Skip to main content

Discovering Communities from Social Networks: Methodologies and Applications

  • Chapter
  • First Online:
Book cover Handbook of Social Network Technologies and Applications
  • 3347 Accesses

Abstract

Each chapter should be preceded by an abstract (10–15 lines long) that summarizes the content. The abstract will appear online at www.SpringerLink.com and be available with unrestricted access. This allows unregistered users to read the abstract as a teaser for the complete chapter. As a general rule the abstracts will not appear in the printed version of your book unless it is the style of your particular book or that of the series to which your book belongs. Please use the ’starred’ version of the new Springer abstract command for typesetting the text of the online abstracts (cf. source file of this chapter template abstract) and include them with the source files of your manuscript. Use the plain abstract command if the abstract is also to appear in the printed version of the book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B. Krishnamurthy, An improved min-cut algorithm for partitioning VLSI networks, IEEE Trans. Comp., Vol. 33, No. 5, 1984, pp. 438–446

    Article  MATH  Google Scholar 

  2. L. Hagen, and A.B. Kahng, New spectral methods for ratio cut partition and clustering, IEEE Trans. Computer-Aided Design, Vol. 11, No. 9, 1992, pp. 1074–1085

    Article  Google Scholar 

  3. M.T. Heath, E.G.Y. Ng, and B.W. Peyton, Parallel algorithm for sparse linear systems, SIAM Rev., Vol. 33, 1991, pp. 420–460

    Article  MathSciNet  MATH  Google Scholar 

  4. Pothen, H. Simon, and K.P. Liou, Partitioning sparse matrices with eigenvalues of graphs, SIAM J. Matrix Anal. Appl., Vol. 11, No. 3, 1990, pp. 430–452

    Article  MathSciNet  Google Scholar 

  5. H. Simon, Partitioning of unstructured problems for parallel processing, Comput. Syst. Eng., Vol. 2, No. 3, 1991, pp. 135–148

    Article  Google Scholar 

  6. B. Hendrickson, and R. Leland, An improved spectral graph partitioning algorithm for mapping parallel computations, SIAM J. Comp. Sci., Vol. 16, No. 2, 1995, pp. 452–469

    Article  MathSciNet  MATH  Google Scholar 

  7. J. Shi, and J. Malik, Normalized cuts and image segmentation, IEEE Trans. Pattern Anal. Mach. Intell., Vol. 22, 2000, pp. 888–904

    Article  Google Scholar 

  8. M. Girvan and M.E.J. Newman, Community structure in social and biological networks, Proc. Natl. Acad. Sci., Vol. 9, 2002, pp. 7821–7826

    Article  MathSciNet  MATH  Google Scholar 

  9. M.E.J. Newman and M. Girvan, Finding and evaluating community structure in networks, Phys. Rev. E, Vol. 69, 2004, 026113-026115

    Article  Google Scholar 

  10. G. Palla, A.L. Barabasi, T. Vicsek, Quantifying social group evolution, Nature, Vol. 446, No. 7136, 2007, pp. 664–667

    Article  Google Scholar 

  11. V. Spirin, L.A. Mirny, Protein complexes and functional modules in molecular networks, Proc. Natl. Acad. Sci., Vol. 100, No. 21, 2003, p. 12123

    Google Scholar 

  12. D.M. Wilkinson, B.A. Huberman, A method for finding communities of related genes, Proc. Natl. Acad. Sci., Vol. 101, 2004, pp. 5241–5248

    Article  Google Scholar 

  13. R. Guimera, and L.A.N. Amaral, Functional cartography of complex metabolic networks, Nature, Vol. 433, 2005, pp. 895–900

    Article  Google Scholar 

  14. J.M. Kleinberg, Authoritative sources in a hyperlinked environment, J. ACM, Vol. 46, No. 5, 1999, pp. 604–632

    Article  MathSciNet  MATH  Google Scholar 

  15. G.W. Flake, S. Lawrence, C.L. Giles, F.M. Coetzee, Self-organization and identification of Web communities, IEEE Comp., Vol. 35, No. 3, 2002, pp. 66–71

    Article  Google Scholar 

  16. H. Ino, M. Kudo, A. Nakamura, Partitioning of Web graphs by community topology, Proc. of the 14th International Conference on World Wide Web (WWW’05), 2005, pp. 661–669

    Google Scholar 

  17. M. Fiedler, Algebraic connectivity of graphs, Czechoslovakian Math. J., Vol. 23, 1973, pp. 298–305

    Article  MathSciNet  MATH  Google Scholar 

  18. M. Fiedler, A Property of eigenvectors of nonnegative symmetric matrices and its application to graph theory, Czechoslovakian Math. J., Vol. 25, 1975, pp. 619–637

    Article  MathSciNet  MATH  Google Scholar 

  19. A. Pothen, H. Simon, and K.P. Liou, Partitioning sparse matrices with eigenvectors of graphs, SIAM J. Matrix Anal. Appl., Vol. 11, 1990, pp. 430–452

    Article  MathSciNet  MATH  Google Scholar 

  20. Y.C. Wei and C.K. Cheng, Ration cut partitioning for hierarchical designs, IEEE Trans. Computer-Aided Design, Vol. 10, No. 7, 1991, pp. 911–921

    Article  Google Scholar 

  21. B.W. Kernighan, and S. Lin, An efficient heuristic procedure for partitioning graphs, Bell System Technical, Vol. 49, 1970, pp. 291–307

    Article  MATH  Google Scholar 

  22. M.E.J. Newman, Fast algorithm for detecting community structure in networks, Phys. Rev. E, Vol. 69, 2004, pp. 066133

    Article  Google Scholar 

  23. Z. Wang, and J. Zhang, In search of the biological significance of modular structures in protein networks, PLOS Comp. Bio., Vol. 3, No. 6, 2007, p. e107

    Google Scholar 

  24. J.M. Pujol, J. Bejar, and J. Delgado, Clustering algorithm for determining community structure in large networks, Phys. Rev. E, Vol. 74, 2006, p. 016107

    Article  Google Scholar 

  25. M.E.J. Newman, Modularity and community structure in networks, Proc. Natl. Acad. Sci., Vol. 103, No. 23, 2006, pp. 8577–8582

    Article  Google Scholar 

  26. J. Reichardt and S. Bornholdt, Detecting fuzzy community structures in complex networks with a potts model, Phys. Rev. Let., Vol. 93, No. 19, 2004, p. 218701

    Google Scholar 

  27. F. Wu and B.A. Huberman, Finding communities in linear time: a physics approach, Euro. Phys. J. B, Vol. 38, 2004, pp. 331–338

    Article  Google Scholar 

  28. G. Palla, I. Derenyi, I. Farkas, and T. Vicsek, Uncovering the overlapping community structures of complex networks in nature and society, Nature, Vol. 435, No. 7043, 2005, pp. 814–818

    Article  Google Scholar 

  29. B. Yang, W.K. Cheung, and J. Liu, Community mining from signed social networks, IEEE Trans. Knowledge and Data Eng., Vol. 19, No. 10, 2007, pp. 1333–1348

    Article  Google Scholar 

  30. M.R. Garey, and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W. H. Freeman, CA, 1979

    MATH  Google Scholar 

  31. B. Yang, D. Liu, J. Liu, D. Jin, and H. Ma, Complex network clustering algorithms, J. Software, Vol. 20, No. 1, 2008, pp. 54–66

    Article  MATH  Google Scholar 

  32. R. Guimera, M. Sales and L.A.N. Amaral, Modularity from fluctuations in random graphs and complex networks, Phys. Rev. E, Vol. 70, 2004, 025101

    Article  Google Scholar 

  33. S. Fortunato, M. Barthelemy, Resolution limit in community detection, Proc. of the National Academy of Science, Vol. 104, No. 1, 2007, pp. 36–41

    Article  Google Scholar 

  34. J. Reichardt and S. Bornholdt, Detecting fuzzy community structures in complex networks with a potts model, Phys. Rev. Let., Vol. 93, No. 19, 2004, p. 218701

    Google Scholar 

  35. F. Radicchi, C. Castellano, F. Cecconi, V. Loreto, and D. Parisi, Defining and Identifying communities in networks, Proc. Natl. Acad. Sci., Vol. 101, No. 9, 2004, pp. 2658–2663

    Article  Google Scholar 

  36. J.R. Tyler, D.M. Wilkinson, and B.A. Huberman, Email as spectroscopy: automated discovery of community structure within organizations, Proc. of the 1st International Conference on Communities and Technologies, 2003

    Google Scholar 

  37. W.Y. Chen, D. Zhang, E.Y. Chang, Combinational collaborative filtering for personalized community recommendation, Proc. of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Ming (KDD’08), 2008

    Google Scholar 

  38. A.V. Goldberg and R.E. Tarjan, A new approach to the maximum flow problem, J. ACM, Vol. 35, No. 4, 1988, pp. 921–940

    Article  MathSciNet  MATH  Google Scholar 

  39. A.V. Goldberg, Recent developments in maximum flow algorithms, Proc. of the 6th Scandinavian Workshop on Algorithm Theory, 1998

    Google Scholar 

  40. S. Wasserman and K. Faust, Social network analysis, Cambridge University Press, Cambridge, 1994

    Book  MATH  Google Scholar 

  41. P. Pons, and M. Latapy, Computing communities in large networks using random walks, J. Graph Algorithms Appl., Vol. 10, No. 2, 2006, pp. 191–218

    Article  MathSciNet  MATH  Google Scholar 

  42. K.M. Hall, An r-dimensional quadratic placement algorithm, Management Science, Vol. 17, No. 3, 1970, pp. 219–229

    Article  MATH  Google Scholar 

  43. L. Donetti and M.A. Munoz, Detecting network communities: a new systematic and efficient algorithm, J. Stat. Mech, Vol. 10, 2004, p. P10012

    Article  MATH  Google Scholar 

  44. B. Yang, and J. Liu, Discovering global network communities based on local centralities, ACM Trans. on the Web, Vol. 2, No. 1, 2008, Article 9, pp. 1–32

    Google Scholar 

  45. W. Imrich and S. Klavzar, Product graphs: structure and recognition, Wiley, New York, 2000

    MATH  Google Scholar 

  46. B. Yang, and J. Liu, An efficient probabilistic approach to network community mining, Proc. of Joint Rough Set Symposium (JRS’07), 2007, pp. 267–275

    Google Scholar 

  47. B. Yang, J. Liu, D. Liu, An autonomy-oriented computing approach to community mining in distributed and dynamic networks, Autonomous Agent Multi-Agent System, Vol. 20, No. 2, 2010, pp. 123–157

    Article  Google Scholar 

  48. J. Liu, X. Jin, K.C. Tsui. Autonomy oriented computing. Springer, Berlin, 2004

    MATH  Google Scholar 

  49. J. Liu, X. Jin, K.C. Tsui. Autonomy oriented computing (AOC): formulating computational systems with autonomous components, IEEE Trans. Systems Man Cybernetics, Part A: Systems and Humans, Vol. 35, No. 6, 2005, pp. 879–902

    Google Scholar 

Download references

Acknowledgements

This work was funded by the National Natural Science Foundation of China under Grant Nos. 60773099, 60873149 and 60973088, the National High-Tech Research and Development Plan of China under Grant Nos. 2006AA10Z245 and 2006AA10A309, the Open Project Program of the National Laboratory of Pattern Recognition (NLPR), and the basic scientific research fund of Chinese Ministry of Education under Grant No. 200903177.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Yang, B., Liu, D., Liu, J. (2010). Discovering Communities from Social Networks: Methodologies and Applications. In: Furht, B. (eds) Handbook of Social Network Technologies and Applications. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7142-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7142-5_16

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-7141-8

  • Online ISBN: 978-1-4419-7142-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics