Skip to main content

Modulation of Gi Protein Expression in Hypertension: Molecular Mechanisms

  • Chapter
  • First Online:
Molecular Defects in Cardiovascular Disease

Abstract

Guanine nucleotide regulatory proteins (G proteins) play a key role in the regulation of various signal transduction systems including adenylyl cyclase–cAMP and phospholipase C (PLC)–phosphatidylinositol turnover (PI). These proteins are implicated in the modulation of a variety of physiological functions such as platelet functions, including platelet aggregation, secretion, and clot formation, and cardiovascular functions, including arterial tone and reactivity. Several abnormalities in adenylyl cyclase activity, cAMP levels, G proteins, and PLC/PKC have shown to be responsible for the altered cardiac performance and vascular functions observed in cardiovascular disease states. The enhanced or unaltered levels of inhibitory G proteins (Giα-2 and Giα-3) and mRNA have been reported in different models of hypertension, whereas Gsα levels were shown to be unaltered. These changes in G protein were associated with functions. The enhanced levels of Giα proteins precede the development of blood pressure and suggest that overexpression of Gi proteins may be one of the contributing factors for the pathogenesis of hypertension. The augmented levels of Giα proteins and associated adenylyl cyclase signaling in hypertension were shown to be attributed to the enhanced levels of vasoactive peptides. In addition, enhanced oxidative stress in hypertension may also be responsible for the enhanced expression of Giα proteins observed in hypertension. The augmented levels of Giα(alpha) proteins and associated adenylyl cyclase signaling in hypertension appear to be attributed to the enhanced levels of vasoactive peptides, which by increasing oxidative stress and transactivating growth factor receptors enhance MAP kinase activity that contributes to the enhanced expression of Giα proteins observed in hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rodbell M, Krans HM, Pohl SL, et al. The glucagon-sensitive adenylyl cyclase system in plasma membranes of rat liver. IV. Effects of guanylnucleotides on binding of 125I-glucagon. J Biol Chem. 1971;246:1872–6.

    PubMed  CAS  Google Scholar 

  2. Cockcroft S, Gomperts BD. Role of guanine nucleotide binding protein in the activation of polyphosphoinositide phosphodiesterase. Nature. 1985;314:534–6.

    Article  PubMed  CAS  Google Scholar 

  3. Litosch I, Wallis C, Fain JN. 5-Hydroxytryptamine stimulates inositol phosphate production in a cell-free system from blowfly salivary glands. Evidence for a role of GTP in coupling receptor activation to phosphoinositide breakdown. J Biol Chem. 1985;260:5464–71.

    PubMed  CAS  Google Scholar 

  4. Breitwieser GE, Szabo G. Uncoupling of cardiac muscarinic and beta-adrenergic receptors from ion channels by a guanine nucleotide analogue. Nature. 1985;317:538–40.

    Article  PubMed  CAS  Google Scholar 

  5. Pfaffinger PJ, Martin JM, Hunter DD, et al. GTP-binding proteins couple cardiac muscarinic receptors to a K channel. Nature. 1985;317:536–8.

    Article  PubMed  CAS  Google Scholar 

  6. Gilman AG. G proteins and dual control of adenylate cyclase. Cell. 1984;36:577–9.

    Article  PubMed  CAS  Google Scholar 

  7. Bray P, Carter A, Simons C, et al. Human cDNA clones for four species of G alpha s signal transduction protein. Proc Natl Acad Sci USA. 1986;83:8893–7.

    Article  PubMed  CAS  Google Scholar 

  8. Robishaw JD, Smigel MD, Gilman AG. Molecular basis for two forms of the G protein that stimulates adenylate cyclase. J Biol Chem. 1986;261:9587–90.

    PubMed  CAS  Google Scholar 

  9. Murakami T, Yasuda H. Rat heart cell membranes contain three substrates for cholera toxin-catalyzed ADP-ribosylation and a single substrate for pertussis toxin-catalyzed ADP-ribosylation. Biochem Biophys Res Commun. 1986;138:1355–61.

    Article  PubMed  CAS  Google Scholar 

  10. Stryer L, Bourne HR. G proteins: a family of signal transducers. Annu Rev Cell Biol. 1986;2:391–419.

    Article  PubMed  CAS  Google Scholar 

  11. Spiegel AM. Signal transduction by guanine nucleotide binding proteins. Mol Cell Endocrinol. 1987;49:1–16.

    Article  PubMed  CAS  Google Scholar 

  12. Wankerl M, Schwartz K. Calcium transport proteins in the nonfailing and failing heart: gene expression and function. J Mol Med. 1995;73:487–96.

    Article  PubMed  CAS  Google Scholar 

  13. Yatani A, Brown AM. Rapid beta-adrenergic modulation of cardiac calcium channel currents by a fast G protein pathway. Science. 1989;245:71–4.

    Article  PubMed  CAS  Google Scholar 

  14. Itoh H, Kozasa T, Nagata S, et al. Molecular cloning and sequence determination of cDNAs for alpha subunits of the guanine nucleotide-binding proteins Gs, Gi, and Go from rat brain. Proc Natl Acad Sci USA. 1986;83:3776–80.

    Article  PubMed  CAS  Google Scholar 

  15. Jones DT, Reed RR. Molecular cloning of five GTP-binding protein cDNA species from rat olfactory neuroepithelium. J Biol Chem. 1987;262:14241–9.

    PubMed  CAS  Google Scholar 

  16. Itoh H, Toyama R, Kozasa T, et al. Presence of three distinct molecular species of Gi protein alpha subunit. Structure of rat cDNAs and human genomic DNAs. J Biol Chem. 1988;263:6656–64.

    PubMed  CAS  Google Scholar 

  17. Wong YH, Conklin BR, Bourne HR. Gz-mediated hormonal inhibition of cyclic AMP accumulation. Science. 1992;255:339–42.

    Article  PubMed  CAS  Google Scholar 

  18. Kirsch GE, Yatani A, Codina J, et al. Alpha-subunit of Gk activates atrial K+ channels of chick, rat, and guinea pig. Am J Physiol Heart Circ Physiol. 1988;254:H1200–5.

    CAS  Google Scholar 

  19. Simon MI, Strathmann MP, Gautam N. Diversity of G proteins in signal transduction. Science. 1991;252:802–8.

    Article  PubMed  CAS  Google Scholar 

  20. Tang WJ, Gilman AG. Type-specific regulation of adenylyl cyclase by G protein beta gamma subunits. Science. 1991;254:1500–3.

    Article  PubMed  CAS  Google Scholar 

  21. Wickman KD, Iniguez-Lluhl JA, Davenport PA, et al. Recombinant G-protein beta gamma-subunits activate the muscarinic-gated atrial potassium channel. Nature. 1994;368:255–7.

    Article  PubMed  CAS  Google Scholar 

  22. Wedegaertner PB, Wilson PT, Bourne HR. Lipid modifications of trimeric G proteins. J Biol Chem. 1995;270:503–6.

    Article  PubMed  CAS  Google Scholar 

  23. Taussig R, Iniguez-Lluhi JA, Gilman AG. Inhibition of adenylyl cyclase by Gi alpha. Science. 1993;261:218–21.

    Article  PubMed  CAS  Google Scholar 

  24. Anand-Srivastava MB, Picard S, Thibault C. Altered expression of inhibitory guanine nucleotide regulatory proteins (Gi alpha) in spontaneously hypertensive rats. Am J Hypertens. 1991;4:840–3.

    PubMed  CAS  Google Scholar 

  25. Anand-Srivastava MB. Enhanced expression of inhibitory guanine nucleotide regulatory protein in spontaneously hypertensive rats. Relationship to adenylate cyclase inhibition. Biochem J. 1992;288:79–85.

    PubMed  CAS  Google Scholar 

  26. Thibault C, Anand-Srivastava MB. Altered expression of G-protein mRNA in spontaneously hypertensive rats. FEBS Lett. 1992;313:160–4.

    Article  PubMed  CAS  Google Scholar 

  27. Anand-Srivastava MB. Platelets from spontaneously hypertensive rats exhibit decreased expression of inhibitory guanine nucleotide regulatory protein. Relation with adenylyl cyclase activity. Circ Res. 1993;73:1032–9.

    PubMed  CAS  Google Scholar 

  28. Anand-Srivastava MB, de Champlain J, Thibault C. DOCA-salt hypertensive rat hearts exhibit altered expression of G-proteins. Am J Hypertens. 1993;6:72–5.

    PubMed  CAS  Google Scholar 

  29. Bohm M, Gierschik P, Knorr A, et al. Cardiac adenylyl cyclase, beta-adrenergic receptors, and G proteins in salt-sensitive hypertension. Hypertension. 1993;22:715–27.

    PubMed  CAS  Google Scholar 

  30. Li P, Zou AP, al-Kayed NJ, et al. Guanine nucleotide-binding proteins in aortic smooth muscle from hypertensive rats. Hypertension. 1994;23:914–8.

    PubMed  CAS  Google Scholar 

  31. Bohm M, Gierschik P, Knorr A, et al. Desensitization of adenylate cyclase and increase of Gi alpha in cardiac hypertrophy due to acquired hypertension. Hypertension. 1992;20:103–12.

    PubMed  CAS  Google Scholar 

  32. Di Fusco F, Anand-Srivastava MB. Nitric oxide synthase inhibition by N(omega)-nitro-L-arginine methyl ester modulates G-protein expression and adenylyl cyclase activity in rat heart. Am J Hypertens. 1997;10:471–5.

    Article  PubMed  Google Scholar 

  33. Di Fusco F, Anand-Srivastava MB. Enhanced expression of Gi proteins in non-hypertrophic hearts from rats with hypertension-induced by L-NAME treatment. J Hypertens. 2000;18:1081–90.

    Article  PubMed  Google Scholar 

  34. Ge C, Garcia R, Anand-Srivastava MB. Altered expression of Gi-protein and adenylyl cyclase activity in hearts from one kidney one clip hypertensive rats: effect of captopril. J Hypertens. 1999;17:1617–26.

    Article  PubMed  CAS  Google Scholar 

  35. Ge C, Garcia R, Anand-Srivastava MB. Enhanced expression of Gialpha protein and adenylyl cyclase signaling in aortas from 1 kidney 1 clip hypertensive rats. Can J Physiol Pharmacol. 2006;84:739–46.

    Article  PubMed  CAS  Google Scholar 

  36. Clark CJ, Milligan G, Connell JM. Guanine nucleotide regulatory protein alterations in the Milan hypertensive rat strain. J Hypertens. 1993;11:1161–9.

    Article  PubMed  CAS  Google Scholar 

  37. Michel MC, Farke W, Erdbrugger W, et al. Ontogenesis of sympathetic responsiveness in spontaneously hypertensive rats. II. Renal G proteins in male and female rats. Hypertension. 1994;23:653–8.

    PubMed  CAS  Google Scholar 

  38. Kanagy NL, Webb RC. Increased responsiveness and decreased expression of G proteins in deoxycorticosterone hypertension. Hypertension. 1996;27:740–5.

    PubMed  CAS  Google Scholar 

  39. Marcil J, Schiffrin EL, Anand-Srivastava MB. Aberrant adenylyl cyclase/cAMP signal transduction and G protein levels in platelets from hypertensive patients improve with antihypertensive drug therapy. Hypertension. 1996;28:83–90.

    PubMed  CAS  Google Scholar 

  40. McLellan AR, Milligan G, Houslay MD, et al. G-proteins in essential hypertension: a study of human platelet plasma membranes. J Hypertens. 1993;11:543–9.

    Article  PubMed  CAS  Google Scholar 

  41. Marcil J, Anand-Srivastava MB. Lymphocytes from spontaneously hypertensive rats exhibit enhanced adenylyl cyclase-Gi protein signaling. Cardiovasc Res. 2001;49:234–43.

    Article  PubMed  CAS  Google Scholar 

  42. Feldman RD, Tan CM, Chorazyczewski J. G protein alterations in hypertension and aging. Hypertension. 1995;26:725–32.

    PubMed  CAS  Google Scholar 

  43. Hamet P, Franks DJ, Adnot S, et al. Cyclic nucleotides in hypertension. Adv Cyclic Nucleotide Res. 1980;12:11–23.

    PubMed  CAS  Google Scholar 

  44. Anand-Srivastava MB. Altered responsiveness of adenylate cyclase to adenosine and other agents in the myocardial sarcolemma and aorta of spontaneously-hypertensive rats. Biochem Pharmacol. 1988;37:3017–22.

    Article  PubMed  CAS  Google Scholar 

  45. Limas C, Limas CJ. Reduced number of beta-adrenergic receptors in the myocardium of spontaneously hypertensive rats. Biochem Biophys Res Commun. 1978;83:710–4.

    Article  PubMed  CAS  Google Scholar 

  46. Woodcock EA, Funder JW, Johnston CI. Decreased cardiac beta-adrenergic receptors in deoxycorticosterone-salt and renal hypertensive rats. Circ Res. 1979;45:560–5.

    PubMed  CAS  Google Scholar 

  47. Bhalla RC, Sharma RV, Ramanathan S. Ontogenetic development of isoproterenol subsensitivity of myocardial adenylate cyclase and beta-adrenergic receptors in spontaneously hypertensive rats. Biochim Biophys Acta. 1980;632:497–506.

    PubMed  CAS  Google Scholar 

  48. Kinoshita S, Sidhu A, Felder RA. Defective dopamine-1 receptor adenylate cyclase coupling in the proximal convoluted tubule from the spontaneously hypertensive rat. J Clin Invest. 1989;84:1849–56.

    Article  PubMed  CAS  Google Scholar 

  49. Marcil J, Thibault C, Anand-Srivastava MB. Enhanced expression of Gi-protein precedes the development of blood pressure in spontaneously hypertensive rats. J Mol Cell Cardiol. 1997;29:1009–22.

    Article  PubMed  CAS  Google Scholar 

  50. Marcil J, de Champlain J, Anand-Srivastava MB. Overexpression of Gi-proteins precedes the development of DOCA-salt-induced hypertension: relationship with adenylyl cyclase. Cardiovasc Res. 1998;39:492–505.

    Article  PubMed  CAS  Google Scholar 

  51. Li Y, Anand-Srivastava MB. Inactivation of enhanced expression of G(i) proteins by pertussis toxin attenuates the development of high blood pressure in spontaneously hypertensive rats. Circ Res. 2002;91:247–54.

    Article  PubMed  CAS  Google Scholar 

  52. Trinder D, Phillips PA, Risvanis J, et al. Regulation of vasopressin receptors in deoxycorticosterone acetate-salt hypertension. Hypertension. 1992;20:569–74.

    PubMed  CAS  Google Scholar 

  53. Wahlander H, Wickman A, Isgaard J, et al. Interaction between the renin-angiotensin system and insulin-like growth factor I in aorto-caval fistula-induced cardiac hypertrophy in rats. Acta Physiol Scand. 1999;165:143–54.

    Article  PubMed  CAS  Google Scholar 

  54. Kagiyama S, Eguchi S, Frank GD, et al. Angiotensin II-induced cardiac hypertrophy and hypertension are attenuated by epidermal growth factor receptor antisense. Circulation. 2002;106:909–12.

    Article  PubMed  CAS  Google Scholar 

  55. Kagiyama S, Qian K, Kagiyama T, et al. Antisense to epidermal growth factor receptor prevents the development of left ventricular hypertrophy. Hypertension. 2003;41:824–9.

    Article  PubMed  CAS  Google Scholar 

  56. Iglarz M, Schiffrin EL. Role of endothelin-1 in hypertension. Curr Hypertens Rep. 2003;5:144–8.

    Article  PubMed  Google Scholar 

  57. Kirchengast M, Witte K, Stolpe K, et al. Effects of chronic endothelin ET(A) receptor blockade on blood pressure and vascular formation of cyclic guanosine-3′,5′-monophosphate in spontaneously hypertensive rats. Arzneimittelforschung. 2005;55:498–504.

    PubMed  CAS  Google Scholar 

  58. Schermuly RT, Dony E, Ghofrani HA, et al. Reversal of experimental pulmonary hypertension by PDGF inhibition. J Clin Invest. 2005;115:2811–21.

    Article  PubMed  CAS  Google Scholar 

  59. Morishita R, Higaki J, Miyazaki M, et al. Possible role of the vascular renin-angiotensin system in hypertension and vascular hypertrophy. Hypertension. 1992;19(2 Suppl):II62–7.

    PubMed  CAS  Google Scholar 

  60. Jesmin S, Zaedi S, Maeda S, et al. Endothelin antagonism suppresses plasma and cardiac endothelin-1 levels in SHRSPs at the typical hypertensive stage. Exp Biol Med (Maywood). 2006;231:919–24.

    CAS  Google Scholar 

  61. Pandey SK, Anand-Srivastava MB. Modulation of G-protein expression by the angiotensin converting enzyme inhibitor captopril in hearts from spontaneously hypertensive rats. Relationship with adenylyl cyclase. Am J Hypertens. 1996;9:833–7.

    Article  PubMed  CAS  Google Scholar 

  62. Hashim S, Anand-Srivastava MB. Losartan-induced attenuation of blood pressure in L-NAME hypertensive rats is associated with reversal of the enhanced expression of Gi alpha proteins. J Hypertens. 2004;22:181–90.

    Article  PubMed  CAS  Google Scholar 

  63. Sims C, Ashby K, Douglas JG. Angiotensin II-induced changes in guanine nucleotide binding and regulatory proteins. Hypertension. 1992;19:146–52.

    PubMed  CAS  Google Scholar 

  64. Bohm M, Kirchmayr R, Erdmann E. Myocardial Gi alpha-protein levels in patients with hypertensive cardiac hypertrophy, ischemic heart disease and cardiogenic shock. Cardiovasc Res. 1995;30:611–8.

    PubMed  CAS  Google Scholar 

  65. Gomez Sandoval YH, Anand-Srivastava MB. Enhanced levels of endogenous endothelin-1 contribute to the over expression of Gialpha protein in vascular smooth muscle cells from SHR: role of growth factor receptor activation. Cell Signal. 2011;23:354–62.

    Article  PubMed  CAS  Google Scholar 

  66. Jankov RP, Kantores C, Belcastro R, et al. A role for platelet-derived growth factor beta-receptor in a newborn rat model of endothelin-mediated pulmonary vascular remodeling. Am J Physiol Lung Cell Mol Physiol. 2005;288:L1162–70.

    Article  PubMed  CAS  Google Scholar 

  67. Daub H, Weiss FU, Wallasch C, et al. Role of transactivation of the EGF receptor in signalling by G-protein-coupled receptors. Nature. 1996;379:557–60.

    Article  PubMed  CAS  Google Scholar 

  68. Sumitomo M, Milowsky MI, Shen R, et al. Neutral endopeptidase inhibits neuropeptide-mediated transactivation of the insulin-like growth factor receptor-Akt cell survival pathway. Cancer Res. 2001;61:3294–8.

    PubMed  CAS  Google Scholar 

  69. Li Y, Levesque LO, Anand-Srivastava MB. Epidermal growth factor receptor transactivation by endogenous vasoactive peptides contributes to hyperproliferation of vascular smooth muscle cells of SHR. Am J Physiol Heart Circ Physiol. 2010;299:H1959–67.

    Article  PubMed  CAS  Google Scholar 

  70. Ge C, Anand-Srivastava MB. Involvement of phosphatidylinositol 3-kinase and mitogen-activated protein kinase pathways in AII-mediated enhanced expression of Gi proteins in vascular smooth muscle cells. Biochem Biophys Res Commun. 1998;251:570–5.

    Article  PubMed  CAS  Google Scholar 

  71. Li Y, Lappas G, Anand-Srivastava MB. Role of oxidative stress in angiotensin II-induced enhanced expression of Gi(alpha) proteins and adenylyl cyclase signaling in A10 vascular smooth muscle cells. Am J Physiol Heart Circ Physiol. 2007;292:H1922–30.

    Article  PubMed  CAS  Google Scholar 

  72. Lappas G, Daou GB, Anand-Srivastava MB. Oxidative stress contributes to the enhanced expression of Gialpha proteins and adenylyl cyclase signaling in vascular smooth muscle cells from spontaneously hypertensive rats. J Hypertens. 2005;23:2251–61.

    Article  PubMed  CAS  Google Scholar 

  73. Bassil M, Anand-Srivastava MB. Nitric oxide modulates Gi-protein expression and adenylyl cyclase signaling in vascular smooth muscle cells. Free Radic Biol Med. 2006;41:1162–73.

    Article  PubMed  CAS  Google Scholar 

  74. Bassil M, Anand-Srivastava MB. Cyclic GMP modulates the expression of Gi protein and adenylyl cyclase signaling in vascular smooth muscle cells. Cell Biochem Biophys. 2007;47:99–108.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhu B. Anand-Srivastava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Anand-Srivastava, M.B. (2011). Modulation of Gi Protein Expression in Hypertension: Molecular Mechanisms. In: Dhalla, N., Nagano, M., Ostadal, B. (eds) Molecular Defects in Cardiovascular Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7130-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7130-2_20

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-7129-6

  • Online ISBN: 978-1-4419-7130-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics