Skip to main content

Stem Cell, MicroRNA and Redox Cycling

  • Chapter
  • First Online:
Molecular Defects in Cardiovascular Disease

Abstract

Mobilization and homing of the hematopoietic stem cells appear to be regulated by mechanism involving redox cycling. Stem cells are localized inside bone marrow in a strictly hypoxic environment and must move to the injury site that is subjected to oxidative environment. Cytokines and adhesion molecules control stem cell mobilization through a redox-regulated process. The major hitch in stem cell therapy includes the life of the stem cells after the stem cell therapy; most cells do not survive beyond 24–72 h. Sudden exposure of the stem cells from the hypoxic melieu into the oxidative environment likely causes severe injury to the cells. FoxO-SirT network appears to be intimately involved in redox-regulated stem cell homeostasis, while their differentiation process is regulated by redox factor protein-1, Ref-1. Lack of oxygen [hypoxia], specifically controlled hypoxia can stimulate the growth of the stem cells in their niche, and HIF-1α plays a significant role in their maintenance and homing mechanism. Recently, resveratrol, a polyphenolic phytoalexin, prolonged the survival of the stem cells as evidenced by active proliferation and differentiation of the cells even after 4 months of cell therapy. The enhancement of stem cell survival was shown to be due to the ability of resveratrol to maintain a reduced tissue environment by over-expressing Nrf2 and Ref-1 in rat heart up to 6 months resulting in an enhancement of the regeneration of the adult cardiac stem cells as evidenced by increased cell survival and differentiation leading to improved cardiac function. Expression of stromal cell-derived factor (SDF) and myosin conclusively demonstrated homing of stem cells in the infracted myocardium, its regeneration leading to improvement of cardiac function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Quaini F, Urbanek K, Beltrami AP, et al. Chimerism of the transplanted heart. N Engl J Med. 2002;346:5–15.

    PubMed  Google Scholar 

  2. Kronenwett R, Martin S, Haas R. The role of cytokines and adhesion molecules for mobilization of peripheral blood stem cells. Stem Cells. 2000;18:320–30.

    PubMed  CAS  Google Scholar 

  3. Kinashi T, Springer TA. Adhesion molecules in hematopoietic cells. Blood Cells. 1994;20(1):25–44.

    PubMed  CAS  Google Scholar 

  4. Carlos TM, Harlan JM. Leukocyte-endothelial adhesion molecules. Blood. 1994;84:2068–101.

    PubMed  CAS  Google Scholar 

  5. Mohle R, Murea S, Kirsch M, et al. Differential expression of L-selectin, VLA-4, and LFA-1 on CD34+ progenitor cells from bone marrow and peripheral blood during G-CSF-enhanced recovery. Exp Hematol. 1995;23:1535–42.

    PubMed  CAS  Google Scholar 

  6. Lichterfeld M, Martin S, Burkly L, et al. Mobilization of CD34+ haematopoietic stem cells is associated with a functional inactivation of the integrin very late antigen 4. Br J Haematol. 2000;110:71–81.

    PubMed  CAS  Google Scholar 

  7. Yamaguchi M, Ikebuchi K, Hirayama F, et al. Different adhesive characteristics and VLA-4 expression of CD34+ progenitors in G0/G1 versus S+G2/M phases of the cell cycle. Blood. 1998;92:842–8.

    PubMed  CAS  Google Scholar 

  8. Laterveer L, Lindley IJ, Heemskerk DP, et al. Rapid mobilization of hematopoietic progenitor cells in rhesus monkeys by a single intravenous injection of interleukin-8. Blood. 1996;87:781–8.

    PubMed  CAS  Google Scholar 

  9. Maurer AM, Liu Y, Caen JP, et al. Ex vivo expansion of megakaryocytic cells. Int J Hematol. 2000;71:203–10.

    PubMed  CAS  Google Scholar 

  10. Duhrsen U, Villeval JL, Boyd J, et al. Effects of recombinant human granulocyte colony-stimulating factor on hematopoietic progenitor cells in cancer patients. Blood. 1988;72:2074–81.

    PubMed  CAS  Google Scholar 

  11. Gazitt Y. Recent developments in the regulation of peripheral blood stem cell mobilization and engraftment by cytokines, chemokines, and adhesion molecules. J Hematother Stem Cell Res. 2001;10:229–36.

    PubMed  CAS  Google Scholar 

  12. Haddad JJ. Redox regulation of pro-inflammatory cytokines and IkappaB-alpha/NF-kappaB nuclear translocation and activation. Biochem Biophys Res Commun. 2002;296:847–56.

    PubMed  CAS  Google Scholar 

  13. Liu H, Nishitoh H, Ichijo H, et al. Activation of apoptosis signal-regulating kinase 1 (ASK1) by tumor necrosis factor receptor-associated factor 2 requires prior dissociation of the ASK1 inhibitor ­thioredoxin. Mol Cell Biol. 2000;20:2198–208.

    PubMed  CAS  Google Scholar 

  14. Wilmanski J, Siddiqi M, Deitch EA, et al. Augmented IL-10 production and redox-dependent signaling pathways in glucose-6-phosphate dehydrogenase-deficient mouse peritoneal macrophages. J Leukoc Biol. 2005;78:85–94.

    PubMed  CAS  Google Scholar 

  15. Case J, Ingram DA, Haneline LS. Oxidative stress impairs endothelial progenitor cell function. Antioxid Redox Signal. 2008;10:1895–907.

    PubMed  CAS  Google Scholar 

  16. Ghaffari S. Oxidative stress in the regulation of normal and neoplastic hematopoiesis. Antioxid Redox Signal. 2008;10:1923–40.

    PubMed  CAS  Google Scholar 

  17. Guo Y, Einhorn L, Kelley M, et al. Redox regulation of the embryonic stem cell transcription factor oct-4 by thioredoxin. Stem Cells. 2004;22:259–64.

    PubMed  Google Scholar 

  18. Gurusamy N, Mukherjee S, Lekli I, et al. Inhibition of Ref-1 stimulates the production of reactive oxygen species and induces differentiation in adult cardiac stem cells. Antioxid Redox Signal. 2009;11:589–600.

    PubMed  CAS  Google Scholar 

  19. Li Z, Li L. Understanding hematopoietic stem-cell microenvironments. Trends Biochem Sci. 2006;31:589–95.

    PubMed  CAS  Google Scholar 

  20. Kopp HG, Avecilla ST, Hooper AT, et al. The bone marrow vascular niche: home of HSC differentiation and mobilization. Physiology (Bethesda). 2005;20:349–56.

    CAS  Google Scholar 

  21. Haneline LS. Redox regulation of stem and progenitor cells. Antioxid Redox Signal. 2008;10:1849–52.

    PubMed  CAS  Google Scholar 

  22. Dernbach E, Urbich C, Brandes RP, et al. Antioxidative stress-associated genes in circulating progenitor cells: evidence for enhanced resistance against oxidative stress. Blood. 2004;104:3591–7.

    PubMed  CAS  Google Scholar 

  23. Schmelter M, Ateghang B, Helmig S, et al. Embryonic stem cells utilize reactive oxygen species as transducers of mechanical strain-induced cardiovascular differentiation. FASEB J. 2006;20:1182–4.

    PubMed  CAS  Google Scholar 

  24. Illi B, Scopece A, Nanni S, et al. Epigenetic histone modification and cardiovascular lineage programming in mouse embryonic stem cells exposed to laminar shear stress. Circ Res. 2005;96:501–8.

    PubMed  CAS  Google Scholar 

  25. Yamamoto K, Sokabe T, Watabe T, et al. Fluid shear stress induces differentiation of Flk-1-positive embryonic stem cells into vascular endothelial cells in vitro. Am J Physiol Heart Circ Physiol. 2005;288:H1915–24.

    PubMed  CAS  Google Scholar 

  26. Ito K, Hirao A, Arai F, et al. Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nat Med. 2006;12:446–51.

    PubMed  CAS  Google Scholar 

  27. Sauer H, Rahimi G, Hescheler J, et al. Role of reactive oxygen species and phosphatidylinositol 3-kinase in cardiomyocyte differentiation of embryonic stem cells. FEBS Lett. 2000;476:218–23.

    PubMed  CAS  Google Scholar 

  28. Wartenberg M, Donmez F, Ling FC, et al. Tumor-induced angiogenesis studied in confrontation cultures of multicellular tumor spheroids and embryoid bodies grown from pluripotent embryonic stem cells. FASEB J. 2001;15:995–1005.

    PubMed  CAS  Google Scholar 

  29. Han MK, Song EK, Guo Y, et al. SIRT1 regulates apoptosis and Nanog expression in mouse embryonic stem cells by controlling p53 subcellular localization. Cell Stem Cell. 2008;2:241–51.

    PubMed  CAS  Google Scholar 

  30. Tothova Z, Kollipara R, Huntly BJ, et al. FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell. 2007;128:325–39.

    PubMed  CAS  Google Scholar 

  31. Essers MA, Weijzen S, de Vries-Smits AM, et al. FOXO transcription factor activation by oxidative stress mediated by the small GTPase Ral and JNK. EMBO J. 2004;23:4802–12.

    PubMed  CAS  Google Scholar 

  32. Marinkovic D, Zhang X, Yalcin S, et al. Foxo3 is required for the regulation of oxidative stress in erythropoiesis. J Clin Investig. 2007;117:2133–44.

    PubMed  CAS  Google Scholar 

  33. Tothova Z, Gilliland DG. FoxO transcription factors and stem cell homeostasis: insights from the hematopoietic system. Cell Stem Cell. 2007;1:140–52.

    PubMed  CAS  Google Scholar 

  34. Hosokawa K, Arai F, Yoshihara H, et al. Function of oxidative stress in the regulation of hematopoietic stem cell-niche interaction. Biochem Biophys Res Commun. 2007;363:578–83.

    PubMed  CAS  Google Scholar 

  35. Spradling A, Drummond-Barbosa D, Kai T. Stem cells find their niche. Nature. 2001;414:98–104.

    PubMed  CAS  Google Scholar 

  36. Angkeow P, Deshpande SS, Qi B, et al. Redox ­factor-1: an extra-nuclear role in the regulation of endothelial oxidative stress and apoptosis. Cell Death Differ. 2002;9:717–25.

    PubMed  CAS  Google Scholar 

  37. Allen RG, Venkatraj VS. Oxidants and antioxidants in development and differentiation. J Nutr. 1992;122(3 Suppl):631–5.

    PubMed  CAS  Google Scholar 

  38. Beltrami AP, Barlucchi L, Torella D, et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell. 2003;114:763–76.

    PubMed  CAS  Google Scholar 

  39. Beckman BS, Balin AK, Allen RG. Superoxide dismutase induces differentiation of Friend erythroleukemia cells. J Cell Physiol. 1989;139:370–6.

    PubMed  CAS  Google Scholar 

  40. Almog N, Rotter V. Involvement of p53 in cell differentiation and development. Biochim Biophys Acta. 1997;1333:F1–27.

    PubMed  CAS  Google Scholar 

  41. Bachelder RE, Ribick MJ, Marchetti A, et al. p53 inhibits alpha 6 beta 4 integrin survival signaling by promoting the caspase 3-dependent cleavage of AKT/PKB. J Cell Biol. 1999;147:1063–72.

    PubMed  CAS  Google Scholar 

  42. Gottlieb TM, Leal JF, Seger R, et al. Cross-talk between Akt, p53 and Mdm2: possible implications for the regulation of apoptosis. Oncogene. 2002;21:1299–303.

    PubMed  CAS  Google Scholar 

  43. Keren-Tal I, Suh BS, Dantes A, et al. Involvement of p53 expression in cAMP-mediated apoptosis in immortalized granulosa cells. Exp Cell Res. 1995;218:283–95.

    PubMed  CAS  Google Scholar 

  44. Eizenberg O, Faber-Elman A, Gottlieb E, et al. p53 plays a regulatory role in differentiation and apoptosis of central nervous system-associated cells. Mol Cell Biol. 1996;16:5178–85.

    PubMed  CAS  Google Scholar 

  45. Sabapathy K, Klemm M, Jaenisch R, et al. Regulation of ES cell differentiation by functional and conformational modulation of p53. EMBO J. 1997;16:6217–29.

    PubMed  CAS  Google Scholar 

  46. Ostrakhovitch EA, Cherian MG. Role of p53 and reactive oxygen species in apoptotic response to copper and zinc in epithelial breast cancer cells. Apoptosis. 2005;10:111–21.

    PubMed  CAS  Google Scholar 

  47. Jayaraman L, Murthy KG, Zhu C, et al. Identification of redox/repair protein Ref-1 as a potent activator of p53. Genes Dev. 1997;11:558–70.

    PubMed  CAS  Google Scholar 

  48. Liu B, Chen Y, St Clair DK. ROS and p53: a versatile partnership. Free Radic Biol Med. 2008;44:1529–35.

    PubMed  CAS  Google Scholar 

  49. Hu X, Yu SP, Fraser JL, et al. Transplantation of hypoxia-preconditioned mesenchymal stem cells improves infarcted heart function via enhanced survival of implanted cells and angiogenesis. J Thorac Cardiovasc Surg. 2008;135:799–808.

    PubMed  CAS  Google Scholar 

  50. Cipolleschi MG, Dello Sbarba P, et al. The role of hypoxia in the maintenance of hematopoietic stem cells. Blood. 1993;82:2031–7.

    PubMed  CAS  Google Scholar 

  51. Rajasekhar VK, Vemuri MC. Stem cells, hypoxia and hypoxia-inducible factors. In: Rajasekhar VK, Vemuri MC, editors. Regulatory networks in stem cells. New York: Humana; 2009. p. 211–31.

    Google Scholar 

  52. Rosova I, Dao M, Capoccia B, et al. Hypoxic preconditioning results in increased motility and improved therapeutic potential of human mesenchymal stem cells. Stem Cells. 2008;26:2173–82.

    PubMed  CAS  Google Scholar 

  53. Keith B, Simon MC. Hypoxia-inducible factors, stem cells, and cancer. Cell. 2007;129:465–72.

    PubMed  CAS  Google Scholar 

  54. Cameron CM, Harding F, Hu WS, et al. Activation of hypoxic response in human embryonic stem cell-derived embryoid bodies. Exp Biol Med (Maywood). 2008;233:1044–57.

    CAS  Google Scholar 

  55. Potier E, Ferreira E, Meunier A, et al. Prolonged hypoxia concomitant with serum deprivation induces massive human mesenchymal stem cell death. Tissue Eng. 2007;13:1325–31.

    PubMed  CAS  Google Scholar 

  56. Ivanovic Z, Dello Sbarba P, Trimoreau F, et al. Primitive human HPCs are better maintained and expanded in vitro at 1 percent oxygen than at 20 percent. Transfusion. 2000;40:1482–8.

    PubMed  CAS  Google Scholar 

  57. Tang YL, Tang Y, Zhang YC, et al. Improved graft mesenchymal stem cell survival in ischemic heart with a hypoxia-regulated heme oxygenase-1 vector. J Am Coll Cardiol. 2005;46:1339–50.

    PubMed  CAS  Google Scholar 

  58. Csete M. Oxygen in the cultivation of stem cells. Ann NY Acad Sci. 2005;1049:1–8.

    PubMed  CAS  Google Scholar 

  59. Saretzki G, Armstrong L, Leake A, et al. Stress defense in murine embryonic stem cells is superior to that of various differentiated murine cells. Stem Cells. 2004;22:962–71.

    PubMed  CAS  Google Scholar 

  60. Jang YY, Sharkis SJ. A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche. Blood. 2007;110:3056–63.

    PubMed  CAS  Google Scholar 

  61. Ito K, Hirao A, Arai F, et al. Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells. Nature. 2004;431:997–1002.

    PubMed  CAS  Google Scholar 

  62. Yalcin S, Zhang X, Luciano JP, et al. Foxo3 is essential for the regulation of ataxia telangiectasia mutated and oxidative stress-mediated homeostasis of hematopoietic stem cells. J Biol Chem. 2008;283:25692–705.

    PubMed  CAS  Google Scholar 

  63. Rabbany SY, Heissig B, Hattori K, et al. Molecular pathways regulating mobilization of marrow-derived stem cells for tissue revascularization. Trends Mol Med. 2003;9:109–17.

    PubMed  CAS  Google Scholar 

  64. Peled A, Grabovsky V, Habler L, et al. The chemokine SDF-1 stimulates integrin-mediated arrest of CD34+ cells on vascular endothelium under shear flow. J Clin Investig. 1999;104:1199–211.

    PubMed  CAS  Google Scholar 

  65. Ceradini DJ, Kulkarni AR, Callaghan MJ, et al. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med. 2004;10:858–64.

    PubMed  CAS  Google Scholar 

  66. Thum T, Fraccarollco D, Schultheiss M, et al. Endothelial nitric oxide synthase uncoupling impairs endothelial progenitor cell mobilization and function in diabetes. Diabetes. 2007;56:666–74.

    PubMed  CAS  Google Scholar 

  67. Urao N, Inomata H, Razvi M, et al. Role of nox2-based NADPH oxidase in bone marrow and progenitor cell function involved in neovascularization induced by hindlimb ischemia. Circ Res. 2008;103:212–20.

    PubMed  CAS  Google Scholar 

  68. Piccoli C, D’Aprile A, Ripoli M, et al. Bone-marrow derived hematopoietic stem/progenitor cells express multiple isoforms of NADPH oxidase and produce constitutively reactive oxygen species. Biochem Biophys Res Commun. 2007;353:965–72.

    PubMed  CAS  Google Scholar 

  69. Ambros V. The functions of animal microRNAs. Nature. 2004;431:350–5.

    PubMed  CAS  Google Scholar 

  70. Hamilton AJ, Baulcombe DC. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science. 1999;286:950–2.

    PubMed  CAS  Google Scholar 

  71. Olsen PH, Ambros V. The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev Biol. 1999;216:671–80.

    PubMed  CAS  Google Scholar 

  72. Hammond SM. Dicing and slicing: the core machinery of the RNA interference pathway. FEBS Lett. 2005;579:5822–9.

    PubMed  CAS  Google Scholar 

  73. Rigoutsos I. New tricks for animal microRNAs: targeting of amino acid coding regions at conserved and nonconserved sites. Cancer Res. 2009;69:3245–8.

    PubMed  CAS  Google Scholar 

  74. Orom UA, Nielsen FC, Lund AH. MicroRNA-10a binds the 5′UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell. 2008;30:460–71.

    PubMed  Google Scholar 

  75. Kai ZS, Pasquinelli AE. MicroRNA assassins: factors that regulate the disappearance of miRNAs. Nat Struct Mol Biol. 2010;17:5–10.

    PubMed  CAS  Google Scholar 

  76. Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet. 2010;11:597–610.

    PubMed  CAS  Google Scholar 

  77. Bail S, Swerdel M, Liu H, et al. Differential regulation of microRNA stability. RNA. 2010;16:1032–9.

    PubMed  CAS  Google Scholar 

  78. Buchan JR, Parker R. Molecular biology. The two faces of miRNA. Science. 2007;318:1877–8.

    PubMed  CAS  Google Scholar 

  79. Vasudevan S, Steitz JA. AU-rich-element-mediated upregulation of translation by FXR1 and Argonaute 2. Cell. 2007;128:1105–18.

    PubMed  CAS  Google Scholar 

  80. Mukhopadhyay P, Rajesh M, Batkai S, et al. CB1 cannabinoid receptors promote oxidative stress and cell death in murine models of doxorubicin-induced cardiomyopathy and in human cardiomyocytes. Cardiovasc Res. 2010;85:773–84.

    PubMed  CAS  Google Scholar 

  81. Raman SV. The hypertensive heart. An integrated understanding informed by imaging. J Am Coll Cardiol. 2010;55:91–6.

    PubMed  Google Scholar 

  82. Jellis C, Martin J, Narula J, et al. Assessment of nonischemic myocardial fibrosis. J Am Coll Cardiol. 2010;56:89–97.

    PubMed  CAS  Google Scholar 

  83. Da Costa Martins PA, Bourajjaj M, Gladka M, et al. Conditional dicer gene deletion in the postnatal myocardium provokes spontaneous cardiac remodeling. Circulation. 2008;118:1567–76.

    PubMed  CAS  Google Scholar 

  84. van Rooij E, Sutherland LB, Qi X, et al. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science. 2007;316:575–9.

    PubMed  Google Scholar 

  85. Callis TE, Pandya K, Seok HY, et al. MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. J Clin Investig. 2009;119:2772–86.

    PubMed  CAS  Google Scholar 

  86. van Rooij E, Sutherland LB, Thatcher JE, et al. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci USA. 2008;105:13027–32.

    PubMed  Google Scholar 

  87. Thum T, Gross C, Fiedler J, et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature. 2008;456:980–4.

    PubMed  CAS  Google Scholar 

  88. Duisters RF, Tijsen AJ, Schroen B, et al. miR-133 and miR-30 regulate connective tissue growth factor: implications for a role of microRNAs in myocardial matrix remodeling. Circ Res. 2009;104:170–8.

    PubMed  CAS  Google Scholar 

  89. Yang B, Lin H, Xiao J, et al. The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat Med. 2007;13:486–91.

    PubMed  CAS  Google Scholar 

  90. Chen JF, Mandel EM, Thomson JM, et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet. 2006;38:228–33.

    PubMed  CAS  Google Scholar 

  91. Loor G, Schumacker PT. Role of hypoxia-inducible factor in cell survival during myocardial ischemia-reperfusion. Cell Death Differ. 2008;15:686–90.

    PubMed  CAS  Google Scholar 

  92. Rane S, He M, Sayed D, et al. Downregulation of miR-199a derepresses hypoxia-inducible factor-1alpha and Sirtuin 1 and recapitulates hypoxia preconditioning in cardiac myocytes. Circ Res. 2009;104:879–86.

    PubMed  CAS  Google Scholar 

  93. Tang Y, Zheng J, Sun Y, et al. MicroRNA-1 regulates cardiomyocyte apoptosis by targeting Bcl-2. Int Heart J. 2009;50:377–87.

    PubMed  CAS  Google Scholar 

  94. Bonauer A, Dimmeler S. The microRNA-17-92 cluster: still a miRacle? Cell Cycle. 2009;8:3866–73.

    PubMed  CAS  Google Scholar 

  95. Ren XP, Wu J, Wang X, et al. MicroRNA-320 is involved in the regulation of cardiac ischemia/reperfusion injury by targeting heat-shock protein 20. Circulation. 2009;119:2357–66.

    PubMed  CAS  Google Scholar 

  96. Kim HW, Haider HK, Jiang S, et al. Ischemic preconditioning augments survival of stem cells via miR-210 expression by targeting caspase-8-associated protein 2. J Biol Chem. 2009;284:33161–8.

    PubMed  Google Scholar 

  97. Mukhopadhyay P, Mukherjee S, Ahsan K, et al. Restoration of altered microRNA expression in the ischemic heart with resveratrol. PLoS One. 2010;5(12):e15705.

    PubMed  CAS  Google Scholar 

  98. Das S, Tosaki A, Bagchi D, et al. Potentiation of a survival signal in the ischemic heart by resveratrol through p38 mitogen-activated protein kinase/mitogen- and stress-activated protein kinase 1/cAMP response element-binding protein signaling. J Pharmacol Exp Ther. 2006;317:980–8.

    PubMed  CAS  Google Scholar 

  99. Cascio S, D’Andrea A, Ferla R, et al. miR-20b modulates VEGF expression by targeting HIF-1 alpha and STAT3 in MCF-7 breast cancer cells. J Cell Physiol. 2010;224:242–9.

    PubMed  CAS  Google Scholar 

  100. Guttilla IK, White BA. Coordinate regulation of FOXO1 by miR-27a, miR-96, and miR-182 in breast cancer cells. J Biol Chem. 2009;284:23204–16.

    PubMed  CAS  Google Scholar 

  101. Saunders LR, Sharma AD, Tawney J, et al. miRNAs regulate SIRT1 expression during mouse embryonic stem cell differentiation and in adult mouse tissues. Aging (Albany NY). 2010;2:415–31.

    CAS  Google Scholar 

  102. Huynh C, Segura MF, Gaziel-Sovran A, et al. Efficient in vivo microRNA targeting of liver metastasis. Oncogene. 2010. doi:10.1038/onc.2010.523.

    PubMed  Google Scholar 

  103. Elmen J, Lindow M, Schutz S, et al. LNA-mediated microRNA silencing in non-human primates. Nature. 2008;452:896–9.

    PubMed  CAS  Google Scholar 

  104. Vermeulen A, Robertson B, Dalby AB, et al. Double-stranded regions are essential design components of potent inhibitors of RISC function. RNA. 2007;13:723–30.

    PubMed  CAS  Google Scholar 

  105. Fichtlscherer S, De Rosa S, Fox H, et al. Circulating microRNAs in patients with coronary artery disease. Circ Res. 2010;107:677–84.

    PubMed  CAS  Google Scholar 

  106. Kumarswamy R, Anker SD, Thum T. MicroRNAs as circulating biomarkers for heart failure: questions about MiR-423-5p. Circ Res. 2010;106:e8. author reply e9.

    PubMed  CAS  Google Scholar 

  107. Wang GK, Zhu JQ, Zhang JT, et al. Circulating microRNA: a novel potential biomarker for early diagnosis of acute myocardial infarction in humans. Eur Heart J. 2010;31:659–66.

    PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported in part by NIH HL 34360, HL 33889 and HL 22559.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipak K. Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Mukhopadhyay, P., Gurusamy, N., Das, D.K. (2011). Stem Cell, MicroRNA and Redox Cycling. In: Dhalla, N., Nagano, M., Ostadal, B. (eds) Molecular Defects in Cardiovascular Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7130-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7130-2_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-7129-6

  • Online ISBN: 978-1-4419-7130-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics