores relating to storage at cryogenic temperatures. Cryobiology 55:1–9.

    Article  CAS  PubMed  Google Scholar 

  • Ballesteros, D. 2008. Conservación ex situ de esporas de pteridofitos. In Conservación ex situ de plantas silvestres, eds. G. Bacchetta, Bueno Sanchez, A., Fenu, G., Jimenez-Alfaro, B., Mattana, E., Piotto, B., Virevaire, M., pp. 221–224. Oviedo: Principado de Asturias/La Caixa.

    Google Scholar 

  • Beri, A. and Bir, S. S. 1993. Germination of stored spores of Pteris vittata L. Am. Fern J. 833:73–78.

    Article  Google Scholar 

  • Berjak, P. and Pammenter, N. W. 2008. From Avicennia to Zizania: Seed recalcitrance in perspective. Ann. Bot. 101:213–228.

    Article  PubMed  Google Scholar 

  • Camloh, M. 1999. Spore age and sterilization affects germination and early gametophyte development of Platycerium bifurcatum. Am. Fern J. 892:124–132.

    Article  Google Scholar 

  • Constantino, S., Santamaria, L.M., and Hodson, E. 2000. Storage and in vitro germination of tree fern spores. Bot. Gard. Micropropag. News 24:58–60.

    Google Scholar 

  • Crane, J., Kovach, D., Gardner, C., and Walters, C. 2006. Triacylglycerol phase and ‘intermediate’ seed storage physiology: a study of Cuphea carthagenensis. Planta 223:1081–1089.

    Article  CAS  PubMed  Google Scholar 

  • Crane, J., Miller, A., Van Roekel, J. W., and Walters, C. 2003. Triacylglycerols determine the unusual storage physiology of Cuphea seed. Planta 217:699–708.

    Article  CAS  PubMed  Google Scholar 

  • DeMaggio, A. E., Greene, C., and Stetler, D. 1980. Biochemistry of fern spore germination: ­glyoxylate and glycolate cycle activity in Onoclea sensiibilis L. Plant Physiol. 66:922–924.

    Article  CAS  PubMed  Google Scholar 

  • Dyer, A. F. 1979. The experimental biology of ferns. London: Academic.

    Google Scholar 

  • Dyer, A. F. 1994. Natural soil spore banks - can they be used to retrieve lost ferns? Biodivers Conserv 3:160–175.

    Article  Google Scholar 

  • Ellis, R. H., Hong, T. D., and Roberts, E. H. 1990a. An intermediate category of seed behavior? I. Coffee. J. Exp. Bot. 41:1167–1174.

    Article  Google Scholar 

  • Ellis, R. H., Hong, T. D., and Roberts, E. H. 1990b. An intermediate category of seed behavior? II. Effects of provenance, immaturity, and imbibition on desiccation-tolerance in coffee. J. Exp. Bot. 42:653–657.

    Article  Google Scholar 

  • FAO/IPGRI. 1994. Genebank standards. Rome: Food and Agricultural Organization of the United Nations/International Plant Genetic Resources Institute.

    Google Scholar 

  • Gemmrich, A. R. 1977. Mobilization of reserve lipids in germinating spores of the fern Anemia phyllitidis L. Plant Sci. Lett. 9:301–307.

    Article  CAS  Google Scholar 

  • Gemmrich, A. R. 1980. Developmental changes in microbody enzyme activities in germinating spores of the fern Pteris vittata. Z. Pflanzenphysiol. 97:153–160.

    CAS  Google Scholar 

  • Gómez-Campo, C. 2001. La práctica de la conservación de semillas a largo plazo. In: Conservación de especies vegetales amenazadas en la región mediterránea occidental. Una perspectiva desde el fin de siglo, ed. C. Gómez-Campo, pp. 255–266. Madrid. Fundación Ramón Areces.

    Google Scholar 

  • Gullvag, B. M. 1968. On the fine structure of the spores of Equisetum fluviatile var. verticillatum studied in the quiescent, germinated and non-viable state. Grana Palynol. 8:23–69.

    Article  Google Scholar 

  • Gullvag, B. M. 1969. Primary storage products of some pteridophyte spores – A fine structural study. Phytomorphology 19:82–92.

    Google Scholar 

  • Hauke, R. L. 1969. Gametophyte development in Latin American horsetails. Bull. Torrey Bot. Club 96:568–577.

    Article  Google Scholar 

  • Hiyama, T., Imaichi, R., and Kato, M. 1992. Comparative development of gametophytes of Osmunda lancea and O. japonica (Osmundaceae): adaptation of rheophilous fern gametophyte. Bot. Mag., Tokyo 105:215–225.

    Article  Google Scholar 

  • Hoekstra, F. A. 2002. Pollen and spores: desiccation tolerance in pollen and the spores of lower plants and fungi. In Desiccation and survival in plants: drying without dying, eds. M. Black, and Prichard H. W., pp. 185 -205. Wallingford, UK: CAB International.

    Chapter  Google Scholar 

  • Ide, J. M., Jermy, A. C., and Paul, A. L. 1992. Fern horticulture: past, present and future perspectives. Andover, UK: Intercept.

    Google Scholar 

  • Jones, L. E. and Hook, P. W. 1970. Growth and development in microculture of gametophytes from stored spores of Equisetum. Am. J. Bot. 544: 430–435.

    Article  Google Scholar 

  • Kato, Y. 1976. The effect of freezing and organic solvents on viability of chlorophyllous fern spores. Cytologia 41:387–393.

    Google Scholar 

  • Lebkuecher, J. G. 1997. Desiccation-time limits of photosynthetic recovery in Equisetum Hyemale (Equisetaceae) spores. Am. J. Bot. 84:792–797.

    Article  Google Scholar 

  • Lindsay, S., Williams, N., and Dyer, A. F. 1992. Wet storage of fern spores: unconventional but far more effective! In Fern horticulture: past, present and future perspectives, eds. J. M. Ide, Jermy, A.C., and Paul, A. M., pp. 285–294. Andover: Intercept

    Google Scholar 

  • Lloyd, R. M. and Klekowski, E. J. Jr. 1970. Spore germination and viability in Pteridophyta: evolutionary significance of chlorophyllous spores. Biotropica 2:129–137.

    Article  Google Scholar 

  • Minamikawa, T., Koshiba, T., and Wada, M. 1984. Compositional changes in germinating spores of Adiantum capillus-veneris L. Bot. Mag., Tokyo 97:313–322.

    Article  CAS  Google Scholar 

  • Morini, S. 2000. In vitro culture of Osmunda regalis fern. J. Hortic. Sci. Biotechnol. 751:31–34.

    Google Scholar 

  • Page, C. N., Dyer, A. F., Lindsay, S., and Mann, D. G. 1992. Conservation of Pteridophytes—the ex situ approach. In Fern horticulture: past, present and future perspectives, eds. J. M. Ide, Jermy, A. C., and Paul, A. M., pp. 269–278. Andover: Intercept.

    Google Scholar 

  • Pence, V. C. 2000. Survival of chlorophyllous and nonchlorophyllous fern spores through exposure to liquid nitrogen. Am. Fern J. 904:119–126.

    Article  Google Scholar 

  • Pence, V. C. 2004. Ex situ conservation methods for Bryophytes and Pteridophytes. In Ex situ plant conservation: supporting species survival in the wild, eds. E. O. Guerrant, Havens, K., and Maunder, M., pp. 206 – 227. Washington DC: Island Press.

    Google Scholar 

  • Quintanilla, L. G., Amigo, J., Pangua, E., and Pajaron, S. 2002. Effect of storage method on spore viability in five globally threatened fern species. Ann. Bot. 904:461–467.

    Article  Google Scholar 

  • Randi, A. M. and Felippe, G. M. 1988. Mobilization of storage reserves during Cyathea delgadii spore germination. Bot. Mag., Tokyo 101:529–532.

    Article  Google Scholar 

  • Rita, J. 1990. Taxonomia. Biogeografia i conservacion de pteridofitos. Palma de Mallorca, Spain: Societat d’Historia Natural de les illes Balears. IME.

    Google Scholar 

  • Roberts, E. H. and Ellis, R. H. 1989. Water and seed survival. Ann. Bot. 63:39–52.

    Google Scholar 

  • Roberts, E. H. 1973. Predicting the storage life of seeds. Seed Sci. Technol. 1:499–514.

    Google Scholar 

  • Robinson, P. M., Smith, D. L., Safford, R., and Nichols, B. W. 1973. Lipid metabolism in the fern Polypodium vulgare. Phytochemistry 12:1377–1381.

    Article  CAS  Google Scholar 

  • Rogge, G. D., Viana, A. M., and Randi, A. M. 2000. Cryopreservation of spores of Dicksonia sellowiana: An endangered tree fern indigenous to South and Central America. CryoLetters 214:223–230.

    Google Scholar 

  • Simabukuro, E. A., De Carvalho, M. A. M., and Felippe, G. M. 1998a. Reserve substances and storage of Cyathea delgadii Sternb. spores. Revista Brasileira de Botanica 21:149–152.

    CAS  Google Scholar 

  • Simabukuro, E. A., Dyer, A. F., and Felippe, G. M. 1998b. The effect of sterilization and storage conditions on the viability of the spores of Cyathea delgadii. Am. Fern J. 882:72–80.

    Article  Google Scholar 

  • Smith, D. L., and Robinson, P. M. 1975. The effects of spore age on germination and gametophyte development in Polypodium vulgare L. New Phytol. 74:101–108.

    Article  Google Scholar 

  • Towill, L. R. and Ikuma, H. 1975. Photocontrol of the germination of Onoclea spores. IV. Metabolic changes during germination. Plant Physiol. 56:468–473.

    Article  CAS  PubMed  Google Scholar 

  • Vertucci, C. W., Berjak, P., Pammenter, N. W., and Crane, J. 1991. Cryopreservation of embryonic axes of an homoiohydrous (recalcitrant) seed in relation to calorimetric properties of tissue water. CryoLetters 12:339–350.

    Google Scholar 

  • Villiers, T. A. 1974. Seed aging: chromosome stability and extended viability of seed stored fully imbibed. Plant Physiol. 53:875–878.

    Article  CAS  PubMed  Google Scholar 

  • Volk, G. M., Crane, J., Caspersen, A. M., Hill, L., Gardner, C., and Walters, C. 2006. Massive cellular disruption occurs during early imbibition of Cuphea seeds containing crystallized triacylglycerols. Planta 224:1415–1426.

    Article  CAS  PubMed  Google Scholar 

  • Walters, C. 1998. Understanding the mechanisms and kinetics of seed aging. Seed Sci. Res. 8:223–244.

    Article  CAS  Google Scholar 

  • Walters, C. 2004. Guidelines for seed storage. In: Ex situ plant conservation: supporting species survival in the wild, eds. E. O. Guerrant, Havens, K., and Maunder, M., pp. 442–453. Covelo, CA: Island Press

    Google Scholar 

  • Walters, C., Hill, L. M., and Wheeler, L. J. 2005. Dying while dry: kinetics and mechanisms of deterioration in desiccated organisms. Integr. Comp. Biol. 45:751–758.

    Article  Google Scholar 

  • Whittier, D. P. 1996. Extending the viability of Equisetum hyemale spores. Amer. Fern J. 864:114–118.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Ballesteros .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ballesteros, D. (2011). Conservation of Fern Spores. In: Kumar, A., Fernández, H., Revilla, M. (eds) Working with Ferns. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7162-3_12

Download citation

Publish with us

Policies and ethics