SiC Materials and Processing Technology

Part of the MEMS Reference Shelf book series (MEMSRS, volume 22)


This chapter contains a broad review of SiC materials and processing technology necessary to create SiC electronics, micromechanical transducers, and packaging. Details on deposition and etching methods are covered. The material properties of various forms of SiC (single crystalline, polycrystalline, and amorphous) along with their use for creating the various components of harsh environment microsystems will also be discussed. Current status and future research are highlighted with regards to both materials and processing technologies.


Apply Physic Letter Material Science Forum Physical Vapor Transport Polytype Inclusion Physical Vapor Transport Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Neudeck PG (2006). Silicon Carbide Technology. The VLSI Handbook, Chapter 5 (Editor Wai-Kai Chen, CRC Press, Second Edition).Google Scholar
  2. 2.
    Rao MV, Tucker JB, Ridgway MC, Holland OW, Capano OW, Papanicolaou N, and Mittereder J (1999). Ion-implantation in bulk semi-insulating 4H-SiC. Journal of Applied Physics 86(2):752–758.CrossRefGoogle Scholar
  3. 3.
    Pirouz P, Chorey CM, Powell JA (1987). Antiphase Boundaries in Epitaxially Grown Beta-SiC. Applied Physics Letters 50(4):221–223CrossRefGoogle Scholar
  4. 4.
    Acheson AG (1892) British Patent 17:91Google Scholar
  5. 5.
    Tsvetkov VF, Allen ST, Kong HS, Carter Jr CH (1996). Institute of Physics Conference Series 142: 17–22Google Scholar
  6. 6.
    Tairov YM, Tsvetkov VF (1983). Progress in controlling the growth of polytypic crystals.Progress In Crystal Growth And Characterization 7(1-4):111–162Google Scholar
  7. 7.
    Sudarshan TS, Maximenko SI (2006). Bulk growth of single crystal silicon carbide. Microelectronic Engineering 83:155159CrossRefGoogle Scholar
  8. 8.
    Lely JA (1955). Darstellung von Einkristallen von Siliziumcarbid und Beherrschung von Art und Menge der eingbauten Verunreinigungen. Berichte Deutche Keramik Geselshaft (32):229–231Google Scholar
  9. 9.
    Tairov YM, Tsvetkov VF (1978). Investigations and growth processes of ingots of silicon carbide single crystals. Journal of Crystal Growth 43 (2):209–212CrossRefGoogle Scholar
  10. 10.
    Davis RF, Carter Jr CH, Hunter CE (1995). US Patent No. Re 34861Google Scholar
  11. 11.
    Stein RA, Lanig P (1992). Influence of surface-energy on the growth of 6H-SiC and 4H-SiC polytypes by sublimation. Materials Science and Engineering B 11(1-4): 69–71.CrossRefGoogle Scholar
  12. 12.
    Barrett DL, McHugh JP, Hobgood HM, Hopkins RH, McMullin PG, Clarke RC (1993). Growth of large SiC single crystals. Journal of Crystal Growth 128(1):358CrossRefGoogle Scholar
  13. 13.
    Cree Inc. USA.
  14. 14.
    Glass RC, Henshall G, Tsvetkov VF, Carter Jr CH (1997). SiC Seeded Crystal Growth. Physica Status Solidi B 202:149-162CrossRefGoogle Scholar
  15. 15.
    Chaussende D, Wellmann PJ, Pons M (2007). Status of SiC bulk growth processes. JOURNAL OF PHYSICS D: APPLIED PHYSICS 40(20):61506158Google Scholar
  16. 16.
    Norstel AB, Sweden.
  17. 17.
    Chaussende D, Baillet F, Charpentier L, Pernot E, Pons M, Madara R (2003). Continuous Feed Physical Vapor Transport Toward High Purity and Long Boule Growth of SiC. Journal of The Electrochemical Society 150(10):G653-G657CrossRefGoogle Scholar
  18. 18.
    Fanton M, Skowronski M, Snyder D, Chung H.J, Nigam S, Weiland B, Huh SW (2004). Growth of Bulk SiC by Halide Chemical Vapor Deposition. Materials Science Forum 457-460:87–90CrossRefGoogle Scholar
  19. 19.
    Wellmann P, Desperrier P, Muller R, Straubinger T, Winnacker A, Baillet F, Blanquet E, Dedulleb JM, Pons M (2005).SiC single crystal growth by a modified physical vapor transport technique. Journal of Crystal Growth 275(1-2):e555e560Google Scholar
  20. 20.
    ltoh A, Matsunami H (1997). Single crystal growth of SiC and electronic devices. Critical Reviews in Solid State and Materials Sciences, 22(2):111–197Google Scholar
  21. 21.
    Takahashi J, Ohtani N, Kanaya M (1995). Influence of the Seed Face Polarity on the Sublimation Growth of alpha-SiC. Japanese Journal of Applied Physics 34(9A):4694–4698Google Scholar
  22. 22.
    Ito A, Kimoto T, Matsunami H (1994). High-quality 4H-SiC homoepitaxial layers grown by step-controlled epitaxy. Applied Physics Letters 65(11):1400–1402CrossRefGoogle Scholar
  23. 23.
    Kordina O, Hallin C, Ellison A, Bakin AS, Ivanov IG, Henry A, Yakimova R, Tuominen M, Vehanen A, Janzen E (1996): Applied Physice Letters 69(10):1456–1458CrossRefGoogle Scholar
  24. 24.
    Ellison A, Magnusson B,Sundqvist B, Pozina G, Bergman JP, Janzen E, Vehanen A (2004). SiC crystal growth by HTCVD. Materials Science Forum 457-460:9–14CrossRefGoogle Scholar
  25. 25.
    Ellison A, Magnusson B, Son NT, Storasta L, Janzen E (2003). HTCVD grown semi-insulating SiC substrates. Materials Science Forum 433-436:33-38CrossRefGoogle Scholar
  26. 26.
    Sundqvist B, Ellison A, Jonsson A,Henry A,Magnusson B, Janzen E (2003). Growth of High Quality p-type 4H-SiC Substrates by HTCVD. Materials Science Forum 433-436:21–24CrossRefGoogle Scholar
  27. 27.
    Schmid F and Pensl G (2004). Comparison of the electrical activation of P+ and N+ ions co-implanted along with Si+ or C+ ions into 4H-SiC. Applied Physics Letters 84(16):3064–3066CrossRefGoogle Scholar
  28. 28.
    Chaussende D, Ucar M, Auvray L, Baillet F, Pons M, Madar R (2005). Control of the Supersaturation in the CF-PVT Process for the Growth of Silicon Carbide Crystals: Research and Applications. Crystal Growth & Design 5(4):15391544.Google Scholar
  29. 29.
    Chaussende D, Eid J, Mercier F, Madar R, Pons M (2009). Nucleation and Growth of 3C-SiC Single Crystals from the Vapor Phase. Materials Science Forum 615-617:31–36CrossRefGoogle Scholar
  30. 30.
    Polyakov AY, Fanton MA, Skowronski M, Chung HJ, Nigam1 S, Huh SW (2006). Halide-CVD Growth of Bulk SiC Crystals. Materials Science Forum 527-529:21–26Google Scholar
  31. 31.
    Hofmann D, Schmitt E, Bickermann M, Kolbl M, Wellmann PJ, Winnacker A (1999). Prospects of the use of liquid phase techniques for the growth of bulk silicon carbide crystals. Materials Science and Engineering B6162:2939Google Scholar
  32. 32.
    Halden F, Meuli WP, Fredericks WJ (1961), Growth of SiC Single Crystals. Final Technical Report. contract. no. NObsr-72772, Bureau of Ships.Google Scholar
  33. 33.
    Ujihara T, Munetoh S, Kusunoki K, Kamei K, Usami N, Fujiwara K, Sazakia G, Nakajima K (2005). Crystal quality of a 6H-SiC layer grown over macrodefects byliquid-phase epitaxy: a Raman spectroscopic study. Thin Solid Films 476(1):206209Google Scholar
  34. 34.
    Kusunoki K, Kamei K, Ueda Y, Naga S, Ito Y, Hasebe M, Ujihar T Nakajima K (2005). Crystalline Quality Evaluation of 6H-SiC Bulk Crystals Grown from Si-Ti-C Ternary Solution. Materials Science Forum 483-485:13-16CrossRefGoogle Scholar
  35. 35.
    Eid J, Santailler JL, Ferrand B, Basset A, Passero A, Lewandowska R, Balloud C, Camassel J (2006). Improvement of cubic silicon carbide crystals grown from solution. Superlattices and Microstructures 40:201204CrossRefGoogle Scholar
  36. 36.
    Kamei K, Kusunoki K,Yashiro N, Okada N, Tanaka T,Yauchi A (2009). Solution growthofsinglecrystalline6H,4H-SiCusingSiTiCmelt. Journal of Crystal Growth 311(3):855858Google Scholar
  37. 37.
    Ujihara T, Maekawa R, Tanaka R, Sasaki K, Kuroda K, Y. Takeda (2008). Solution growth of high-quality 3C-SiC crystals. Journal of Crystal Growth 310 (7-9):14381442Google Scholar
  38. 38.
    Ohtani N, Katsuno M, Tsuge H, Fujimoto T, Nakabayashi M, Yashiro H, Sawamura M, Aigo T, Hoshino T (2006). Dislocation processes during SiC bulk crystal growth. Microelectronic Engineering 83(1):142145Google Scholar
  39. 39.
    Rost HJ, Doerschel J, Schulz D, Siche D, Wollweber J (2002). Microdefect Generation in Single Crystal SiC Caused by Polytype Changes. Materials Science Forum 389-393:67-70CrossRefGoogle Scholar
  40. 40.
    Hofmann D, Schmitt E, Bickermann M, Kolbl M, Wellmann PJ, Winnacker A (1999). Analysis on defect generation during the SiC bulk growth process. Materials Science and Engineering B6162:48–53Google Scholar
  41. 41.
    Yakimova R, Iakimov T, Syvajarvi M, Jacobsson H, Raback P, Vehanen A, Janzen E (1999). Polytype stability and defect reduction in 4H-SiC crystals grown via sublimation technique. MRS Symposium Proceedings 572:265-267CrossRefGoogle Scholar
  42. 42.
    Sanchez E, Kopec A, Poplawski S, Ware R, Holmes S, Wang S, Timmerman A (2002). The Nucleation of Polytype Inclusions during the Sublimation Growth of 6H and 4H Silicon Carbide. Materials Science Forum 389393:71-74CrossRefGoogle Scholar
  43. 43.
    Kanaya M, Takahashi J, Fujiwara Y, Moritani A (1991). Controlled sublimation growth of single crystalline 4H-SIC and GH-SiC and identification of polytypes by x-ray diffraction. Applied Physics Letter 58(1):56-58CrossRefGoogle Scholar
  44. 44.
    Yakimova R, Syvajarvi M, Iakimov T, Jacobsson H, Raback P, Vehanen A, Janzen E (2000). Polytype stability in seeded sublimation growth of 4H-SiC boules.Journal of Crystal Growth 217:255-262Google Scholar
  45. 45.
    Tupitsyn EY, Arulchakkaravarthi A, Drachev RV, Sudarshan TS (2007). Controllable 6H-SiC to 4H-SiC polytype transformation during PVT growth. Journal of Crystal Growth 299(1):7076.Google Scholar
  46. 46.
    Rost HJ, Doerschel J, Irmscher K, Rossberg M, Shulz D, Siche D (2005). Polytype stability in nitrogen-doped PVT grown 2 inch 4HSiC crystals. Journal of Crystal Growth 275(1-2):e451-e454CrossRefGoogle Scholar
  47. 47.
    Vodakov YA, Mokhov EN, Roenkov AD, Anikin MM (1979). Effect of impurities on the polymorphism of silicon carbide. Soviet Technical Physics Letters 5(3):147-148Google Scholar
  48. 48.
    Rost HJ, Schmidbauer M, Siche D, Fornari R (2006). Polarity- and orientation-related defect distribution in 4H-SiC single crystals. Journal of Crystal Growth 290(1):137-143CrossRefGoogle Scholar
  49. 49.
    Siche D, Albrecht M, Doerschel J, Irmscher K, Rost HJ, Roxberg M, Schulz D (2004). Effect of Nitrogen Doping on the Formation of Planar Defects in 4H-SiC. Materials Science Forum 483485:39-42Google Scholar
  50. 50.
    Ohtani N, Takahashi J, Katsuno M, Yashiro H, Kanaya M (1998). Development of Large Single-Crystal SiC Substrates. Electronics and Communications in Japan Part 2 81(6):8-19Google Scholar
  51. 51.
    Fissel A (2000). Thermodynamic considerations of the epitaxial growth of SiC polytypes. Journal of Crystal Growth 212 (3-4):438-450CrossRefGoogle Scholar
  52. 52.
    Schulze N, Barrett D, Weidner M, Pensl G (2000). Controlled Growth of Bulk 15R-SiC Single Crystals by the Modified Lely Method. Materials Science Forum 338-342:111-114CrossRefGoogle Scholar
  53. 53.
    Neudeck PG, Powell JA (1994). Performance limiting micropipe defects in silicon carbide wafers. IEEE Electron Device Letters 15(2):63-65CrossRefGoogle Scholar
  54. 54.
    Frank FC (1951). Capillary equilibria of dislocated crystals. Acta Crystallographica 4(6):497-501CrossRefGoogle Scholar
  55. 55.
    Dudley M, Huang XR, Huang W, Powell JA, Wang S, Neudeck P, Skowronski M (1999). The mechanism of micropipe nucleation at inclusions in silicon carbide. Applied Physics Letters 75(6):784-86CrossRefGoogle Scholar
  56. 56.
    Tsvetkov VF, Allen ST, Kong HS, Carter Jr CH (1996). Recent progress in SiC crystal growth. Institute of Physics Conference Series (142):17-22Google Scholar
  57. 57.
    Schulze N, Barrett DL, Pensl G (1998). Near-equilibrium growth of micropipe-free 6H-SiC single crystals by physical vapor transport. Applied Physics Letters 72(13):1632-1634CrossRefGoogle Scholar
  58. 58.
    Takahashi J, Ohtani N, Kanaya M (1996). Structural defects in alpha-SiC single crystals grown by the modified-Lely method. Journal of Crystal Growth 167(3-2):596-606CrossRefGoogle Scholar
  59. 59.
    Takahashi J, Kanaya M, Hoshino T (1994). Sublimation growth and characterization of SiC single crystalline ingots on faces perpendicular to the (0001) basal plane. Institute of Physics Conference Series 137:13-16Google Scholar
  60. 60.
    Takahashi J, Ohtani N (1997). Modified-Lely SiC Crystals Grown in [1100] and [1120] Directions. Physica Status Solidi B 202(1):163-175CrossRefGoogle Scholar
  61. 61.
    Takahashi J, Ohtani N, Katsuno M, Shinoyama S (1997). Sublimation growth of 6H- and 4H-SiC single crystals in the [1100] and [1120] directions. Journal of Crystal Growth 18(3):229-240CrossRefGoogle Scholar
  62. 62.
    Nakamura D, Gunjishima I, Yamaguchi S, Ito T, Okamoto A, Kondo H, Onda S, Takatori K (2004). Ultrahigh-quality silicon carbide single crystals. Nature 430:1009-1012CrossRefGoogle Scholar
  63. 63.
    Carter, Jr CH, Tsvetkov VF, Glass RC, Henshall D, Brady M, Muller StG, Kordina O, Irvine K, Edmond JA, Kong HS, Singh R, Allen ST, Palmour JW (1999). Progress in SiC: from material growth to commercial device development. Materials Science and Engineering B6162:18Google Scholar
  64. 64.
    Leonard RT, Khlebnikov Y, Powell AR, Basceri C, Brady MF, Khlebnikov I, Jenny JR, Malta DP, Paisley MJ, Tsvetkov VF, Zilli R, Deyneka E, Hobgood HMcD, Balakrishna V, Carter Jr CH (2009). 100 mm 4HN-SiC Wafers with Zero Micropipe Density. Materials Science Forum 600-603:7-10Google Scholar
  65. 65.
    Kong HS, Glass JT, Davis RF (1989). Growth rate, surface morphology, and defect microstructures of SiC films chemically vapor deposited on 6HSiC substrates. Journal of Materials Research 4(1):204214Google Scholar
  66. 66.
    Zorman CA, Fleischman AJ, Dewa AS, Mehregany M, Jacob C, Nishino S and Pirouz P (1995). Epitaxial growth of 3C-Sic films on 4 in. diam (100) silicon wafers by atmospheric pressure chemical vapor deposition. Journal of Applied Physics 78(8):5136-5138Google Scholar
  67. 67.
    Pazik JC, Kelner G, Bottka N (1991). Epitaxial growth of SiC on silicon-on-sapphire substrates by chemical vapor deposition. Applied Physics Letters 58(13):14191422Google Scholar
  68. 68.
    Givargizov EI (1975). Fundamental Aspects of VLS Growth. Journal of Crystal Growth 31:20-30CrossRefGoogle Scholar
  69. 69.
    Milewski JV, Gac FD, Petrovic SR, Skaggs SR(1985). Growth of beta-SiC Whiskers by the VLS process. Journal of materials Science 20:1160-1166CrossRefGoogle Scholar
  70. 70.
    Kong HS, Glass JT, Davis RF (1991). US Patent No. 5011549Google Scholar
  71. 71.
    Rupp R, Wiedenhofer A, Stephani D (1999). Epitaxial growth of SiC in a single and a multi wafer vertical CVD system: a comparison. Materials Science and Engineering B61-62:125-129Google Scholar
  72. 72.
    Karlsson S, Nordell N, Spadafora F, Linnarsson M (1999). Epitaxial growth of SiC in a new multi-wafer VPE reactor. Materials Science and Engineering B61-62:143146Google Scholar
  73. 73.
    Thomas B, Bartsch W, Stein R, Schrner R, and Stephani D (2004). Properties and Suitability of 4H-SiC Epitaxial Layers Grown at Different CVD Systems for High Voltage Applications. Materials Science Forum 457-460:181-184CrossRefGoogle Scholar
  74. 74.
    Powell JA, Larkin DJ (1997). Process-Induced Morphological Defects in Epitaxial CVD Silicon Carbide. Physica Status Solidi B 202 (1):529-548CrossRefGoogle Scholar
  75. 75.
    Via F L, Izzo G, Abbondanza G, Crippa D (2009). Thick Epitaxial Layers Growth by Chlorine Addition. Materials Science Forum 615-617:55-60CrossRefGoogle Scholar
  76. 76.
    Ellison A, Zhang J, Henry A, Janzen E (2002). Epitaxial growth of SiC in a chimney CVD reactor. Journal of Crystal Growth 236(1-3):225238Google Scholar
  77. 77.
    Rupp R, Makarov YN, Behner H, Wiedenhofer A (1997). Silicon Carbide Epitaxy in a Vertical CVD Reactor: Experimental Results and Numerical Process Simulation. Physica Status Solidi B 202 (1):281-304CrossRefGoogle Scholar
  78. 78.
    Burk AA (2006). Development of Multiwafer Warm-Wall Planetary VPE Reactors for SiC Device Production. Chemical Vapour Deposition 12:465473Google Scholar
  79. 79.
    Powell JA, Rowland LB (2002). SiC Materials-Progress, Status, and Potential Roadblocks Proceedings of the IEEE 90(6):942-955Google Scholar
  80. 80.
    O. Kordina, Hallin C, Glass RC, Janzen E (1994). Proceedings of the International Conference on SiC, Inst. Phys. Conf. Ser.137: 41Google Scholar
  81. 81.
    Kordina O, Hallin C, Henry A, Bergman JP, Ivanov IG, A, Ellison A, Son NT, Janzen E (1997). Growth of SiC by Hot-Wall CVD and HTCVD. Physica Status Solidi B 202(1): 321-334Google Scholar
  82. 82.
    Frijlink PM (1988). A new versatile, large size MOVPE reactor. Journal of Crystal Growth 93(1-4):207-215CrossRefGoogle Scholar
  83. 83.
    Burk AA, OĹoughlin MJ, Nordby Jr HD (1999). SiC epitaxial layer growth in a novel multi-wafer vapor-phase epitaxial (VPE) reactor Journal of Crystal Growth 200:458-466Google Scholar
  84. 84.
    Burk AA, OĹoughlin MJ, Sumakeris JJ, Hallin C, Berkman E, Balakrishna V, Young J, Garrett L, Irvine KG, Powell AR, Khlebnikov Y, Leonard RT, Basceri C, Hull BA, Agarwal AK (2009). SiC Epitaxial Growth on Multiple 100-mm Wafers and its Application to Power-Switching Devices. Materials Science Forum Vols. 600-603:77-82Google Scholar
  85. 85.
    Ito M, Storasta L, Tsuchida H (2008). Development of 4H-SiC Epitaxial Growth Technique Acheiving High Growth Rate and Large-Area Uniformity. Applied Physics Express 1:015001-1CrossRefGoogle Scholar
  86. 86.
    Shibahara K, Nishino S, Matsunami H (1987). Antiphase domain free growth of cubic SiC on Si (100). Applied Physics Letters 50 (26):1888–1890CrossRefGoogle Scholar
  87. 87.
    Kong HS, Glass JT, Davis RF (1988). Chemical vapor deposition and characterization of 6HSiC thin films on off-axis 6HSiC substrates. Journal of applied physics 64(5): 2672–2679CrossRefGoogle Scholar
  88. 88.
    Powell J A, Larkin DJ, Matus, LG, Choyke WJ, Bradshaw, JL, Henderson L, Yoganathan M, Yang J, Pirouz P (1990). Growth of high-quality 6HSiC epitaxial films on vicinal (0001) 6HSiC wafers. Applied Physics Letters 56(15):14421444Google Scholar
  89. 89.
    Kimoto T, Matsunami H (1994). Surface kinetics of adatoms in vapor phase epitaxial growth of SiC on 6H-SiC(0001) vicinal surfaces. Journal of Applied Physics 75 (2):850–859CrossRefGoogle Scholar
  90. 90.
    Kimoto T, Nishino H, Yoo WS, Matsunami H, Nishino H (1993). Growth mechanism of 6H-SiC in step-controlled epitaxy. Journal of Applied Physics 73(2):726–732CrossRefGoogle Scholar
  91. 91.
    Larkin DJ, Neudeck PG, Powell AJ, Matus LG (1994). Site-competition epitaxy for superior silicon carbide electronics. Applied Physics Letters 65(13):1659–1661CrossRefGoogle Scholar
  92. 92.
    Choyke WJ (1990). The Physics and Chemistry of Carbides, Nitrides, and Borides, NATO AS1 Series E: Applied Sciences, edited by R. Freer (Khrwer.Dordrecht. 1990). 185:853Google Scholar
  93. 93.
    Davis RF, Glass JT (1991). Advances in Solid State Chemistry, edited by Catlow CRA (JAI, Greenwich, CT). 2:l–111Google Scholar
  94. 94.
    Larkin DJ (1997). SiC Dopant Incorporation Control Using Site-Competition CVD. Physica Status Solidi B (b) 202 (1):305–329MathSciNetCrossRefGoogle Scholar
  95. 95.
    Syvajarvi M, Yakimova R, Tuominen M, Kakanakova-Georgieva A, MacMillan MF, Henry A, Wahab Q, Janzen E (1999). Growth of 6H and 4H-SiC by sublimation epitaxy. Journal of Crystal Growth 197 (1): 155–162CrossRefGoogle Scholar
  96. 96.
    Dmitriev V (1995), LPE of SiC and SiC-AlN, in Properties of Silicon Carbide. ser. 13, G. L. Harris, Ed. London, U.K.: INSPECGoogle Scholar
  97. 97.
    Syvajarvi M, Yakimova R, Radamson HH, Son NT, Wahab Q, Ivanov IG, Janzen E (1999). Liquid phase epitaxial growth of SiC. Journal of Crystal Growth 197 (1):147–154CrossRefGoogle Scholar
  98. 98.
    Nishitani SR, Kaneko T (2008). Metastable solvent epitaxy of SiC. Journal of Crystal Growth 310(7-9):1815–1818CrossRefGoogle Scholar
  99. 99.
    Ferro G, Jacquier C (2004). Groth by a vapour-liquid-solid mechanism: a new approach for silicon carbide epitaxy. New Journal of Chemistry 28:889–896CrossRefGoogle Scholar
  100. 100.
    Dowcorning.comGoogle Scholar
  101. 101.
    Nipponsteel.comGoogle Scholar
  102. 102.
    Wu CH, Zorman CA, Mehregany M (2000). Characterization of polycrystalline SiC grown on SiO2 and Si3N4 by APCVD for MEMS applications. Materials Science Forum 338-342:541–544CrossRefGoogle Scholar
  103. 103.
    Cheng L, Pan M, Scofield J, Steckl AJ (2002). Growth and Doping of SiC-Thin Films on Low-Stress, Amorphous Si3N4/Si Substrates for Robust Microelectromechanical Systems Applications. Journal of Electronic Materials 31(5):361-365CrossRefGoogle Scholar
  104. 104.
    Stoldt CR, Carraro C, Ashurst WR, Gao D, Howe RT, Maboudian R (2002). Low temperature CVD process for SiC MEMS. Sensors and Actuators A 97-98:410-415CrossRefGoogle Scholar
  105. 105.
    Ashurst WR, Wijesundara MBJ, Carraro C, Maboudian R (2004). Tribological Impact of SiC Encapsulation of Released Polycrystalline Silicon Microstructures. Tribology Letters 17:195-198CrossRefGoogle Scholar
  106. 106.
    Song X, Rajgopal S, Melzak J, Zorman CA, M. Mehregany M (2002). Development of a multilayer SiC surface micromachining process with capabilities and design rules comparable to conventional polysilicon surface micromachining. Materials Science Forum 389-393:755-758Google Scholar
  107. 107.
    Zorman CA, Fleischman AJ, Dewa AS, Mehregany M, Jacob C, Nishino S, Pirouz P (1995). Epitaxial growth of 3C-SiC films on 4 in. diam (100) silicon wafers by atmospheric pressure chemical vapor deposition. Journal of Applied Physics 78 (8):5136-5138Google Scholar
  108. 108.
    Fleischman AJ, Roy S, Zorman CA, Mehregrany (1996). Polycrystalline silicon carbide for surface micromachining. Proceedings of 9th Annual. International Workshop on Microelectromechanical Systems, San Diego, CA, Feb. 1115 1996 :473478Google Scholar
  109. 109.
    Chung GS, Kim KS, Han KB (2008). Characteristics of polycrystalline 3C-SiC thin films grown on Si wafers for harsh environment microdevices. Ceramics International 34:841844Google Scholar
  110. 110.
    Kim KS, Chung GS (2009). Growth and characteristics of polycrystalline 3CSiC films for extreme environment micro/nano-electromechanical systems. Sensors and Actuators A 155:125130Google Scholar
  111. 111.
    Zhang J, Howe RT, Maboudian R (2006). Control of strain gradient in doped polycrystalline silicon carbide films through tailored doping. J. Micromech. Microeng. 16:L1-L5CrossRefGoogle Scholar
  112. 112.
    Lee KW, YU KS, Kim Y (1997). Heretoepitaxial growth of 3C-SiC on Si(001) without carbonization. Journal of Crystal Growth 179(1-2):153-160Google Scholar
  113. 113.
    Hurtos E, Rodriguez-Viejo J (2000). Residual stress and texture in poly-SiC films grown by low-pressure organometallic chemical-vapor deposition. Journal of Applied Physics 87(4):1748-1758CrossRefGoogle Scholar
  114. 114.
    Wang CF, Tsai DS (2000). Low pressure chemical vapor deposition of silicon carbide from dichlorosilane and acetylene. Materials Chemistry and Physics 63:196-201CrossRefGoogle Scholar
  115. 115.
    Stoldt CR, Fritz MC, Carraro C, Maboudian R (2001). Micromechanical properties of silicon-carbide thin films deposited using single-source chemical-vapor deposition. Applied Physics Letters 79(3):437-349Google Scholar
  116. 116.
    Wijesundara MBJ, Valente G, Ashurst WR, Howe RT, Pisano AP, Carraro C, Maboudian R (2004). Single-Source Chemical Vapor Deposition of 3C-SiC Films in a LPCVD Reactor Part I: Growth, Structure, and Chemical Characterization. Journal of the Electrochemical Society 151:C210-C214CrossRefGoogle Scholar
  117. 117.
    Valente G, Wijesundara MBJ, Carraro C, Maboudian R (2004). Single-Source Chemical Vapor Deposition of 3C-SiC Films in a LPCVD Reactor Part II: Reactor Modeling and Chemical Kinetics. Journal of the Electrochemical Society 151:C 215-C219Google Scholar
  118. 118.
    Zorman CA, Rajgopal S, Fu XA, Jezeski R, Melzak J, Mehregany M (2002). Deposition of Polycrystalline 3C-SiC Films on 100 mm Diameter Si.100. Wafers in a Large-Volume LPCVD Furnace. Electrochemical and Solid-State Letters 5(10):G99-G101Google Scholar
  119. 119.
    Wijesundara MBJ, Stoldt CR, Carraro C. Howe RT, Maboudian R (2002). Nitrogen Doping of Polycrystalline 3C-SiC Films Grown by Single-Source Chemical Vapor Deposition. Thin Solid Films 419:69-75Google Scholar
  120. 120.
    Wijesundara MBJ, Gao D, Carraro C. Howe RT, Maboudian R (2003). Nitrogen Doping of Polycrystalline SiC Films Grown using 1,3Disilabutane in conventional LPCVD Reactor. Journal of Crystal Growth 259:18-25Google Scholar
  121. 121.
    Gao D, Wijesundara MBJ, Howe RT, Maboudian R (2003). Characterization of residual strain in SiC films deposited using 1,3-disilabutane for MEMS Application. Journal of Microlithography Microfabrication and Microsystems 2:259-264CrossRefGoogle Scholar
  122. 122.
    Roper CS, Carraro C. Howe RT, Maboudian R (2006). Silicon carbide thin films using 1,3-disilabutanesingle precursor for MEMS ApplicationsReview. ESC Transctions 3(10):267-280Google Scholar
  123. 123.
    Zhang J, Howe RT, Maboudian R (2006). Electrical Characterization of n-Type Polycrystalline 3C-Silicon Carbide Thin Films Deposited by 1,3-Disilabutane. Journal of The Electrochemical Society, 153(6):G548-G551CrossRefGoogle Scholar
  124. 124.
    Wijesundara MBJ, Walther DC, Stoldt CR, Fu K, Gao D, Carraro C, Pisano AP, Maboudian R (2003). Low Temperature CVD SiC Coated Si Microcomponents for Reduced Scale Engines, ASME International Mechanical Engineering Congress 2003 2:41696Google Scholar
  125. 125.
    Azevedo RG, Zhang J, Jones DG, Myers DR, Jog AV, Jamshidi B, Wijesundara MBJ, Maboudian R, Pisano AP(2007). Silicon Carbide Coated MEMS Strain Sensor for Harsh Environment Applications, MEMS 2007, 20th IEEE International Conference on Micro Electro Mechanical Systems, Technical Digest 2007:643-646Google Scholar
  126. 126.
    Jamshidi B, Azevedo RG, Wijesundara MBJ, Pisano AP (2007). Corrosion Enhanced Capacitive Strain Gauge at 370C. MEMS 2007, 20th IEEE SENSORS 2007 Conference on Micro and Nano sensors Technical Digest 2007:804-807Google Scholar
  127. 127.
    Bhave SA, Gao D, Maboudian R, Howe RT (2005). Fully-differentical poly-SiC lame-mode resonator and checkerboard filter. MEMS 2005, 18th IEEE International Conference on Micro Electro Mechanical Systems, Technical Digest (2005):223-226Google Scholar
  128. 128.
    Liu F, Carraro C, Chu J, Maboudian R (2009). Residual stress characterization of polycrystalline 3C-SiC films on (Si 100) deposited from methylsilane. Journal of Applied Physics 106:013505CrossRefGoogle Scholar
  129. 129.
    Liu F, Carraro C, Chu J, Pisano AP, Maboudian R (2010). Growth and characterization of nitrogen-doped polycrystalline 3C-SiC thin films for harsh environment MEMS applications. Journal of Micromechanics Microengineering 20:035011CrossRefGoogle Scholar
  130. 130.
    Fu XA, Trevino J, Mehregany M (2006). Nitrogen-doping of polycrystalline 3C-SiC films deposited by low pressure chemical vapor deposition. Materials Science Forum 527-529:311-314CrossRefGoogle Scholar
  131. 131.
    Myers DR, Cheng KB, Jamshidi B, Azevedo RG, Senesky DG, Wijesundara MBJ Pisano AP (2009). A Silicon Carbide Resonant Tuning Fork for Micro-Sensing Applications in High Temperature and High G-Shock Environment. Journal of Micro/Nanolithography, MEMS, and MOEMS 8:021116Google Scholar
  132. 132.
    Rajgopal S, Zula D, Garverick S, Mehregany M (2009). A Silicon Carbide Accelerometer for Extreme Environment Applications. Materials Science Forum 600-603:859–862CrossRefGoogle Scholar
  133. 133.
    Chen L, Mehregany M (2008). A silicon carbide capacitive pressure sensor for in-cylinder pressure measurement. Sensors and Actuators A 145146:2-8CrossRefGoogle Scholar
  134. 134.
    Chen J, Steckel AJ, Loboda MJ (2000). In situ N-2-doping of SiC films grown on Si(111) by chemical vapor deposition from organosilanes. Journal of Electrochemical Society 147:2324–2327CrossRefGoogle Scholar
  135. 135.
    Kern RS, Davis RF (1997). Deposition and doping of silicon carbide by gas-source molecular beam epitaxy Appl. Phys. Lett. 71(10):1356-1358Google Scholar
  136. 136.
    Chang WT. Zorman C (2009). Grain size control of (111) polycrystalline 3C-SiC films by doping used as folded-beam MEMS resonators for energy dissipation. Microsystem Technology 15:875–880CrossRefGoogle Scholar
  137. 137.
    Murooka KI, Higashikawa I, Gomei Y (1996). Improvement of the Youngs modulus of SiC film by low-pressure chemical vapor deposition with B2H6 gas. Applied Physics Letters 69(1):37–39CrossRefGoogle Scholar
  138. 138.
    Fu XA, Dunning J, Zorman CA, Mehregany M (2004). Development of a High-Throughput LPCVD Process for Depositing Low Stress Poly-SiC. Materials Science Forum 457-460:305–308CrossRefGoogle Scholar
  139. 139.
    Roper CS, Radmilovic V, Howe RT, Maboudian R (2008). Characterization of polycrystalline 3C-SiC films deposited from the precursors 1,3-disilabutane and dichlorosilane. Journal of Applied Physics 103:084907CrossRefGoogle Scholar
  140. 140.
    Fu XA, Dunning J, Zorman CA, Mehregany M (2005). Polycrystalline 3C-SiC thin films deposited by dual precursor LPCVD for MEMS applications. Sensors and Actuators A 119:169-176CrossRefGoogle Scholar
  141. 141.
    Zhang J, Ph.D. Thesis (UC Berkeley)Google Scholar
  142. 142.
    Azevedo RG, Jones DG, Jog AV, Jamshidi B, Myers DR, Chen L, Fu, XA, Mehregany, M, Wijesundara, MBJ, Pisano, AP (2007). A SiC MEMS Resonant Strain Sensor for Harsh Environment Applications, IEEE Sensors, 7(4):568–576CrossRefGoogle Scholar
  143. 143.
    Sarro PM (2000). Silicon carbide as a new MEMS technology. Sensors and Actuators 82:210218Google Scholar
  144. 144.
    Sarro PM, deBoer CF, Korkmaz E, Laros JMW (1998). Low-stress PECVD SiC thin films for IC-compatible microstructures. Sensors and Actuators A 67:175–180CrossRefGoogle Scholar
  145. 145.
    Pelegrini MV, Rehder GP, Pereyra L (2010). a-SiC:H films deposited by PECVD for MEMS applications. Physica Status Solidi C 7:786–789Google Scholar
  146. 146.
    Shimizu H, Kato A (2009). Low temperature growth of 3C-SiC Films on (111) by Plasma Assisted CVD. Materials Science Forum 615-617:161–164CrossRefGoogle Scholar
  147. 147.
    Rajaraman V, Pakula LS, Pham HTM, Sarro PM, French PJ (2009). RobustWafer-Level Thin-Film Encapsulation of Microstructures Using Low Stress PECVD Silicon Carbide. MEMS 2009, Sorrento, Italy, Jan. 25-29 2009:140-143Google Scholar
  148. 148.
    Gonzalez-Elipe AR, Yubero F, Sanz JM (2003). Low Energy Ion Assisted Film Growth. Imperial College Press, London, UKCrossRefGoogle Scholar
  149. 149.
    Valentini A, Convertino A, Alvisi AM, Cingolani R, Ligonzo T, Lamendola R, Tapfer L (1998). Synthesis of silicon carbide thin films by ion beam sputtering. Thin Solid Films 335:80–84CrossRefGoogle Scholar
  150. 150.
    Pezoldt J, Stottko B, Kupris G, Ecke G (1995). Sputtering effects in hexagonal silicon carbide. Materials Science and Engineering B29:94–98Google Scholar
  151. 151.
    Zaytouni M, Riviere JP, Denanot MF, Allain J (1996). Structural characterization of SiC films prepared by dynamic ion mixing. Thin Solid Films 287:1–7CrossRefGoogle Scholar
  152. 152.
    Jones DG, Azevedo RG, Chan MW, Pisano AP, Wijesundara MBJ (2007). Low-Temprature Ion Beam Sputter Deposition of Amorphous Silicon Carbide for Wafer Level Vacuum Sealing, MEMS 2007, 20th IEEE International Conference on Micro Electro Mechanical Systems, Technical Digest 2007: 275–278Google Scholar
  153. 153.
    Argyrakis P, McNabb P, Snell AJ, Cheung R (2006). Relaxation of process induced surface stress in amorphous silicon carbide thin films using low energy ion bombardment. Applied Physics Letters 89:034101CrossRefGoogle Scholar
  154. 154.
    Park WT, Candler R, Kronmueller S, Lutz M, Partridge A, Yama G, Kenny T(2003). Wafer-scale film encapsulation of micromachined accelerometers. Proc. of International Conference on Solid State Sensors, Actuators and Microsystems (Transducers 03). IEEE, 2003:Google Scholar
  155. 155.
    Rusu M, Jansen H, Gunn R, Witvrouw A (2004). Self-aligned 0-level sealing of MEMS devices by a two layer thin film reflow process. Microsystem Technologies 10:364371CrossRefGoogle Scholar
  156. 156.
    Roper CS, Candler R,Yoneoka S, Kenny T Howe RT, Maboudian R (2009). Simultaneous Wafer-Scale Vacuum Encapsulation and Microstrcture Cladding with LPCVD 3C-SiC. Transducers 2009, Denver, CO, USA, June 21-25 2009:1031–1034Google Scholar
  157. 157.
    Fraga MA, Massi M, Oliveira IC, Maciel HS, Filho SGDS, Mansano RD (2008). Nitrogen doping of SiC thin films deposited by RF magnetron sputtering. Journal of Materials Science: Materials Electronics 19:83-5840CrossRefGoogle Scholar
  158. 158.
    Serre C, Perez-Rodriguez A, Morante JR, Esteve J, Acero MC, Kogler R, Skorupa W (2000). Ion beam synthesis of polycrystalline SiC on SiO2 structures for MEMS applications. Journal of Micromechanics Microengineering 10:152-156CrossRefGoogle Scholar
  159. 159.
    Yih PH, Saxena V, Steckl AJ (1997). A Review of SiC Reactive Ion Etching in Fluorinated Plasmas. Physica Status Solidi B 202(1):605–642CrossRefGoogle Scholar
  160. 160.
    Pan WS, Steckl AJ (1990). Ion Etching of SiC Thin Films by Mixtures of Fluorinated Gases and Oxygen. Journal of the Electrochemical Society 137(1):212–220CrossRefGoogle Scholar
  161. 161.
    Gao D, Wijesundara MBJ, Carraro C, Howe RT, Maboudian R (2004). Transformer coupled plasma etching of 3C-SiC films using fluorinatedchemistry for microelectromechanical systems applications. Journal of Vacuum Science Technology B 22(2):513–518CrossRefGoogle Scholar
  162. 162.
    Mayer TM, Barker RA (1982). Simulation of plasma-assisted etching processes by ion-beam techniques. Journal of Vacuum Science and Technology 21(3):757–763CrossRefGoogle Scholar
  163. 163.
    Lee HY, Kim DW, Sung YJ, Yeom GY (2005). Fabrication of SiC micro-lens by plasma etching. Thin Solid Films 475(1-2):318322Google Scholar
  164. 164.
    Gao D, Howe RT, Maboudian R (2003). High-selectivity etching of polycrystalline 3C-SiC films using HBr-based transformer coupled plasma. Applied Physics Letter 82(11):1742–1744CrossRefGoogle Scholar
  165. 165.
    Chabert P (2001). Deep etching of silicon carbide for micromachining applications:Etch rates and etch mechanisms. Journal of Vacuum Science Technology B 19(4):1339–1345MathSciNetCrossRefGoogle Scholar
  166. 166.
    Plank NOV, Blauw MA, van der Drift EWJM, Cheung R (2003). The etching of silicon carbide in inductively coupled SF6/O2 plasma. Journal of Applied Physics D: Applied Physics 36:482–487CrossRefGoogle Scholar
  167. 167.
    SPP Process Technology Systems (SPTS), UK.
  168. 168.
    Fleischman AJ, Zorman CA, Mehregany M (1998). Etching of 3C-SiC using CHF3/O2 and CHF3/O2/He plasmas at 1.75 Torr. Journal of Vacuum Science Technology B 16(2):536-539Google Scholar
  169. 169.
    Oxford Instruments, UK.
  170. 170.
    Zhuang D, Edgar JH (2005). Wet etching of GaN, AlN, and SiC: a review. Materials Science and Engineering R 48(1):1-46CrossRefGoogle Scholar
  171. 171.
    Alok D, Baliga BJ (1995). A Novel Method for Etching Trenches in Silicon Carbide. Journal of Electronic Materials 24:311CrossRefGoogle Scholar
  172. 172.
    Roper SR, Howe RT, Maboudian R (2009). Room-Temperature Wet Etching of Polycrystalline and Nanocrystalline Silicon Carbide Thin Films with HF and HNO3. Journal of The Electrochemical Society 156 (3):D104-D107CrossRefGoogle Scholar
  173. 173.
    R. Okojie, A. Ned, A. Kurtz, and W. Carr (1996). 6H-SiC pressure sensors for high temperature applications. Proceeding of 9th Annual International Workshop Microelectromechanical Systems, M. Allen and M. Reed, Eds., San Diego, CA, Feb. 1115 1996:146-149Google Scholar
  174. 174.
    Mehregany M, Zorman CA (1999). SiC MEMS: opportunities and challenges for application in harsh environments. Thin Solid Films 355-356:518–524CrossRefGoogle Scholar
  175. 175.
    Yasseen A, Zorman CA, Mehregany M (1999). Surface Micromachining of Polycrystalline SiC Films Using Microfabricated Molds of SiO and Polysilicon. Journal of Microelectromechanical system 8 (3):237–242CrossRefGoogle Scholar
  176. 176.
    Lohner KA, Chen KS, Ayon AA, Spearing SM (1998). Microfabricated Silicon Carbide Microengine Strucutres. Materials Research Society Symposium Proceedings Series 546:1–6Google Scholar
  177. 177.
    Farsari M, Filippidis G, Zoppe S,Reider GA, Fotakis C (2005). Efficient femtosecond lasermicromachining of bulk 3C-SiC Journal Micromechanics and Microengineering 15:1786-1789Google Scholar
  178. 178.
    Jiang M, Komanduri R (1998). On the finishing of Si3N4 balls for bearing applications. Wear 215(1-2):267–278CrossRefGoogle Scholar
  179. 179.
    Chen X, Li J, Ma, Hu X, Xu X, Jiang M (2006). Fine Machining of Large-Diameter 6H-SiC Wafers. Journal of Materials Science and Technology 22(5):681–684Google Scholar
  180. 180.
    Kikuchi M, Takahashi Y, Suga T, Suzuki S, Bando Y(1992). Mechanochemical Polishing of Silicon Carbide Single Crystal with Chromium(III) Oxide Abrasive. Journal of American Ceramic Society 75 (1):189–194CrossRefGoogle Scholar
  181. 181.
    Zhou L, Audurier, Pirouz P, Powell J A (1997). Chemomechanical Polishing of Silicon Carbide. Journal of the Electrochemical. Society 144(6):L161–163CrossRefGoogle Scholar
  182. 182.
    Li C, Bhat IB, Wang R, Seiler J (2004). Electro-Chemical Mechanical Polishing of Silicon Carbide. Journal of Electronic Materials 33(5):481–486CrossRefGoogle Scholar
  183. 183.
    NOVASiC, France.
  184. 184.
    Anderson TA, Barrett DL, Chen J, Elkington WT, Emorhokpor E, Gupta A, Johnson CJ, Hopkins RH, Martin C, Kerr T, Semenas E, Souzis AE, Tanner CD, Yoganathan M, Zwieback I (2004). Advanced PVT Growth of 2 & 3-Inch Diameter 6H SiC Crystals. Materials Science Forum 457-460:75–78CrossRefGoogle Scholar
  185. 185.
    Fu XA, Zorman CA, Mehregany M (2002). Chemical Mechanical Polishing of Cubic Silicon Carbide Films Grown on Si(100) Wafers. Journal of the Electrochemical Society 149(12):G643–G647CrossRefGoogle Scholar
  186. 186.
    Burk AA, Rowland LB (1996). Novel in situ optical monitoring method for selective area metalorganic vapor phase epitaxy. Journal of Crystal Growth 167(3-4):586–595CrossRefGoogle Scholar
  187. 187.
    Horita M, Kimoto T, Suda (2008). Surface Morphologies of 4H-SiC (1120) and (1100) Treated by High-Temperature Gas Etching. Japanese Journal of Applied Physics 47(11):8388–8390Google Scholar
  188. 188.
    Saddow SE, Schattner TE, Brown J, Grazulis L, Mahalingam K, Landis G, R. Bertke, Mitchel WC (2001). Effects of Substrate Surface Preparation on Chemical Vapor Deposition Growth of 4H-SiC Epitaxial Layers. Journal of Electronic Materials 30(3):228–234CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Automation & Robotics Research InstituteThe University of Texas at ArlingtonArlingtonUSA
  2. 2.Proteus Biomedical Inc.Redwood CityUSA

Personalised recommendations