Skip to main content

Cardiac Cell Therapy: Present and Future

  • Chapter
  • First Online:
Book cover Molecular Defects in Cardiovascular Disease
  • 595 Accesses

Abstract

End stage heart failure following myocardial infarction is a major health problem despite significant improvement in treatment intervention. Heart transplantation is the only option to treat end stage heart failure patients, however; the supply needed has severe shortage. Therefore, cell transplantation has gained significant interest as a future treatment of various heart diseases including myocardial infarction. Optimal cell type for complete cardiac regeneration is still needed as clinical trials using adult stem cell transplantation so far did not show long-term significant improvement in cardiac function. Moreover, there are concerns over the differentiation of adult stem cells into cardiac cell types. Embryonic stem cells can be used for cell transplantation but their potential in clinical trial has been hampered due to their characteristics of teratoma formation. Furthermore, beneficial effects observed in clinical and experimental studies that may be associated with released autocrine or paracrine factors following cell transplantation is another major area of current investigation discussed in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boersma E, Mercado N, Poldermans D, et al. Acute myocardial infarction. Lancet. 2003;361:847–58.

    Article  PubMed  Google Scholar 

  2. Anversa P, Olivetti G, Leri A, et al. Myocyte cell death and ventricular remodeling. Curr Opin Nephrol Hypertens. 1997;6:169–76.

    Article  PubMed  CAS  Google Scholar 

  3. Jugdutt BI. Ventricular remodeling after infarction and the extracellular collagen matrix: when is enough enough? Circulation. 2003;108:1395–403.

    Article  PubMed  Google Scholar 

  4. Jugdutt BI, Menon V, Kumar D, et al. Vascular remodeling during healing after myocardial infarction in the dog model: effects of reperfusion, amlodipine and enalapril. J Am Coll Cardiol. 2002;39:1538–45.

    Article  PubMed  Google Scholar 

  5. Kudo M, Wang Y, Wani MA, et al. Implantation of bone marrow stem cells reduces the infarction and fibrosis in ischemic mouse heart. J Mol Cell Cardiol. 2003;35:1113–9.

    Article  PubMed  CAS  Google Scholar 

  6. Kumar D, Kamp TJ, LeWinter MM. Embryonic stem cells: differentiation into cardiomyocytes and potential for heart repair and regeneration. Coron Artery Dis. 2005;16:111–6.

    Article  PubMed  Google Scholar 

  7. Singla DK, Sobel BE. Enhancement by growth factors of cardiac myocyte differentiation from embryonic stem cells: a promising foundation for cardiac regeneration. Biochem Biophys Res Commun. 2005;335:637–42.

    Article  PubMed  CAS  Google Scholar 

  8. Singla DK, Sun B. Transforming growth factor-beta2 enhances differentiation of cardiac myocytes from embryonic stem cells. Biochem Biophys Res Commun. 2005;332:135–41.

    Article  PubMed  Google Scholar 

  9. Singla DK, Hacker TA, Ma L, et al. Transplantation of embryonic stem cells into the infarcted mouse heart: formation of multiple cell types. J Mol Cell Cardiol. 2006;40:195–200.

    Article  PubMed  CAS  Google Scholar 

  10. Puceat M. TGFbeta in the differentiation of embryonic stem cells. Cardiovasc Res. 2006;74:256–61.

    Article  PubMed  Google Scholar 

  11. Kawai T, Takahashi T, Esaki M, et al. Efficient cardiomyogenic differentiation of embryonic stem cell by fibroblast growth factor 2 and bone morphogenetic protein 2. Circ J. 2004;68:691–702.

    Article  PubMed  CAS  Google Scholar 

  12. Balsam LB, Wagers AJ, Christensen JL, et al. Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature. 2004;428:668–73.

    Article  PubMed  CAS  Google Scholar 

  13. Behfar A, Zingman LV, Hodgson DM, et al. Stem cell differentiation requires a paracrine pathway in the heart. FASEB J. 2002;16:1558–66.

    Article  PubMed  Google Scholar 

  14. Beltrami AP, Urbanek K, Kajstura J, et al. Evidence that human cardiac myocytes divide after myocardial infarction. N Engl J Med. 2001;344:1750–7.

    Article  PubMed  CAS  Google Scholar 

  15. Haider HK, Ashraf M. Bone marrow stem cell transplantation for cardiac repair. Am J Physiol Heart Circ Physiol. 2005;288:H2557–67.

    Article  PubMed  CAS  Google Scholar 

  16. Beltrami AP, Barlucchi L, Torella D, et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell. 2003;114:763–76.

    Article  PubMed  CAS  Google Scholar 

  17. Urbanek K, Rota M, Cascapera S, et al. Cardiac stem cells possess growth factor-receptor systems that after activation regenerate the infarcted myocardium, improving ventricular function and long-term survival. Circ Res. 2005;97:663–73.

    Article  PubMed  CAS  Google Scholar 

  18. Urbanek K, Torella D, Sheikh F, et al. Myocardial regeneration by activation of multipotent cardiac stem cells in ischemic heart failure. Proc Natl Acad Sci USA. 2005;102:8692–7.

    Article  PubMed  CAS  Google Scholar 

  19. Urbanek K, Cesselli D, Rota M, et al. Stem cell niches in the adult mouse heart. Proc Natl Acad Sci USA. 2006;103:9226–31.

    Article  PubMed  CAS  Google Scholar 

  20. Urbanek K, Quaini F, Tasca G, et al. Intense myocyte formation from cardiac stem cells in human cardiac hypertrophy. Proc Natl Acad Sci USA. 2003;100:10440–5.

    Article  PubMed  CAS  Google Scholar 

  21. Hodgson DM, Behfar A, Zingman LV, et al. Stable benefit of embryonic stem cell therapy in myocardial infarction. Am J Physiol Heart Circ Physiol. 2004;287:H471–9.

    Article  PubMed  CAS  Google Scholar 

  22. Spinale FG. Matrix metalloproteinases: regulation and dysregulation in the failing heart. Circ Res. 2002;90:520–30.

    Article  PubMed  CAS  Google Scholar 

  23. Menard C, Hagege AA, Agbulut O, et al. Transplantation of cardiac-committed mouse embryonic stem cells to infarcted sheep myocardium: a preclinical study. Lancet. 2005;366:1005–12.

    Article  PubMed  Google Scholar 

  24. Kofidis T, de Bruin JL, Yamane T, et al. Insulin-like growth factor promotes engraftment, differentiation, and functional improvement after transfer of embryonic stem cells for myocardial restoration. Stem Cells. 2004;22:1239–45.

    Article  PubMed  CAS  Google Scholar 

  25. Kofidis T, de Bruin JL, Yamane T, et al. Stimulation of paracrine pathways with growth factors enhances embryonic stem cell engraftment and host-specific differentiation in the heart after ischemic myocardial injury. Circulation. 2005;111:2486–93.

    Article  PubMed  CAS  Google Scholar 

  26. Emgard M, Hallin U, Karlsson J, et al. Both apoptosis and necrosis occur early after intracerebral grafting of ventral mesencephalic tissue: a role for protease activation. J Neurochem. 2003;86:1223–32.

    Article  PubMed  CAS  Google Scholar 

  27. Guerette B, Skuk D, Celestin F, et al. Prevention by anti-LFA-1 of acute myoblast death following transplantation. J Immunol. 1997;159:2522–31.

    PubMed  CAS  Google Scholar 

  28. Nakano M, Matsumoto I, Sawada T, et al. Caspase-3 inhibitor prevents apoptosis of human islets immediately after isolation and improves islet graft function. Pancreas. 2004;29:104–9.

    Article  PubMed  CAS  Google Scholar 

  29. Schierle GS, Hansson O, Leist M, et al. Caspase inhibition reduces apoptosis and increases survival of nigral transplants. Nat Med. 1999;5:97–100.

    Article  PubMed  CAS  Google Scholar 

  30. Muller-Ehmsen J, Whittaker P, Kloner RA, et al. Survival and development of neonatal rat cardiomyocytes transplanted into adult myocardium. J Mol Cell Cardiol. 2002;34:107–16.

    Article  PubMed  Google Scholar 

  31. Zhang M, Methot D, Poppa V, et al. Cardiomyocyte grafting for cardiac repair: graft cell death and anti-death strategies. J Mol Cell Cardiol. 2001;33:907–21.

    Article  PubMed  CAS  Google Scholar 

  32. Gnecchi M, He H, Liang OD, et al. Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nat Med. 2005;11:367–8.

    Article  PubMed  CAS  Google Scholar 

  33. Gnecchi M, He H, Noiseux N, et al. Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB J. 2006;20:661–9.

    Article  PubMed  CAS  Google Scholar 

  34. Anversa P, Kajstura J, Olivetti G. Myocyte death in heart failure. Curr Opin Cardiol. 1996;11:245–51.

    Article  PubMed  CAS  Google Scholar 

  35. Anversa P, Kajstura J. Myocyte cell death in the diseased heart. Circ Res. 1998;82:1231–3.

    PubMed  CAS  Google Scholar 

  36. Anversa P, Leri A, Kajstura J, et al. Myocyte growth and cardiac repair. J Mol Cell Cardiol. 2002;34:91–105.

    Article  PubMed  CAS  Google Scholar 

  37. Jugdutt BI. Remodeling of the myocardium and potential targets in the collagen degradation and synthesis pathways. Curr Drug Targets Cardiovasc Haematol Disord. 2003;3:1–30.

    Article  PubMed  CAS  Google Scholar 

  38. Askari AT, Brennan ML, Zhou X, et al. Myeloperoxidase and plasminogen activator inhibitor 1 play a central role in ventricular remodeling after myocardial infarction. J Exp Med. 2003;197:615–24.

    Article  PubMed  CAS  Google Scholar 

  39. Creemers E, Cleutjens J, Smits J, et al. Disruption of the plasminogen gene in mice abolishes wound healing after myocardial infarction. Am J Pathol. 2000;156:1865–73.

    Article  PubMed  CAS  Google Scholar 

  40. Creemers EE, Cleutjens JP, Smits JF, et al. Matrix metalloproteinase inhibition after myocardial infarction: a new approach to prevent heart failure? Circ Res. 2001;89:201–10.

    Article  PubMed  CAS  Google Scholar 

  41. Takeshita K, Hayashi M, Iino S, et al. Increased expression of plasminogen activator inhibitor-1 in cardiomyocytes contributes to cardiac fibrosis after myocardial infarction. Am J Pathol. 2004;164:449–56.

    Article  PubMed  CAS  Google Scholar 

  42. Xu X, Xu Z, Xu Y, et al. Selective down-regulation of extracellular matrix gene expression by bone marrow derived stem cell transplantation into infarcted myocardium. Circ J. 2005;69:1275–83.

    Article  PubMed  CAS  Google Scholar 

  43. Kumar D, Lou H, Singal PK. Oxidative stress and apoptosis in heart dysfunction. Herz. 2002;27:662–8.

    Article  PubMed  Google Scholar 

  44. Kumar D, Jugdutt BI. Apoptosis and oxidants in the heart. J Lab Clin Med. 2003;142:288–97.

    Article  PubMed  CAS  Google Scholar 

  45. Limana F, Urbanek K, Chimenti S, et al. bcl-2 overexpression promotes myocyte proliferation. Proc Natl Acad Sci USA. 2002;99:6257–62.

    Article  PubMed  CAS  Google Scholar 

  46. Kocher AA, Schuster MD, Szabolcs MJ, et al. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med. 2001;7:430–6.

    Article  PubMed  CAS  Google Scholar 

  47. Fatma S, Selby DE, Singla RD, et al. Factors released from embryonic stem cells stimulate c-kit-FLK-1(+ve) progenitor cells and enhance neovascularization. Antioxid Redox Signal. 2010;13:1857–65.

    Article  PubMed  CAS  Google Scholar 

  48. Ivey KN, Muth A, Arnold J, et al. MicroRNA regulation of cell lineages in mouse and human embryonic stem cells. Cell Stem Cell. 2008;2:219–29.

    Article  PubMed  CAS  Google Scholar 

  49. Kumar D, Kirshenbaum L, Li T, et al. Apoptosis in isolated adult cardiomyocytes exposed to adriamycin. Ann NY Acad Sci. 1999;874:156–68.

    Article  PubMed  CAS  Google Scholar 

  50. Kumar D, Kirshenbaum LA, Li T, et al. Apoptosis in adriamycin cardiomyopathy and its modulation by probucol. Antioxid Redox Signal. 2001;3:135–45.

    Article  PubMed  CAS  Google Scholar 

  51. Hausenloy DJ, Yellon DM. Survival kinases in ischemic preconditioning and postconditioning. Cardiovasc Res. 2006;70:240–53.

    Article  PubMed  CAS  Google Scholar 

  52. Singla DK, Lyons GE, Kamp TJ. Transplanted embryonic stem cells following mouse myocardial infarction inhibit apoptosis and cardiac remodeling. Am J Physiol Heart Circ Physiol. 2007;293:H1308–14.

    Article  PubMed  CAS  Google Scholar 

  53. Singla DK, McDonald DE. Factors released from embryonic stem cells inhibit apoptosis of H9c2 cells. Am J Physiol Heart Circ Physiol. 2007;293:H1590–5.

    Article  PubMed  CAS  Google Scholar 

  54. Singla DK, Singla RD, McDonald DE. Factors released from embryonic stem cells inhibit apoptosis in H9c2 cells through P1-3kinase/Akt but not ERK pathway. Am J Physiol Heart Circ Physiol. 2008;295:H907–13.

    Article  PubMed  CAS  Google Scholar 

  55. Care A, Catalucci D, Felicetti F, et al. MicroRNA-133 controls cardiac hypertrophy. Nat Med. 2007;13:613–8.

    Article  PubMed  CAS  Google Scholar 

  56. Chen JF, Mandel EM, Thomson JM, et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet. 2006;38:228–33.

    Article  PubMed  CAS  Google Scholar 

  57. Kwon C, Han Z, Olson EN, et al. MicroRNA1 influences cardiac differentiation in Drosophila and regulates Notch signaling. Proc Natl Acad Sci USA. 2005;102:18986–91.

    Article  PubMed  CAS  Google Scholar 

  58. van Rooij E, Sutherland LB, Liu N, et al. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci USA. 2006;103:18255–60.

    Article  PubMed  Google Scholar 

  59. van Rooij E, Olson EN. MicroRNAs: powerful new regulators of heart disease and provocative therapeutic targets. J Clin Invest. 2007;117:2369–76.

    Article  PubMed  Google Scholar 

  60. van Rooij E, Olson EN. MicroRNAs put their signatures on the heart. Physiol Genomics. 2007;31:365–6.

    Article  PubMed  Google Scholar 

  61. Thum T, Gross C, Fiedler J, et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature. 2008;456:980–4.

    Article  PubMed  CAS  Google Scholar 

  62. Reubinoff BE, Pera MF, Fong CY, et al. Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol. 2000;18:399–404.

    Article  PubMed  CAS  Google Scholar 

  63. Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282:1145–7.

    Article  PubMed  CAS  Google Scholar 

  64. Gertow K, Wolbank S, Rozell B, et al. Organized development from human embryonic stem cells after injection into immunodeficient mice. Stem Cells Dev. 2004;13:421–35.

    Article  PubMed  Google Scholar 

  65. Kuai XL, Cong XQ, Du ZW, et al. Treatment of surgically induced acute liver failure by transplantation of HNF4-overexpressing embryonic stem cells. Chin J Dig Dis. 2006;7:109–16.

    Article  PubMed  CAS  Google Scholar 

  66. Moriya K, Yoshikawa M, Saito K, et al. Embryonic stem cells develop into hepatocytes after intrasplenic transplantation in CCl4-treated mice. World J Gastroenterol. 2007;13:866–73.

    PubMed  Google Scholar 

  67. Min JY, Yang Y, Converso KL, et al. Transplantation of embryonic stem cells improves cardiac function in postinfarcted rats. J Appl Physiol. 2002;92:288–96.

    Article  PubMed  Google Scholar 

  68. Nussbaum J, Minami E, Laflamme MA, et al. Transplantation of undifferentiated murine embryonic stem cells in the heart: teratoma formation and immune response. FASEB J. 2007;21:1345–57.

    Article  PubMed  CAS  Google Scholar 

  69. Swijnenburg RJ, Tanaka M, Vogel H, et al. Embryonic stem cell immunogenicity increases upon differentiation after transplantation into ischemic myocardium. Circulation. 2005;112:I166–72.

    PubMed  Google Scholar 

  70. Singla DK. Embryonic stem cells in cardiac repair and regeneration. Antioxid Redox Signal. 2009;11:1857–63.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinender K. Singla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Singla, D.K. (2011). Cardiac Cell Therapy: Present and Future. In: Dhalla, N., Nagano, M., Ostadal, B. (eds) Molecular Defects in Cardiovascular Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7130-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7130-2_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-7129-6

  • Online ISBN: 978-1-4419-7130-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics